Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Mol Cell ; 83(22): 4078-4092.e6, 2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-37977119

RESUMEN

Tumor growth is driven by continued cellular growth and proliferation. Cyclin-dependent kinase 7's (CDK7) role in activating mitotic CDKs and global gene expression makes it therefore an attractive target for cancer therapies. However, what makes cancer cells particularly sensitive to CDK7 inhibition (CDK7i) remains unclear. Here, we address this question. We show that CDK7i, by samuraciclib, induces a permanent cell-cycle exit, known as senescence, without promoting DNA damage signaling or cell death. A chemogenetic genome-wide CRISPR knockout screen identified that active mTOR (mammalian target of rapamycin) signaling promotes samuraciclib-induced senescence. mTOR inhibition decreases samuraciclib sensitivity, and increased mTOR-dependent growth signaling correlates with sensitivity in cancer cell lines. Reverting a growth-promoting mutation in PIK3CA to wild type decreases sensitivity to CDK7i. Our work establishes that enhanced growth alone promotes CDK7i sensitivity, providing an explanation for why some cancers are more sensitive to CDK inhibition than normally growing cells.


Asunto(s)
Quinasas Ciclina-Dependientes , Neoplasias , Humanos , Quinasas Ciclina-Dependientes/genética , Quinasas Ciclina-Dependientes/metabolismo , Quinasa Activadora de Quinasas Ciclina-Dependientes , Transducción de Señal , Ciclo Celular , Inhibidores Enzimáticos , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Línea Celular Tumoral
2.
Br J Cancer ; 128(12): 2326-2337, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37076563

RESUMEN

BACKGROUND: Current strategies to inhibit androgen receptor (AR) are circumvented in castration-resistant prostate cancer (CRPC). Cyclin-dependent kinase 7 (CDK7) promotes AR signalling, in addition to established roles in cell cycle and global transcription, providing a rationale for its therapeutic targeting in CRPC. METHODS: The antitumour activity of CT7001, an orally bioavailable CDK7 inhibitor, was investigated across CRPC models in vitro and in xenograft models in vivo. Cell-based assays and transcriptomic analyses of treated xenografts were employed to investigate the mechanisms driving CT7001 activity, alone and in combination with the antiandrogen enzalutamide. RESULTS: CT7001 selectively engages with CDK7 in prostate cancer cells, causing inhibition of proliferation and cell cycle arrest. Activation of p53, induction of apoptosis, and suppression of transcription mediated by full-length and constitutively active AR splice variants contribute to antitumour efficacy in vitro. Oral administration of CT7001 represses growth of CRPC xenografts and significantly augments growth inhibition achieved by enzalutamide. Transcriptome analyses of treated xenografts indicate cell cycle and AR inhibition as the mode of action of CT7001 in vivo. CONCLUSIONS: This study supports CDK7 inhibition as a strategy to target deregulated cell proliferation and demonstrates CT7001 is a promising CRPC therapeutic, alone or in combination with AR-targeting compounds.


Asunto(s)
Neoplasias de la Próstata Resistentes a la Castración , Masculino , Humanos , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Neoplasias de la Próstata Resistentes a la Castración/genética , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Línea Celular Tumoral , Ensayos Antitumor por Modelo de Xenoinjerto , Receptores Androgénicos/genética , Receptores Androgénicos/metabolismo , Nitrilos/uso terapéutico , Quinasas Ciclina-Dependientes/uso terapéutico , Inhibidores Enzimáticos/uso terapéutico , Proliferación Celular
3.
Br J Cancer ; 127(10): 1858-1864, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36088510

RESUMEN

BACKGROUND: We report copy-number profiling by low-pass WGS (LP-WGS) in individual circulating tumour cells (CTCs) for guiding treatment in patients with metastatic breast cancer (MBC), comparing CTC results with mutations detected in circulating tumour DNA (ctDNA) in the same blood samples. METHODS: Across 10 patients with MBC who were progressing at the time of blood sampling and that had >20 CTCs detected by CellSearch®, 63 single cells (50 CTCs and 13 WBCs) and 16 cell pools (8 CTC pools and 8 WBC pools) were recovered from peripheral blood by CellSearch®/DEPArray™ and sequenced with Ampli1 LowPass technology (Menarini Silicon Biosystems). Copy-number aberrations were identified using the MSBiosuite software platform, and results were compared with mutations detected in matched plasma cfDNA analysed by targeted next-generation sequencing using the Oncomine™ Breast cfDNA Assay (Thermo Fisher). RESULTS: LP-WGS data demonstrated copy-number gains/losses in individual CTCs in regions including FGFR1, JAK2 and CDK6 in five patients, ERBB2 amplification in two HER2-negative patients and BRCA loss in two patients. Seven of eight matched plasmas also had mutations in ctDNA in PIK3CA, TP53, ESR1 and KRAS genes with mutant allele frequencies (MAF) ranging from 0.05 to 33.11%. Combining results from paired CTCs and ctDNA, clinically actionable targets were identified in all ten patients. CONCLUSION: This combined analysis of CTCs and ctDNA may offer a new approach for monitoring of disease progression and to direct therapy in patients with advanced MBC, at a time when they are coming towards the end of other treatment options.


Asunto(s)
Neoplasias de la Mama , Ácidos Nucleicos Libres de Células , ADN Tumoral Circulante , Células Neoplásicas Circulantes , Humanos , Femenino , Neoplasias de la Mama/patología , Células Neoplásicas Circulantes/patología , ADN Tumoral Circulante/genética , Ácidos Nucleicos Libres de Células/genética , Mutación , Biomarcadores de Tumor/genética
4.
Biophys J ; 120(4): 677-686, 2021 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-33476598

RESUMEN

The human CDK-activating kinase (CAK), composed of CDK7, cyclin H, and MAT1, is involved in the control of transcription initiation and the cell cycle. Because of these activities, it has been identified as a promising target for cancer chemotherapy. A number of CDK7 inhibitors have entered clinical trials, among them ICEC0942 (also known as CT7001). Structural information can aid in improving the affinity and specificity of such drugs or drug candidates, reducing side effects in patients. Here, we have determined the structure of the human CAK in complex with ICEC0942 at 2.5 Å-resolution using cryogenic electron microscopy. Our structure reveals conformational differences of ICEC0942 compared with previous X-ray crystal structures of the CDK2-bound complex, and highlights the critical ability of cryogenic electron microscopy to resolve structures of drug-bound protein complexes without the need to crystalize the protein target.


Asunto(s)
Quinasas Ciclina-Dependientes , Ciclo Celular , División Celular , Quinasa 2 Dependiente de la Ciclina , Quinasas Ciclina-Dependientes/genética , Quinasas Ciclina-Dependientes/metabolismo , Humanos , Fosforilación , Quinasa Activadora de Quinasas Ciclina-Dependientes
5.
Cancer Metastasis Rev ; 39(3): 805-823, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32385714

RESUMEN

Cyclin-dependent kinase 7 (CDK7), along with cyclin H and MAT1, forms the CDK-activating complex (CAK), which directs progression through the cell cycle via T-loop phosphorylation of cell cycle CDKs. CAK is also a component of the general transcription factor, TFIIH. CDK7-mediated phosphorylation of RNA polymerase II (Pol II) at active gene promoters permits transcription. Cell cycle dysregulation is an established hallmark of cancer, and aberrant control of transcriptional processes, through diverse mechanisms, is also common in many cancers. Furthermore, CDK7 levels are elevated in a number of cancer types and are associated with clinical outcomes, suggestive of greater dependence on CDK7 activity, compared with normal tissues. These findings identify CDK7 as a cancer therapeutic target, and several recent publications report selective CDK7 inhibitors (CDK7i) with activity against diverse cancer types. Preclinical studies have shown that CDK7i cause cell cycle arrest, apoptosis and repression of transcription, particularly of super-enhancer-associated genes in cancer, and have demonstrated their potential for overcoming resistance to cancer treatments. Moreover, combinations of CDK7i with other targeted cancer therapies, including BET inhibitors, BCL2 inhibitors and hormone therapies, have shown efficacy in model systems. Four CDK7i, ICEC0942 (CT7001), SY-1365, SY-5609 and LY3405105, have now progressed to Phase I/II clinical trials. Here we describe the work that has led to the development of selective CDK7i, the current status of the most advanced clinical candidates, and discuss their potential importance as cancer therapeutics, both as monotherapies and in combination settings. ClinicalTrials.gov Identifiers: NCT03363893; NCT03134638; NCT04247126; NCT03770494.


Asunto(s)
Antineoplásicos/farmacología , Quinasas Ciclina-Dependientes/antagonistas & inhibidores , Neoplasias/tratamiento farmacológico , Neoplasias/enzimología , Inhibidores de Proteínas Quinasas/farmacología , Animales , Antineoplásicos/administración & dosificación , Antineoplásicos/efectos adversos , Ensayos Clínicos Fase I como Asunto , Ensayos Clínicos Fase II como Asunto , Quinasas Ciclina-Dependientes/metabolismo , Humanos , Inhibidores de Proteínas Quinasas/administración & dosificación , Inhibidores de Proteínas Quinasas/efectos adversos , Quinasa Activadora de Quinasas Ciclina-Dependientes
6.
Breast Cancer Res ; 22(1): 126, 2020 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-33198803

RESUMEN

BACKGROUND: Activating transcription factor-2 (ATF2), a member of the leucine zipper family of DNA binding proteins, has been implicated as a tumour suppressor in breast cancer. However, its exact role in breast cancer endocrine resistance is still unclear. We have previously shown that silencing of ATF2 leads to a loss in the growth-inhibitory effects of tamoxifen in the oestrogen receptor (ER)-positive, tamoxifen-sensitive MCF7 cell line and highlighted that this multi-faceted transcription factor is key to the effects of tamoxifen in an endocrine sensitive model. In this work, we explored further the in vitro role of ATF2 in defining the resistance to endocrine treatment. MATERIALS AND METHODS: We knocked down ATF2 in TAMR, LCC2 and LCC9 tamoxifen-resistant breast cancer cell lines as well as the parental tamoxifen sensitive MCF7 cell line and investigated the effects on growth, colony formation and cell migration. We also performed a microarray gene expression profiling (Illumina Human HT12_v4) to explore alterations in gene expression between MCF7 and TAMRs after ATF2 silencing and confirmed gene expression changes by quantitative RT-PCR. RESULTS: By silencing ATF2, we observed a significant growth reduction of TAMR, LCC2 and LCC9 with no such effect observed with the parental MCF7 cells. ATF2 silencing was also associated with a significant inhibition of TAMR, LCC2 and LCC9 cell migration and colony formation. Interestingly, knockdown of ATF2 enhanced the levels of ER and ER-regulated genes, TFF1, GREB1, NCOA3 and PGR, in TAMR cells both at RNA and protein levels. Microarray gene expression identified a number of genes known to mediate tamoxifen resistance, to be differentially regulated by ATF2 in TAMR in relation to the parental MCF7 cells. Moreover, differential pathway analysis confirmed enhanced ER activity after ATF2 knockdown in TAMR cells. CONCLUSION: These data demonstrate that ATF2 silencing may overcome endocrine resistance and highlights further the dual role of this transcription factor that can mediate endocrine sensitivity and resistance by modulating ER expression and activity.


Asunto(s)
Factor de Transcripción Activador 2/metabolismo , Antineoplásicos Hormonales/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Resistencia a Antineoplásicos/genética , Regulación Neoplásica de la Expresión Génica/genética , Factor de Transcripción Activador 2/genética , Antineoplásicos Hormonales/uso terapéutico , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Movimiento Celular/genética , Femenino , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Humanos , Células MCF-7 , Análisis de Secuencia por Matrices de Oligonucleótidos , Receptores de Estrógenos/análisis , Receptores de Estrógenos/antagonistas & inhibidores , Receptores de Estrógenos/genética , Receptores de Estrógenos/metabolismo , Tamoxifeno/farmacología , Tamoxifeno/uso terapéutico
7.
Bioorg Med Chem Lett ; 30(17): 127395, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32738989

RESUMEN

REV-ERB is a member of the nuclear receptor superfamily of transcription factors involved in the regulation of many physiological processes, from circadian rhythm, to immune function and metabolism. Accordingly, REV-ERB has been considered as a promising, but difficult drug target for the treatment of numerous diseases. Here, we concisely review current understanding of the function of REV-ERB, modulation by endogenous factors and synthetic ligands, and the involvement of REV-ERB in select human diseases. Particular focus is placed on the medicinal chemistry of synthetic REV-ERB ligands, which demonstrates the need for higher quality ligands to aid in robust validation of this exciting target.


Asunto(s)
Receptores Citoplasmáticos y Nucleares/metabolismo , Animales , Ritmo Circadiano/fisiología , Hemo/química , Humanos , Enfermedades del Sistema Inmune/metabolismo , Enfermedades del Sistema Inmune/patología , Ligandos , Miembro 1 del Grupo D de la Subfamilia 1 de Receptores Nucleares/agonistas , Miembro 1 del Grupo D de la Subfamilia 1 de Receptores Nucleares/antagonistas & inhibidores , Miembro 1 del Grupo D de la Subfamilia 1 de Receptores Nucleares/metabolismo , Receptores Citoplasmáticos y Nucleares/agonistas , Receptores Citoplasmáticos y Nucleares/antagonistas & inhibidores , Proteínas Represoras/agonistas , Proteínas Represoras/antagonistas & inhibidores , Proteínas Represoras/metabolismo , Relación Estructura-Actividad
8.
Br J Cancer ; 121(9): 776-785, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31558802

RESUMEN

BACKGROUND: Retinoid X Receptor Gamma (RXRG) is a member of the nuclear receptor superfamily and plays a role in tumour suppression. This study aims to explore the prognostic significance of RXRG in breast cancer. METHODS: Primary breast cancer tissue microarrays (n = 923) were immuno-stained for RXRG protein and correlated with clinicopathological features, and patient outcome. RESULTS: Nuclear RXRG expression was significantly associated with smaller tumour size (p = 0.036), lower grade (p < 0.001), lobular histology (p = 0.016), lower Nottingham Prognostic Index (p = 0.04) and longer breast cancer-specific survival (p < 0.001), and longer time to distant metastasis (p = 0.002). RXRG expression showed positive association with oestrogen receptor (ER)-related biomarkers: GATA3, FOXA1, STAT3 and MED7 (all p < 0.001) and a negative correlation with the Ki67 proliferation marker. Multivariate analysis demonstrated RXRG protein as an independent predictor of longer breast cancer-specific survival and distant metastasis-free survival. In the external validation cohorts, RXRG expression was associated with improved patients' outcome (p = 0.025). In ER-positive tumours, high expression of RXRG was associated with better patient outcome regardless of adjuvant systemic therapy. ER signalling pathway was the top predicted master regulator of RXRG protein expression (p = 0.005). CONCLUSION: This study provides evidence for the prognostic value of RXRG in breast cancer particularly the ER-positive tumours.


Asunto(s)
Neoplasias de la Mama/metabolismo , Receptores de Estrógenos/metabolismo , Receptor gamma X Retinoide/metabolismo , Biomarcadores de Tumor/metabolismo , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Estudios de Cohortes , Femenino , Expresión Génica , Humanos , Inmunohistoquímica , Invasividad Neoplásica , Pronóstico , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptor gamma X Retinoide/biosíntesis , Receptor gamma X Retinoide/genética , Análisis de Matrices Tisulares
10.
Breast Cancer Res Treat ; 175(1): 149-163, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30680659

RESUMEN

PURPOSE: The prognostic and predictive values of the MAPK/AKT/ERα phosphorylation axis (pT202/T204MAPK, pT308AKT, pS473AKT, pS118ERα and pS167ERα) in primary tumours were assessed to determine whether these markers can differentiate between patient responses for switching adjuvant endocrine therapy after 2-3 years from tamoxifen to exemestane and continued tamoxifen monotherapy in the Intergroup Exemestane Study (IES). METHODS: Of the 4724 patients in IES, 1506 were managed in a subset of centres (N = 89) participating in PathIES. These centres recruited 1282 (85%, 1282/1506) women into PathIES of whom 1036 had phospho-marker data. All phospho-markers were analysed by immunohistochemistry staining. Multivariable Cox proportional hazards models of the phospho-markers for disease-free survival (DFS) and overall survival (OS) were adjusted for clinicopathological factors. Treatment effects on the biomarker expression were determined by interaction tests. Benjamini-Hochberg adjustment for multiple testing with a false discovery rate of 10% was applied (pBH). RESULTS: Phospho-T202/T204MAPK, pS118ERα and pS167ERα were all found to be correlated (pBH = 0.0002). These markers were not associated with either DFS or OS when controlling for the established clinicopathological factors. Interaction terms between the phospho-markers and treatment strategies for either DFS or OS were not statistically significant (pBH > 0.05 for all). CONCLUSIONS: This PathIES study confirmed previously described associations between the phosphorylation site markers of AKT, MAPK and ERα activity in postmenopausal breast cancer patients. No prognostic correlations between the phosphorylation markers and clinical outcome were found, nor were they predictive for clinical outcomes among patients who switched therapy over those treated with tamoxifen alone.


Asunto(s)
Androstadienos/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptores de Estrógenos/metabolismo , Tamoxifeno/uso terapéutico , Adulto , Anciano , Androstadienos/administración & dosificación , Androstadienos/efectos adversos , Antineoplásicos/administración & dosificación , Antineoplásicos/efectos adversos , Antineoplásicos/uso terapéutico , Neoplasias de la Mama/mortalidad , Neoplasias de la Mama/patología , Femenino , Humanos , Inmunohistoquímica , Estimación de Kaplan-Meier , Persona de Mediana Edad , Clasificación del Tumor , Estadificación de Neoplasias , Fosforilación , Pronóstico , Tamoxifeno/administración & dosificación , Tamoxifeno/efectos adversos , Resultado del Tratamiento
11.
Nucleic Acids Res ; 45(19): 11056-11069, 2017 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-28977491

RESUMEN

Cancer genome sequencing has implicated the cytosine deaminase activity of apolipoprotein B mRNA editing enzyme catalytic polypeptide-like (APOBEC) genes as an important source of mutations in diverse cancers, with APOBEC3B (A3B) expression especially correlated with such cancer mutations. To better understand the processes directing A3B over-expression in cancer, and possible therapeutic avenues for targeting A3B, we have investigated the regulation of A3B gene expression. Here, we show that A3B expression is inversely related to p53 status in different cancer types and demonstrate that this is due to a direct and pivotal role for p53 in repressing A3B expression. This occurs through the induction of p21 (CDKN1A) and the recruitment of the repressive DREAM complex to the A3B gene promoter, such that loss of p53 through mutation, or human papilloma virus-mediated inhibition, prevents recruitment of the complex, thereby causing elevated A3B expression and cytosine deaminase activity in cancer cells. As p53 is frequently mutated in cancer, our findings provide a mechanism by which p53 loss can promote cancer mutagenesis.


Asunto(s)
Citidina Desaminasa/genética , Regulación Neoplásica de la Expresión Génica , Antígenos de Histocompatibilidad Menor/genética , Proteína p53 Supresora de Tumor/genética , Línea Celular , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Citidina Desaminasa/metabolismo , Células HCT116 , Humanos , Immunoblotting , Antígenos de Histocompatibilidad Menor/metabolismo , Mutación , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patología , Interferencia de ARN , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Proteína p53 Supresora de Tumor/metabolismo
12.
Breast Cancer Res Treat ; 167(2): 605-606, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29305809

RESUMEN

In the original publication, Fig. 1 depicting the blot for EP300 in CAL51 cells (Fig. 1c) was unintentionally duplicated with that from MDA-MB-231 cells (Fig. 1d). The new figure given in this erratum depicts the correct EP300 blot in Fig. 1c.

13.
Nature ; 481(7381): 389-93, 2012 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-22217937

RESUMEN

Oestrogen receptor-α (ER) is the defining and driving transcription factor in the majority of breast cancers and its target genes dictate cell growth and endocrine response, yet genomic understanding of ER function has been restricted to model systems. Here we map genome-wide ER-binding events, by chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq), in primary breast cancers from patients with different clinical outcomes and in distant ER-positive metastases. We find that drug-resistant cancers still recruit ER to the chromatin, but that ER binding is a dynamic process, with the acquisition of unique ER-binding regions in tumours from patients that are likely to relapse. The acquired ER regulatory regions associated with poor clinical outcome observed in primary tumours reveal gene signatures that predict clinical outcome in ER-positive disease exclusively. We find that the differential ER-binding programme observed in tumours from patients with poor outcome is not due to the selection of a rare subpopulation of cells, but is due to the FOXA1-mediated reprogramming of ER binding on a rapid timescale. The parallel redistribution of ER and FOXA1 binding events in drug-resistant cellular contexts is supported by histological co-expression of ER and FOXA1 in metastatic samples. By establishing transcription-factor mapping in primary tumour material, we show that there is plasticity in ER-binding capacity, with distinct combinations of cis-regulatory elements linked with the different clinical outcomes.


Asunto(s)
Neoplasias de la Mama/diagnóstico , Neoplasias de la Mama/genética , Regulación Neoplásica de la Expresión Génica , Receptores de Estrógenos/metabolismo , Secuencia de Bases , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Línea Celular Tumoral , Resistencia a Antineoplásicos/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Factor Nuclear 3-alfa del Hepatocito/metabolismo , Humanos , Metástasis de la Neoplasia/genética , Pronóstico , Unión Proteica , Secuencias Reguladoras de Ácidos Nucleicos/genética , Análisis de Supervivencia , Tamoxifeno/farmacología , Tamoxifeno/uso terapéutico , Resultado del Tratamiento
14.
Nucleic Acids Res ; 44(2): 582-94, 2016 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-26400164

RESUMEN

Liver receptor homologue 1 (LRH-1) is an orphan nuclear receptor that has been implicated in the progression of breast, pancreatic and colorectal cancer (CRC). To determine mechanisms underlying growth promotion by LRH-1 in CRC, we undertook global expression profiling following siRNA-mediated LRH-1 knockdown in HCT116 cells, which require LRH-1 for growth and in HT29 cells, in which LRH-1 does not regulate growth. Interestingly, expression of the cell cycle inhibitor p21 (CDKN1A) was regulated by LRH-1 in HCT116 cells. p21 regulation was not observed in HT29 cells, where p53 is mutated. p53 dependence for the regulation of p21 by LRH-1 was confirmed by p53 knockdown with siRNA, while LRH-1-regulation of p21 was not evident in HCT116 cells where p53 had been deleted. We demonstrate that LRH-1-mediated p21 regulation in HCT116 cells does not involve altered p53 protein or phosphorylation, and we show that LRH-1 inhibits p53 recruitment to the p21 promoter, likely through a mechanism involving chromatin remodelling. Our study suggests an important role for LRH-1 in the growth of CRC cells that retain wild-type p53.


Asunto(s)
Proliferación Celular/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Regulación Neoplásica de la Expresión Génica , Receptores Citoplasmáticos y Nucleares/genética , Proteína p53 Supresora de Tumor/genética , Sitios de Unión , Ensamble y Desensamble de Cromatina , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Eliminación de Gen , Células HCT116 , Células HT29 , Humanos , Mutación , Especificidad de Órganos , Fosforilación , Regiones Promotoras Genéticas , Unión Proteica , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Transducción de Señal , Proteína p53 Supresora de Tumor/antagonistas & inhibidores , Proteína p53 Supresora de Tumor/metabolismo
15.
Breast Cancer Res Treat ; 163(3): 461-474, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28341962

RESUMEN

PURPOSE: We have previously described a novel pathway controlling drug resistance, epithelial-to-mesenchymal transition (EMT) and stemness in breast cancer cells. Upstream in the pathway, three miRs (miR-106b, miR-93 and miR-25) target EP300, a transcriptional activator of E-cadherin. Upregulation of these miRs leads to the downregulation of EP300 and E-cadherin with initiation of an EMT. However, miRs regulate the expression of many genes, and the contribution to EMT by miR targets other than EP300 cannot be ruled out. METHODS: We used lentiviruses expressing EP300-targeting shRNA to downregulate its expression in MCF-7 cells as well as an EP300-knocked-out colon carcinoma cell line. An EP300-expression plasmid was used to upregulate its expression in basal-like CAL51 and MDA-MB-231 breast cancer cells. Drug resistance was determined by short-term proliferation and long-term colony formation assays. Stemness was determined by tumour sphere formation in both soft agar and liquid cultures as well as by the expression of CD44/CD24/ALDH markers. Gene expression microarray analysis was performed in MCF-7 cells lacking EP300. EP300 expression was analysed by immunohistochemistry in 17 samples of metaplastic breast cancer. RESULTS: Cells lacking EP300 became more resistant to paclitaxel whereas EP300 overexpression increased their sensitivity to the drug. Expression of cancer stem cell markers, as well as tumour sphere formation, was also increased in EP300-depleted cells, and was diminished in EP300-overexpressing cells. The EP300-regulated gene signature highlighted genes associated with adhesion (CEACAM5), cytoskeletal remodelling (CAPN9), stemness (ABCG2), apoptosis (BCL2) and metastasis (TGFB2). Some genes in this signature were also validated in a previously generated EP300-depleted model of breast cancer using minimally transformed mammary epithelial cells. Importantly, two key genes in apoptosis and stemness, BCL2 and ABCG2, were also upregulated in EP300-knockout colon carcinoma cells and their paclitaxel-resistant derivatives. Immunohistochemical analysis demonstrated that EP300 expression was low in metaplastic breast cancer, a rare, but aggressive form of the disease with poor prognosis that is characterized by morphological and physiological features of EMT. CONCLUSIONS: EP300 plays a major role in the reprogramming events, leading to a more malignant phenotype with the acquisition of drug resistance and cell plasticity, a characteristic of metaplastic breast cancer.


Asunto(s)
Neoplasias de la Mama/genética , Proliferación Celular/genética , Resistencia a Antineoplásicos/genética , Proteína p300 Asociada a E1A/genética , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/genética , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Calpaína/genética , Antígeno Carcinoembrionario/genética , Plasticidad de la Célula/genética , Femenino , Proteínas Ligadas a GPI/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Lentivirus/genética , Células MCF-7 , Metástasis de la Neoplasia , Proteínas de Neoplasias/genética , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Paclitaxel/administración & dosificación , Proteínas Proto-Oncogénicas c-bcl-2/genética , Factor de Crecimiento Transformador beta2/genética
17.
Breast Cancer Res Treat ; 159(2): 215-27, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27514395

RESUMEN

Differential prognostic roles of Androgen Receptor (AR) have been proposed in breast cancer (BC) depending on tumour oestrogen receptor (ER) status. This study aimed to evaluate the prognostic and/or predictive significance of AR expression in invasive BC. In this study AR expression was studied on a large (n = 1141) consecutive series of early-stage (I-III) BC using tissue microarray and immunohistochemistry (IHC). AR mRNA expression was assessed in a subset of cases. The prognostic impact of AR mRNA expression was externally validated using the online BC gene expression data sets (n = 25 data sets, 4078 patients). Nuclear AR IHC expression was significantly associated with features of good prognosis including older age, smaller tumour size, lower grade and lobular histology particularly in the ER-positive tumours. AR was associated with ER-related markers GATA3, FOXa1, RERG and BEX1. Negative association was observed with HER2, p53, Ki67, TK1, CD71 and AGTR1. AR Overexpression was associated with longer survival (p < 0.001), independent of tumour size, grade, stage [p = 0.033, hazard ratio (HR) = 0.80 95 % CI = 0.64-0.98]. Similar associations were maintained in ER+ tumours in univariate and multivariate analysis (p < 0.01) both in patients with and without adjuvant endocrine or chemotherapy. AR mRNA expression showed significant association with tumour grade, molecular subtypes, and longer 10 and 15 years survival in luminal BC. In the external validation cohorts, AR gene expression data were associated with improved patients' outcome (p < 0.001, HR = 0.84, 95 % CI 0.79-0.90). AR is not only an independent prognostic factor in ER-positive luminal BC but is also expressed in ER-negative tumours. AR could act as a molecular target in patients with ER-positive disease predicting response to adjuvant therapy.


Asunto(s)
Neoplasias de la Mama/patología , Carcinoma Ductal de Mama/patología , Receptores Androgénicos/genética , Receptores Androgénicos/metabolismo , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Carcinoma Ductal de Mama/genética , Carcinoma Ductal de Mama/metabolismo , Núcleo Celular , Femenino , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Clasificación del Tumor , Pronóstico , Receptores de Estrógenos/metabolismo , Estudios Retrospectivos , Análisis de Supervivencia , Análisis de Matrices Tisulares , Carga Tumoral
18.
Breast Cancer Res Treat ; 150(3): 511-22, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25794775

RESUMEN

Peroxisome proliferator-activated receptor-gamma (PPARγ) is an adopted orphan receptor that belongs to the nuclear receptor superfamily of transcription factors. PPARγ is regarded as a differentiation factor and it plays an important role in regulating adipogenesis, cell growth, proliferation and tumour progression. In breast cancer (BC), PPARγ agonists were reported to inhibit proliferation and growth invasion and promote phenotypic changes associated with a less malignant and more differentiated status. This study aims to assess the prognostic and biological roles of PPARγ protein expression in a large cohort of BC patients (n = 1100) with emphasis on the luminal oestrogen receptor (ER) positive class. Immunohistochemistry was used to assess the levels of PPARγ expression in BC series prepared as tissue microarrays (TMAs). PPARγ antibody specificity was confirmed using Western blotting. PPARγ nuclear expression was detected in 79 % of the cases and its expression was positively correlated with the hormonal receptors (ER, progesterone receptor and androgen receptor). PPARγ levels were significantly higher in tumours with lobular subtype, smaller size and lower grade, while HER2-positive, ductal or medullary tumours were associated with lower PPARγ levels. Survival analysis showed that PPARγ is associated with better outcome in the whole series as well as in luminal ER-positive class. Cox regression model showed that PPARγ is an independent predictor of outcome. Higher PPARγ was associated with longer survival in patients with ER-positive tumours who did not receive hormone therapy. PPARγ is a good prognostic marker associated with hormone receptors. In patients with luminal BCs, PPARγ is a marker of better prognosis and is associated with longer survival.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Neoplasias de la Mama/mortalidad , Neoplasias de la Mama/patología , PPAR gamma/metabolismo , Neoplasias de la Mama/metabolismo , Núcleo Celular/metabolismo , Femenino , Humanos , Persona de Mediana Edad , Clasificación del Tumor , Pronóstico , Receptores de Estrógenos/metabolismo , Análisis de Supervivencia , Análisis de Matrices Tisulares
19.
Breast Cancer Res Treat ; 150(2): 335-46, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25762479

RESUMEN

The glucocorticoid receptor (GR) is a member of the nuclear receptor superfamily of transcription factors, which exerts anti-proliferative and anti-apoptotic activities. The GR is expressed in a large proportion of breast cancer (BC) although levels generally decrease during cancer progression. This study aimed to determine the clinical and biological significance of GR expression using a large series of early-stage BC with long-term follow-up and BC cell lines. Immunohistochemistry was used to assess the expression of GR in 999 cases of primary invasive BC prepared as tissue microarrays. Reverse phase protein microarray was used to assess the expression of GR in MCF7 and MDA-MB-231 cell lines. Nuclear expression of GR was observed in 61.6 % of breast tumours and was associated with features of good prognosis including smaller tumour size and lower grade with less pleomorphism and low mitotic count. GR expression was positively correlated with expression of oestrogen (ER) and progesterone receptors. In ER-positive tumours, GR was associated with other features of favourable outcome including FOXA1, GATA3 and BEX1 expression, while low GR expression was associated with high Ki67, p53 and CD71 expression. GR expression is associated with features of good outcome but does not provide prognostic information independent of size, stage and grade. Understanding the receptor and its effects on BC behaviour is essential for avoiding any unwanted effects from the use of glucocorticoids in routine oncology practice.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Neoplasias de la Mama/metabolismo , Carcinoma Ductal de Mama/metabolismo , Receptores de Glucocorticoides/metabolismo , Neoplasias de la Mama/mortalidad , Neoplasias de la Mama/patología , Carcinoma Ductal de Mama/mortalidad , Carcinoma Ductal de Mama/secundario , Línea Celular Tumoral , Supervivencia sin Enfermedad , Femenino , Humanos , Estimación de Kaplan-Meier , Persona de Mediana Edad , Análisis Multivariante , Pronóstico , Modelos de Riesgos Proporcionales , Carga Tumoral
20.
Clin Chem ; 61(7): 974-82, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25979954

RESUMEN

BACKGROUND: Activating mutations in the estrogen receptor 1 (ESR1) gene are acquired on treatment and can drive resistance to endocrine therapy. Because of the spatial and temporal limitations of needle core biopsies, our goal was to develop a highly sensitive, less invasive method of detecting activating ESR1 mutations via circulating cell-free DNA (cfDNA) and tumor cells as a "liquid biopsy." METHODS: We developed a targeted 23-amplicon next-generation sequencing (NGS) panel for detection of hot-spot mutations in ESR1, phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit alpha (PIK3CA), tumor protein p53 (TP53), fibroblast growth factor receptor 1 (FGFR1), and fibroblast growth factor receptor 2 (FGFR2) in 48 patients with estrogen receptor-α-positive metastatic breast cancer who were receiving systemic therapy. Selected mutations were validated using droplet digital PCR (ddPCR). RESULTS: Nine baseline cfDNA samples had an ESR1 mutation. NGS detected 3 activating mutations in ESR1, and 3 hot-spot mutations in PIK3CA, and 3 in TP53 in baseline cfDNA, and the ESR1 p.D538G mutation in 1 matched circulating tumor cell sample. ddPCR analysis was more sensitive than NGS and identified 6 additional baseline cfDNA samples with the ESR1 p.D538G mutation at a frequency of <1%. In serial blood samples from 11 patients, 4 showed changes in cfDNA, 2 with emergence of a mutation in ESR1. We also detected a low frequency ESR1 mutation (1.3%) in cfDNA of 1 primary patient who was thought to have metastatic disease but was clear by scans. CONCLUSIONS: Early identification of ESR1 mutations by liquid biopsy might allow for cessation of ineffective endocrine therapies and switching to other treatments, without the need for tissue biopsy and before the emergence of metastatic disease.


Asunto(s)
Neoplasias de la Mama/genética , Análisis Mutacional de ADN/métodos , Receptor alfa de Estrógeno/genética , Mutación , Células Neoplásicas Circulantes , Neoplasias de la Mama/patología , Fosfatidilinositol 3-Quinasa Clase I , Receptor alfa de Estrógeno/sangre , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Células Neoplásicas Circulantes/patología , Fosfatidilinositol 3-Quinasas/genética , Reproducibilidad de los Resultados , Proteína p53 Supresora de Tumor/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA