Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Nanotechnology ; 32(31)2021 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-33873159

RESUMEN

The present work reports the effect of various surfactants on the morphology of In(OH)3nanostructures prepared via anodization. In-sheets were anodized in an environmentally benign electrolyte containing a small quantity of CTAB, CTAC, and PDDA surfactants at room temperature. The produced nanostructures were characterized using XRD, HRTEM, SAED, and EDAX. The morphology of indium hydroxide (In(OH)3) nanostructures was successfully tailoredin situwith the help of surfactants in 1 M KCl aqueous electrolyte. XRD results confirmed the formation of In(OH)3and indium oxyhydroxide (InOOH) nanostructures in the pristine form which were transformed into single-phase cubic In2O3nanoparticles (NPs) after calcination. HRTEM analyses showed that the morphology and size of the In(OH)3nanostructures can be tuned to form nanorods, nanosheets and nanostrips using different surfactants. The results revealed that CTAC and PDDA surfactants have a profound effect on the morphology of In(OH)3nanostructure compared to CTAB due to the higher concentration of Cl-ion. The possible mechanism of surfactants effect on the morphology is proposed. Furthermore, annealing converted the In(OH)3nanostructures into spherical In2O3NPs with uniform and homogeneous size. We anticipate that the morphology of other metal-oxides nanostructure can be tuned using this simple, facile and rapid technique. In2O3NPs prepared without and with CTAB surfactant were further explored for the non-enzymatic detection of hydrogen peroxide (H2O2). Electrochemical measurements showed enhanced electrocatalytic performance with fast electron transfer (∼2s) between the redox centers of H2O2and electrode surface. The In2O3NPs prepared using CTAB/Au electrode exhibited about 4-fold increase in sensitivity compared to the bare Au electrode. The biosensor also demonstrated good reproducibility, higher selectivity, and increased shelf life.

2.
Nanotechnology ; 31(31): 315603, 2020 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-32294639

RESUMEN

A novel and simple method is reported for producing a self-organized nanoporous structure on austenitic stainless steel (SUS-304L) with open-top morphology. Uniform nanopores with a quasi-hexagonal arrangement were obtained on a very large scale with no crack formation by using single-step anodization. Electropolishing of SUS-304L in ethylene glycol monobutyl ether and perchloric acid electrolyte prior to anodization was the key factor to obtain self-organized and regularly ordered nanopores. Under optimized electropolishing conditions, a honeycomb-like patterned morphology of shallow nanopores was developed on the surface of SUS-304L. Anodization of the patterned morphology in ethylene glycol-based electrolyte generated self-organized and ordered nanopores. Morphology, structure and chemical analyses of the samples were carried-out using FESEM, EDAX, XRD, XPS and ToF-SIMS. FESEM images revealed the formation of hexagonal and ordered nanopores with uniform diameter. EDAX analysis confirmed that the nanoporous oxide layer is composed of iron, chromium, nickel and oxygen. A blue energy shift in the XPS spectra was observed after annealing, which is attributed to the absence of F-species. ToF-SIMS depth profile analysis confirmed the high content of chromium oxide on the surface of the nanoporous oxide layer. The hexagonal nanoporous ordered morphology is useful in anti-corrosion and decoration applications.

3.
Nanotechnology ; 31(50): 505501, 2020 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-33006325

RESUMEN

We report a non-enzymatic facile method for the detection of L-cysteine (L-Cyst) using free-standing TiO2 nanotube (TNT) array-modified glassy carbon electrodes (GCEs). Self-organized, highly ordered, and vertically oriented TNT arrays were fabricated by anodization of titanium sheets in ethylene glycol-based electrolyte. Detailed electrochemical measurements were performed and it was found that modified GCE exhibited high current compared to the pristine counterpart. The high current of the modified electrode was attributed to the high surface area and enhanced electrocatalytic activities of the TNTs toward the L-Cyst oxidation. Under the optimum conditions, the modified electrode exhibited a high sensitivity of ∼1.68 µA mM-1 cm-2 with a low detection limit of ∼0.1 mM. The fabricated electrode was found to be sensitive to pH and electrolyte temperature. The real sample analysis of the proposed method showed a decent recovery toward L-Cyst addition in human blood serum. Furthermore, the density-funcational theory (DFT) analysis revealed that TNTs have greater affinity toward L-Cyst, having stronger binding distance after its adsorption. The higher negative E ads values suggested a stable and chemisorption nature. The density of states results show that the E gap of TNTs is significantly reduced after L-Cyst adsorption. The modified GCE showed excellent selectivity, enhanced stability, and fast response, which make TNTs a promising candidate for the enzyme-free detection of other biological analytes.

4.
Nanotechnology ; 30(9): 095601, 2019 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-30523837

RESUMEN

The present work reports the formation of 3D nanoflower-like morphology of iron alkoxide via the anodization of Fe sheet in ethylene glycol (EG) electrolyte. XRD, FESEM, EDX, XPS, Raman and FTIR are applied to characterize the samples. SEM results show that the as-anodized sample is composed of 3D nanoflowers with hierarchical nanosheets beneath it. The average width of the nanoflower petal is ∼25 nm and the length is about 1 µm. The 3D nanoflowers are transformed into spherical nanoparticles (NPs) with uniform size when calcined at elevated temperature. XRD and Raman results indicate that the 3D nanoflowers consist of akaganeite, which transforms into magnetite and hematite by annealing. XPS and FTIR results confirm that the nanoflowers contain significant amounts of F, C and OH, which are drastically decreased after annealing. The formation of 3D nanoflower-like morphology can be attributed to EG. A possible formation mechanism of 3D nanoflowers and their transformation into NPs is proposed. We showed that the morphology of the as-anodized iron oxide can be tailored simply by changing the electrolyte. The anodization of Fe sheet in glycerol-based electrolyte under identical conditions produced nanotubes.

5.
Nanoscale ; 16(25): 12207-12227, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38845383

RESUMEN

In this study, a CuInS2/Cu2O/TiO2 nanotube (TNT) heterojunction-based hybrid material is reported for the selective detection of cholesterol and ibuprofen. Anodic TNTs were co-decorated with Cu2O and CuInS2 quantum dots (QDs) using a modified chemical bath deposition (CBD) method. QDs help trigger the chemical oxidation of cholesterol by cathodically generating hydroxyl radicals (˙OH). The small size of QDs can be used to tune the energy levels of electrode materials to the effective redox potential of redox species, resulting in highly improved sensing characteristics. Under optimal conditions, CuInS2/Cu2O/TNTs show the highest sensitivity (∼12 530 µA mM-1 cm-2, i.e. up to 11-fold increase compared to pristine TNTs) for cholesterol detection with a low detection limit (0.013 µM) and a fast response time (1.3 s). The proposed biosensor was successfully employed for the detection of cholesterol in real blood samples. In addition, fast (4 s) and reliable detection of ibuprofen (with a sensitivity of ∼1293 µA mM-1 cm-2) as a water contaminant was achieved using CuInS2/Cu2O/TNTs. The long-term stability and favourable reproducibility of CuInS2/Cu2O/TNTs illustrate a unique concept for the rational design of a stable and high-performance multi-purpose electrochemical sensor.


Asunto(s)
Colesterol , Cobre , Ibuprofeno , Nanotubos , Oxidación-Reducción , Puntos Cuánticos , Titanio , Ibuprofeno/química , Cobre/química , Puntos Cuánticos/química , Titanio/química , Nanotubos/química , Colesterol/química , Técnicas Biosensibles , Humanos , Técnicas Electroquímicas , Indio/química , Límite de Detección , Electrodos
6.
Int J Biol Macromol ; 272(Pt 1): 132810, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38825288

RESUMEN

Different concentrations of zirconium with a fixed quantity (4 wt%) of chitosan (CS) doped nickel cobaltite (NiCo2O4) nanorods were synthesized using a co-precipitation approach. This cutting-edge research explores the cooperative effect of Zr-doped CS-NiCo2O4 to degrade the Eriochrome black T (EBT) and investigates potent antibacterial activity against Staphylococcus aureus (S. aureus). Advanced characterization techniques were conducted to analyze structural textures, morphological analysis, and optical characteristics of synthesized materials. XRD pattern unveiled the spinal cubic structure of NiCo2O4, incorporating Zr and CS peak shifted to a lower 2θ value. UV-Vis spectroscopy revealed the absorption range increased with CS and the same trend was observed upon Zr, showing a decrease in bandgap energy (Eg) from 2.55 to 2.4 eV. The optimal photocatalytic efficacy of doped NiCo2O4 within the basic medium was around 96.26 %, and bactericidal efficacy was examined against S. aureus, revealing a remarkable inhibition zone (5.95 mm).


Asunto(s)
Antibacterianos , Quitosano , Colorantes , Nanotubos , Staphylococcus aureus , Circonio , Quitosano/química , Quitosano/farmacología , Circonio/química , Circonio/farmacología , Antibacterianos/farmacología , Antibacterianos/química , Staphylococcus aureus/efectos de los fármacos , Nanotubos/química , Colorantes/química , Níquel/química , Cobalto/química , Pruebas de Sensibilidad Microbiana , Compuestos Azo/química
7.
Nanotechnology ; 24(18): 185601, 2013 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-23575306

RESUMEN

We present a simple and novel strategy to synthesize TiO2 nanoparticles (NPs) based on electrochemical anodization of a Ti wire in an aqueous KCl electrolyte. The Ti wire is very rapidly and directly converted to TiO2 NPs by the anodization process, allowing mass production of TiO2 NPs. The size of the synthesized NPs can be readily tuned by changing the concentration of the electrolyte. We found that the field-assisted etching related to a strong electric field and the rapid etching rate caused by chloride ions play important roles for the formation of TiO2 NPs. This approach can also be applied to the mass production of other semiconducting metal oxide NPs such as tungsten-oxide NPs. TiO2 NPs showed higher photocatalytic activity compared to Degussa (P 25) under the same conditions. The higher photocatalytic activity of TiO2 NPs is attributed to the polymorphism. We believe that our approach can be used in broad areas including biomedical applications, photovoltaics, optics, and electronics.

8.
Biomater Adv ; 145: 213234, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36502548

RESUMEN

Sensors play a significant role in modern technologies and devices used in industries, hospitals, healthcare, nanotechnology, astronomy, and meteorology. Sensors based upon nanostructured materials have gained special attention due to their high sensitivity, precision accuracy, and feasibility. This review discusses the fabrication of graphene-based biosensors and gas sensors, which have highly efficient performance. Significant developments in the synthesis routes to fabricate graphene-based materials with improved structural and surface properties have boosted their utilization in sensing applications. The higher surface area, better conductivity, tunable structure, and atom-thick morphology of these hybrid materials have made them highly desirable for the fabrication of flexible and stable sensors. Many publications have reported various modification approaches to improve the selectivity of these materials. In the current work, a compact and informative review focusing on the most recent developments in graphene-based biosensors and gas sensors has been designed and delivered. The research community has provided a complete critical analysis of the most robust case studies from the latest fabrication routes to the most complex challenges. Some significant ideas and solutions have been proposed to overcome the limitations regarding the field of biosensors and hazardous gas sensors.


Asunto(s)
Técnicas Biosensibles , Grafito , Nanoestructuras , Grafito/química , Técnicas Electroquímicas , Nanoestructuras/química , Nanotecnología
9.
Chemistry ; 18(17): 5192-200, 2012 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-22461403

RESUMEN

A novel one-step sonochemical approach to synthesize a plasmonic photocatalyst of AgCl nanocubes (ca. 115 nm in edge length) with a small amount of Ag metal species is presented. The nanoscale Ag/AgCl hybrid photocatalysts with cubic morphology are readily formed under ambient ultrasonic conditions and neither external heat treatment nor reducing agents are required. The size of the Ag/AgCl photocatalysts could be controlled by changing the concentrations of Ag(+) ions and polyvinylpyrrolidone molecules in precursor solutions. The compositions, microstructures, influencing factors, and possible growth mechanism of the Ag/AgCl hybrid nanocubes were systematically investigated. The Ag/AgCl photocatalysts show excellent photocatalytic performance for degradation of various dye molecules under visible light.

10.
RSC Adv ; 12(19): 11923-11932, 2022 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-35481075

RESUMEN

This paper addresses the effect of Mn (2%, fixed) and Co (2, 4, and 6%, varied) substitution on the structural, optical, dielectric and magnetic responses of ZnO nanoparticles synthesized by the co-precipitation chemical route. The X-ray diffraction analysis confirms the hexagonal wurtzite structure of ZnO. The incorporation of co-doping in the ZnO host, indicated by peak shifting in the XRD patterns, enhanced the crystallite size of the Mn/Co dual-doped ZnO nanoparticles. The FTIR spectra show a characteristic peak around 875 cm-1 assigned to Zn-O stretching, this validates the formation of the wurtzite structure of ZnO. Raman spectroscopy reveals the characteristic band of the wurtzite structure of ZnO nanoparticles along with coupled vibration modes of Mn/Co with the donor defect states in the doped samples. Enhanced optical absorption in the visible region and a significant red-shift in the absorption band edge were found due to doping. The optical band gap is found to decrease from 3.45 eV to 3.15 eV when Co doping increases up to 6%. The dielectric properties, strongly frequency-dependent, decrease with increasing Co doping while the electrical conductivity increases. Ferromagnetism is observed in all the doped samples, and its origin is attributed to an increase in oxygen vacancies which form bound magnetic polarons. It can be inferred that the doping of Mn and Co can be an effective tool to tune the physical properties of ZnO nanoparticles for potential spintronics and high-frequency applications.

11.
ACS Omega ; 7(46): 42377-42395, 2022 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-36440133

RESUMEN

Advanced anodic SnO2 nanoporous structures decorated with Cu2O nanoparticles (NPs) were employed for creatinine detection. Anodization of electropolished Sn sheets in 0.3 M aqueous oxalic acid electrolyte under continuous stirring produced complete open top, crack-free, and smooth SnO2 nanoporous structures. Structural analyses confirm the high purity of rutile SnO2 with successful functionalization of Cu2O NPs. Morphological studies revealed the formation of self-organized and highly-ordered SnO2 nanopores, homogeneously decorated with Cu2O NPs. The average diameter of nanopores is ∼35 nm, while the average Cu2O particle size is ∼23 nm. Density functional theory results showed that SnO2@Cu2O hybrid nanostructures are energetically favorable for creatinine detection. The hybrid nanostructure electrode exhibited an ultra-high sensitivity of around 24343 µA mM-1 cm-2 with an extremely lower detection limit of ∼0.0023 µM, a fast response time (less than 2 s), and wide linear detection ranges of 2.5-45 µM and 100 µM to 15 mM toward creatinine. This is ascribed to the creation of highly active surface sites as a result of Cu2O NP functionalization, SnO2 band gap diminution, and the formation of heterojunction and Cu(1)/Cu(ll)-creatinine complexes through secondary amines which occur in the creatinine structure. The real-time analysis of creatinine in blood serum by the fabricated electrode evinces the practicability and accuracy of the biosensor with reference to the commercially existing creatinine sensor. The proposed biosensor demonstrated excellent stability, reproducibility, and selectivity, which reflects that the SnO2@Cu2O nanostructure is a promising candidate for the non-enzymatic detection of creatinine.

12.
Biomater Adv ; 140: 213049, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35917685

RESUMEN

The overwhelming potential of porous coordination polymers (PCP), also known as Metal-Organic Frameworks (MOFs), especially their nanostructures for various biomedical applications, have made these materials worth investigating for more applications and uses. MOFs unique structure has enabled them for most applications, particularly in biomedical and healthcare. A number of very informative review papers are available on the biomedical applications of MOFs for the reader's convenience. However, many of those reviews focus mainly on drug delivery applications, and no significant work has been reported on other MOFs for biomedical applications. This review aims to present a compact and highly informative global assessment of the recent developments in biomedical applications (excluding drug-delivery) of MOFs along with critical analysis. Researchers have recently adopted both synthetic and post-synthetic routes for the fabrication and modification of MOFs that have been discussed and analyzed. A critical review of the latest reports on the significant and exotic area of bio-sensing capabilities and applications of MOFs has been given in this study. In addition, other essential applications of MOFs, including photothermal therapy, photodynamic therapy, and antimicrobial activities, are also included. These recently grown emergent techniques and cancer treatment options have gained attention and require further investigations to achieve fruitful outcomes. MOF's role in these applications has been thoroughly discussed, along with future challenges and valuable suggestions for the research community that will help meet future demands.


Asunto(s)
Estructuras Metalorgánicas , Nanoestructuras , Neoplasias , Fotoquimioterapia , Sistemas de Liberación de Medicamentos/métodos , Humanos , Estructuras Metalorgánicas/uso terapéutico , Nanoestructuras/química , Neoplasias/tratamiento farmacológico
13.
Nanotechnology ; 22(1): 015202, 2011 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-21135453

RESUMEN

We report that the use of a chemically deposited ZnO energy barrier between a CdS quantum dot sensitizer and TiO(2) nanotubes (TNTs) can improve the efficiency of quantum dots-sensitized solar cells (QDSCs). The experimental results show that the formation of the ZnO layers over TNTs significantly improved the performances of the CdS QDSCs based on the TNTs electrodes. In particular, a maximum photoconversion efficiency of 4.6% was achieved for the CdS/ZnO/TNTs electrode under UV-visible light illumination, corresponding to an increase of 43.7% as compared to the CdS/TNTs electrode without the ZnO layers. The improved CdS QDSCs efficiency is attributed to the suppressed recombination of photoinjected electrons with redox ions from the electrolyte resulting from the ZnO energy barrier layers.

14.
Nanotechnology ; 22(24): 245602, 2011 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-21508466

RESUMEN

We present a novel and straightforward approach to fabricate large-scale and robust free-standing TiO(2) nanotube (TNT) membranes. Simply by blowing N(2) gas onto as-anodized TNTs that are wetted with methanol, free-standing TNT membranes are produced. The approach also provides homogeneous and honeycomb-like Ti substrates after the detachment of TNT membranes. Through the second anodization of the honeycomb-like Ti substrates following the N(2) blowing, TNT membranes comprising hexagonally close-packed and regularly ordered TNTs with clear open ends can be achieved. Characterization of the free-standing TNT membranes using Raman spectroscopy and a high-resolution transmission electron microscope reveals that anatase TiO(2) and crystalline graphitic carbon are embedded in the bottom surface of the free-standing TNT membranes.

15.
Nanoscale ; 13(10): 5162-5186, 2021 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-33666628

RESUMEN

Field-effect transistors (FETs) have tremendous applications in the electronics industry due to their outstanding features such as small size, easy fabrication, compatibility with integrated electronics, high sensitivity, rapid detection and easy measuring procedures. However, to meet the increasing demand of the electronics industry, efficient FETs with controlled short channel effects, enhanced surface stability, reduced size, and superior performances based on low-dimensional materials are desirable. In this review, we present the developmental roadmap of FETs from conventional to miniaturized devices and highlight their prospective applications in the field of optoelectronic devices. Initially, a detailed study of the general importance of bulk and low-dimensional materials is presented. Then, recent advances in low-dimensional material heterostructures, classification of FETs, and the applications of low-dimensional materials in field-effect transistors and photodetectors are presented in detail. In addition, we also describe current issues in low-dimensional material-based FETs and propose potential approaches to address these issues, which are crucial for developing electronic and optoelectronic devices. This review will provide guidelines for low-dimensional material-based FETs with high performance and advanced applications in the future.

16.
ACS Appl Mater Interfaces ; 13(3): 3653-3668, 2021 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-33439005

RESUMEN

A thin layer of gold nanoparticles (Au NPs) sputtered on cadmium sulfide quantum dots (CdS QDs) decorated anodic titanium dioxide nanotubes (TNTs) (Au/CdS QDs/TNTs) was fabricated and explored for the nonenzymatic detection of cholesterol and hydrogen peroxide (H2O2). Morphological studies of the sensor revealed the formation of uniform nanotubes decorated with a homogeneously dispersed CdS QDs and Au NPs layer. The electrochemical measurements showed an enhanced electrocatalytic performance with a fast electron transfer (∼2 s) between the redox centers of each analyte and electrode surface. The hybrid nanostructure (Au/CdS QDs/TNTs) electrode exhibited about a 6-fold increase in sensitivity for both cholesterol (10,790 µA mM-1 cm-2) and H2O2 (78,833 µA mM-1 cm-2) in analyses compared to the pristine samples. The hybrid electrode utilized different operational potentials for both analytes, which may lead to a voltage-switchable dual-analyte biosensor with a higher selectivity. The biosensor also demonstrated a good reproducibility, thermal stability, and increased shelf life. In addition, the clinical significance of the biosensor was tested for cholesterol and H2O2 in real blood samples, which showed maximum relative standard deviations of 1.8 and 2.3%, respectively. These results indicate that a Au/CdS QDs/TNTs-based hybrid nanostructure is a promising choice for an enzyme-free biosensor due to its suitable band gap alignment and higher electrocatalytic activities.


Asunto(s)
Técnicas Biosensibles/métodos , Colesterol/sangre , Oro/química , Peróxido de Hidrógeno/sangre , Nanopartículas del Metal/química , Compuestos de Cadmio/química , Técnicas Electroquímicas/métodos , Humanos , Límite de Detección , Nanotubos/química , Puntos Cuánticos/química , Sulfuros/química , Titanio/química
17.
Nanoscale Res Lett ; 15(1): 208, 2020 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-33151365

RESUMEN

An amendment to this paper has been published and can be accessed via the original article.

18.
J Colloid Interface Sci ; 552: 101-110, 2019 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-31108328

RESUMEN

A novel facile room-temperature, hexamethyldisilazane (HMDS)-mediated strategy is demonstrated for the synthesis of all-inorganic perovskite colloidal nanocrystals (NCs). As a unique reaction-triggering and morphology-directing agent, HMDS is introduced for the first time to trigger the room-temperature reaction for generating perovskite NCs with controlled morphology and optical properties. Particularly, the stability of the resulting NCs is greatly enhanced due to the surface modification by hydrophobic -CH3 groups from HMDS. The typical CsPbBr3 perovskite NCs films are highly stable without significant decrease in photoluminesence (PL) intensity after being exposed to 60% relative humidity for 720 h. Moreover, no noticeable change of phase and morphology occurs even after 100 days of exposure. The representative CsPbBr3 NCs are employed in a prototype white-light-emitting diodes (WLEDs) on 365 nm commercial GaN chip. The present strategy provides a facile and versatile route not only to control the morphology and optical properties of perovskites nanomaterials at room temperature but also enhance their stability, which will bring promising potential application for optoelectronics.

19.
Nanoscale Res Lett ; 14(1): 386, 2019 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-31858281

RESUMEN

We present a comparative study of the toxicity of polyethylene glycol (PEG)-coated cobalt ferrite nanoparticles and nanospheres. Nanoparticles were prepared by hydrothermal method while nanospheres were prepared by solvothermal technique. The surface of nanomaterials was successfully modified with polyethylene glycol. To investigate the morphology of the prepared samples, X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, Raman spectroscopy, thermogravimetric analysis (TGA), and electron microscopy techniques were employed. Structural analyses confirmed the formation of polycrystalline cobalt ferrite nanoparticles with diameters in the range 20-25 nm and nanospheres in the range 80-100 nm, respectively. Kunming SPF mice (female, 6-8 weeks old) were used to investigate the toxicity induced by cobalt ferrite nanoparticles and nanospheres in different organs of the mice. Biodistribution studies, biochemical indices, histopathological assessments, inflammatory factors, oxidation and antioxidant levels, and cytotoxicity tests were performed to assess the toxicity induced by cobalt ferrite nanoparticles and nanospheres in mice. Cobalt ferrite nanospheres were found to be more toxic than the nanoparticles and curcumin was proved to be a good healing agent for the toxicity induced by PEG-coated cobalt ferrite nanomaterials in mice.

20.
Nanoscale Res Lett ; 12(1): 20, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28058652

RESUMEN

We have presented a method to prepare a uniform anodic nanoporous oxide film on the surface of a cylindrical zircaloy (Zr) tube. The distribution of the electric field around the Zr tube determines the distribution of the thickness of the anodic nanoporous oxide film. The electric field generated when a cylindrical Zr tube is electrochemically anodized was simulated by using commercial code COMSOL. When four Pt wires were used as counter electrodes, a uniform electric field was achieved with minimal use of Pt. Based on the simulation results, a cylindrical Zr tube was anodized and the distribution of the thickness of the anodic nanoporous oxide layer was measured by FESEM. Also, mass production of uniform nanoporous anodic oxide films was possible by symmetrically arranging the zircaloy tubes and Pt wires.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA