Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Eur J Pediatr ; 175(3): 339-46, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26440671

RESUMEN

UNLABELLED: Carbamoyl phosphate synthetase 1 (CPS1) deficiency is a rare autosomal recessive disorder of ureagenesis presenting as life-threatening hyperammonemia. In this study, we present the main clinical features and biochemical and molecular data of six Malaysian patients with CPS1 deficiency. All the patients have neonatal-onset symptoms, initially diagnosed as infections before hyperammonemia was recognized. They have typical biochemical findings of hyperglutaminemia, hypocitrullinemia, and low to normal urinary excretion of orotate. One neonate succumbed to the first hyperammonemic decompensation. Five neonatal survivors received long-term treatment consisting of dietary protein restriction and ammonia-scavenging drugs. They have delayed neurocognitive development of varying severity. Genetic analysis revealed eight mutations in CPS1 gene, five of which were not previously reported. Five mutations were missense changes while another three were predicted to create premature stop codons. In silico analyses showed that these new mutations affected different CPS1 enzyme domains and were predicted to interrupt interactions at enzyme active sites, disturb local enzyme conformation, and destabilize assembly of intact enzyme complex. CONCLUSION: All mutations are private except one mutation; p.Ile1254Phe was found in three unrelated families. Identification of a recurrent p.Ile1254Phe mutation suggests the presence of a common and unique mutation in our population. Our study also expands the mutational spectrum of the CPS1 gene.


Asunto(s)
Amoníaco/sangre , Carbamoil-Fosfato Sintasa (Amoniaco)/genética , Enfermedad por Deficiencia de Carbamoil-Fosfato Sintasa I/diagnóstico , Hiperamonemia/etiología , Pueblo Asiatico/genética , Enfermedad por Deficiencia de Carbamoil-Fosfato Sintasa I/genética , Simulación por Computador , Femenino , Pruebas Genéticas/métodos , Humanos , Hiperamonemia/sangre , Hiperamonemia/genética , Recién Nacido , Imagen por Resonancia Magnética , Malasia , Masculino , Mutación
2.
Comput Biol Chem ; 107: 107962, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37847978

RESUMEN

Protein arginine deiminase IV (PAD4) is a potential target for diseases including rheumatoid arthritis and cancers. Currently, GSK199 is a potent, selective yet reversible PAD4 inhibitor. Its derivative, GSK106, on the other hand, was reported as an inactive compound when tested against PAD4 assay. Although they had similar skeleton, their impact towards PAD4 structural and flexibility is unknown. In order to fill the research gap, the impact of GSK199 and GSK106 binding towards PAD4 stability and flexibility is investigated via a combination of computational methods. Molecular docking indicates that GSK199 and GSK106 are capable to bind at PAD4 pocket by using its back door with -10.6 kcal/mol and -9.6 kcal/mol, respectively. The simulations of both complexes were stable throughout 100 ns. The structure of PAD4 exhibited a tighter packing in the presence of GSK106 compared to GSK199. The RMSF analysis demonstrates significant changes between the PAD4-GSK199 and PAD4-GSK106 simulations in the regions containing residues 136, 160, 220, 438, and 606. The Molecular Mechanics Poisson-Boltzmann Surface Area (MMPBSA) analysis shows a marked difference in binding free energies, with -11.339 kcal/mol for the PAD4-GSK199 complex and 1.063 kcal/mol for the PAD4-GSK106 complex. The hydrogen bond analysis revealed that the GSK199 and GSK106 binding to PAD4 are assisted by six hydrogen bonds and three hydrogen bonds, respectively. The visualisation of the MD simulations revealed that GSK199 remained in the PAD4 pocket, whereas GSK106 shifted away from the catalytic site. Meanwhile, molecular dockings of benzoyl arginine amide (BAEE) substrate have shown that BAEE is able to bind to PAD4 catalytic site when GSK106 was present but not when GSK199 occupied the site. Overall, combination of computational approaches successfully described the behaviour of binding pocket of PAD4 structure in the presence of the active and inactive compounds.


Asunto(s)
Hidrolasas , Desiminasas de la Arginina Proteica/metabolismo , Hidrolasas/química , Simulación del Acoplamiento Molecular , Arginina Deiminasa Proteína-Tipo 4
3.
Orphanet J Rare Dis ; 18(1): 231, 2023 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-37542277

RESUMEN

BACKGROUND: Pompe disease is a rare glycogen storage disorder caused by deficiency of the lysosomal enzyme acid alpha-glucosidase (GAA), leading to glycogen deposition in multiple tissues. Infantile-onset Pompe disease (IOPD) patients present within the first year of life with profound hypotonia and hypertrophic cardiomyopathy. Treatment with enzyme replacement therapy (ERT) has significantly improved survival for this otherwise lethal disorder. This study aims to describe the clinical and molecular spectrum of Malaysian IOPD patients, and to analyze their long term treatment outcomes. METHODS: Seventeen patients diagnosed with IOPD between 2000 and 2020 were included in this retrospective cohort study. Clinical and biochemical data were collated and analyzed using descriptive statistics. GAA enzyme levels were performed on dried blood spots. Molecular analysis of the GAA gene was performed by polymerase chain reaction and Sanger sequencing. Structural modelling was used to predict the effect of the novel mutations on enzyme structure. RESULTS: Our cohort had a median age of presentation of 3 months and median age of diagnosis of 6 months. Presenting features were hypertrophic cardiomyopathy (100%), respiratory insufficiency (94%), hypotonia (88%), failure to thrive (82%), feeding difficulties (76%), and hepatomegaly (76%). Fourteen different mutations in the GAA gene were identified, with three novel mutations, c.1552-14_1552-1del, exons 2-3 deletion and exons 6-10 deletion. The most common mutation identified was c.1935C > A p.(D645E), with an allele frequency of 33%. Sixteen patients received ERT at the median age of 7 months. Overall survival was 29%. Mean age of death was 17.5 months. Our longest surviving patient has atypical IOPD and is currently 20 years old. CONCLUSIONS: This is the first study to analyze the genotype and phenotype of Malaysian IOPD patients, and has identified the c.1935C > A p.(D645E) as the most common mutation. The three novel mutations reported in this study expands the mutation spectrum for IOPD. Our low survival rate underscores the importance of early diagnosis and treatment in achieving better treatment outcomes.


Asunto(s)
Cardiomiopatía Hipertrófica , Enfermedad del Almacenamiento de Glucógeno Tipo II , Humanos , alfa-Glucosidasas/genética , Cardiomiopatía Hipertrófica/tratamiento farmacológico , Cardiomiopatía Hipertrófica/genética , Genotipo , Glucógeno , Enfermedad del Almacenamiento de Glucógeno Tipo II/tratamiento farmacológico , Enfermedad del Almacenamiento de Glucógeno Tipo II/genética , Enfermedad del Almacenamiento de Glucógeno Tipo II/diagnóstico , Hipotonía Muscular , Fenotipo , Estudios Retrospectivos , Resultado del Tratamiento
4.
Trop Med Infect Dis ; 8(8)2023 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-37624348

RESUMEN

Dengue virus serotype 4 (DENV-4) has been the rarest circulating serotype in Malaysia, resulting in it being an understudied area. A recent observation from institutional surveillance data indicated a rapid increase in DENV-4-infected cases. The present study aimed to investigate the resurgence of DENV-4 in relation to the demographic, clinical and genomic profiles of 75 retrospective dengue samples. First, the demographic and clinical profiles obtained between 2017 and July 2022 were statistically assessed. Samples with good quality were subjected to full genome sequencing on the Illumina Next Seq 500 platform and the genome data were analysed for the presence of mutations. The effect of the mutations of interest was studied via an in silico computational approach using SWISS-MODEL and AlphaFold2 programs. The predominance of DENV-4 was discovered from 2021 to 2022, with a prevalence of 64.3% (n = 9/14) and 89.2% (n = 33/37), respectively. Two clades with a genetic divergence of 2.8% were observed within the dominant genotype IIa. The majority of DENV-4-infected patients presented with gastrointestinal symptoms, such as vomiting (46.7%), persistent diarrhoea (30.7%) and abdominal pain (13.3%). Two mutations, His50Tyr and Pro144Ser, located at the wing domain of the NS1 protein were discovered to be unique to the recently sequenced DENV-4.

5.
Mol Genet Metab Rep ; 21: 100525, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31709144

RESUMEN

Argininosuccinate lyase (ASL) deficiency impairs the function of the urea cycle that detoxifies blood ammonia in the body. Mutation that occurs in the ASL gene is the cause of occurrence of ASL deficiency (ASLD). This deficiency causes hyperammonemia, hepatopathy and neurodevelopmental delay in patients. In this study, the clinical characteristics and molecular analysis of 10 ASLD patients were presented. 8 patients were associated with severe neonatal onset, while the other 2 were associated with late onset. Molecular analysis of ASL gene identified four new missense variants, which were c.778C>T, p.(Leu260Arg), c.1340G>C, p.(Ser447Thr), c.436C>G, p.(Arg146Gly) and c.595C>G, p.(Leu199Val) and four reported missense variants, which were c.638G>A, p.(Arg213Gln); c.556C>T, p.(Arg186Trp), c.578G>A, p.(Arg193Gln) and c.436C>G, p.(Arg146Trp). In silico servers predicted all new and reported variants as disease-causing. Structural examination exhibited that all pathogenic variants affected the stability of the tetrameric ASL structure by disturbing the bonding pattern with the neighboring residues. CONCLUSION: This study revealed the genetic heterogeneity among Malaysian ASL patients. This study has also expanded the mutational spectrum of the ASL.

6.
Mol Genet Metab Rep ; 17: 22-30, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30228974

RESUMEN

Maple syrup urine disease (MSUD) is a rare autosomal recessive metabolic disorder. This disorder is usually caused by mutations in any one of the genes; BCKDHA, BCKDHB and DBT, which represent E1α, E1ß and E2 subunits of the branched-chain α-keto acid dehydrogenase (BCKDH) complex, respectively. This study presents the molecular characterization of 31 MSUD patients. Twenty one mutations including 14 new mutations were identified. The BCKDHB gene was the most commonly affected (45.2%) compared to BCKDHA gene (16.1%) and DBT gene (38.7%). In silico webservers predicted all mutations were disease-causing. In addition, structural evaluation disclosed that all new missenses in BCKDHA, BCKDHB and DBT genes affected stability and formation of E1 and E2 subunits. Majority of the patients had neonatal onset MSUD (26 of 31). Meanwhile, the new mutation; c.1196C > G (p.S399C) in DBT gene was noted to be recurrent and found in 9 patients. Conclusion: Our findings have expanded the mutational spectrum of the MSUD and revealed the genetic heterogeneity among Malaysian MSUD patients. We also discovered the p.S399C from DBT gene was noted as a recurrent mutation in Malay community and it suggested the existence of common and unique mutation in Malay population.

7.
Biomed Res Int ; 2018: 4320831, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30175132

RESUMEN

Ornithine transcarbamylase deficiency (OTCD), an X-linked disorder that results from mutations in the OTC gene, causes hyperammonemia and leads to various clinical manifestations. Mutations occurring close to the catalytic site of OTCase can cause severe OTCD phenotypes compared with those caused by mutations occurring on the surface of this protein. In this study, we report two novel OTC missense mutations, Q171H and N199H, found in Malaysian patients. Q171H and N199H caused neonatal onset OTCD in a male and late OTCD in a female, respectively. In silico predictions and molecular docking were performed to examine the effect of these novel mutations, and the results were compared with other 30 known OTC mutations. In silico servers predicted that Q171H and N199H, as well as 30 known missense mutations, led to the development of OTCD. Docking analysis indicated that N-(phosphonoacetyl)-L-ornithine (PALO) was bound to the catalytic site of OTCase mutant structure with minimal conformational changes. However, the mutations disrupted interatomic interactions in the catalytic site. Therefore, depending on the severity of disruption occurring at the catalytic site, the mutation may affect the efficiency of mechanism and functions of OTCase.


Asunto(s)
Simulación del Acoplamiento Molecular , Mutación Missense , Enfermedad por Deficiencia de Ornitina Carbamoiltransferasa/genética , Biología Computacional , Femenino , Humanos , Recién Nacido , Malasia , Masculino , Mutación
8.
J Pediatr Endocrinol Metab ; 26(9-10): 975-80, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23729548

RESUMEN

Maple syrup urine disease (MSUD) is a rare autosomal recessive metabolic disorder of branched-chain amino acid metabolism caused by the defective function of branched-chain α-ketoacid dehydrogenase complex (BCKDH). It is characterised by increased plasma leucine, isoleucine, and valine levels, and mutations can be detected in any one of the BCKDHA, BCKDHB, and DBT genes. In this study, we describe the molecular basis of a novel mutation found in one MSUD Malay patient from consanguineous parents. A homozygous mutation has been detected in this patient whose both parents carried a heterozygous mutation at DNA coding region c.431G>T in exon 4, which resulted in a substitution of serine to isoleucine at codon 144 (p.S144I). In silico analysis predicted S144I to be potentially damaging. The mutation was located on the alpha helical region of the BCKDHA protein, and it is predicted to affect the stability of protein due to the loss of various polar interactions between local secondary structures. Homology analysis revealed that this mutation occurred in a highly conserved region (100%). This result indicates that S144I mutation is likely pathogenic and may contribute to the classic form of MSUD in this patient.


Asunto(s)
3-Metil-2-Oxobutanoato Deshidrogenasa (Lipoamida)/genética , Homocigoto , Enfermedad de la Orina de Jarabe de Arce/genética , Modelos Moleculares , Mutación Missense , 3-Metil-2-Oxobutanoato Deshidrogenasa (Lipoamida)/química , 3-Metil-2-Oxobutanoato Deshidrogenasa (Lipoamida)/metabolismo , Sustitución de Aminoácidos , Consanguinidad , Exones , Femenino , Heterocigoto , Humanos , Recién Nacido , Malasia , Enfermedad de la Orina de Jarabe de Arce/metabolismo , Padres , Estabilidad Proteica , Subunidades de Proteína/química , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA