Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 498
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Eur Radiol ; 2024 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-38703188

RESUMEN

OBJECTIVES: To compare the repeatability and interrelation of various late gadolinium enhancement (LGE) assessment techniques for monitoring fibrotic changes in myocarditis follow-up. MATERIALS AND METHODS: LGE extent change between baseline and 3-month cardiovascular magnetic resonance (CMR) was compared in patients with acute myocarditis using the full width at half maximum (FWHM), gray-scale thresholds at 5 and 6 standard deviations (SD5 and SD6), visual assessment with threshold (VAT) and full manual (FM) techniques. In addition, visual presence score (VPS), visual transmurality score (VTS), and a simplified visual change score (VCS) were assessed. Intraclass-correlation (ICC) was used to evaluate repeatability, and methods were compared using Spearman's correlation. RESULTS: Forty-seven patients (38 male, median age: 27 [IQR: 21; 38] years) were included. LGE extent change differed among quantitative techniques (p < 0.01), with variability in the proportion of patients showing LGE change during follow-up (FWHM: 62%, SD5: 74%, SD6: 66%, VAT: 43%, FM: 60%, VPS: 53%, VTS: 77%, VCS: 89%). Repeatability was highest with FWHM (ICC: 0.97) and lowest with SD5 (ICC: 0.89). Semiquantitative scoring had slightly lower values (VPS ICC: 0.81; VTS ICC: 0.71). VCS repeatability was excellent (ICC: 0.93). VPS and VTS correlated with quantitative techniques, while VCS was positively associated with VPS, VTS, VAT, and FM, but not with FWHM, SD5, and SD6. CONCLUSION: FWHM offers the least observer-dependent LGE follow-up after myocarditis. VPS, VTS, and VCS are practical alternatives, showing reliable correlations with quantitative methods. Classification of patients exhibiting either stable or changing LGE relies on the assessment technique. CLINICAL RELEVANCE STATEMENT: This study shows that LGE monitoring in myocarditis is technique-dependent; the FWHM method yields the most consistent fibrotic tracking results, with scoring-based techniques as reliable alternatives. KEY POINTS: Recognition of fibrotic changes during myocarditis follow-up is significantly influenced by the choice of the quantification technique employed. The FWHM technique ensures highly repeatable tracking of myocarditis-related LGE changes. Segment-based visual scoring and the simplified visual change score offer practical, reproducible alternatives in resource-limited settings.

2.
Eur Radiol ; 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38935123

RESUMEN

OBJECTIVES: To assess the accuracy of a synthetic hematocrit derived from virtual non-contrast (VNC) and virtual non-iodine images (VNI) for myocardial extracellular volume (ECV) computation with photon-counting detector computed tomography (PCD-CT). MATERIALS AND METHODS: Consecutive patients undergoing PCD-CT including a coronary CT angiography (CCTA) and a late enhancement (LE) scan and having a blood hematocrit were retrospectively included. In the first 75 patients (derivation cohort), CCTA and LE scans were reconstructed as VNI at 60, 70, and 80 keV and as VNC with quantum iterative reconstruction (QIR) strengths 2, 3, and 4. Blood pool attenuation (BPmean) was correlated to blood hematocrit. In the next 50 patients (validation cohort), synthetic hematocrit was calculated using BPmean. Myocardial ECV was computed using the synthetic hematocrit and compared with the ECV using the blood hematocrit as a reference. RESULTS: In the derivation cohort (49 men, mean age 79 ± 8 years), a correlation between BPmean and blood hematocrit ranged from poor for VNI of CCTA at 80 keV, QIR2 (R2 = 0.12) to moderate for VNI of LE at 60 keV, QIR4; 70 keV, QIR3 and 4; and VNC of LE, QIR3 and 4 (all, R2 = 0.58). In the validation cohort (29 men, age 75 ± 14 years), synthetic hematocrit was calculated from VNC of the LE scan, QIR3. Median ECV was 26.9% (interquartile range (IQR), 25.5%, 28.8%) using the blood hematocrit and 26.8% (IQR, 25.4%, 29.7%) using synthetic hematocrit (VNC, QIR3; mean difference, -0.2%; limits of agreement, -2.4%, 2.0%; p = 0.33). CONCLUSION: Synthetic hematocrit calculated from VNC images enables an accurate computation of myocardial ECV with PCD-CT. CLINICAL RELEVANCE STATEMENT: Virtual non-contrast images from cardiac late enhancement scans with photon-counting detector CT allow the calculation of a synthetic hematocrit, which enables accurate computation of myocardial extracellular volume. KEY POINTS: Blood hematocrit is mandatory for conventional myocardial extracellular volume computation. Synthetic hematocrit can be calculated from virtual non-iodine and non-contrast photon-counting detector CT images. Synthetic hematocrit from virtual non-contrast images enables computation of the myocardial extracellular volume.

3.
Eur Radiol ; 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38625611

RESUMEN

Stable chest pain is a common symptom with multiple potential causes. Non-invasive imaging has an important role in diagnosis and guiding management through the assessment of coronary stenoses, atherosclerotic plaque, myocardial ischaemia or infarction, and cardiac function. Computed tomography (CT) provides the anatomical evaluation of coronary artery disease (CAD) with the assessment of stenosis, plaque type and plaque burden, with additional functional information available from CT fractional flow reserve (FFR) or CT myocardial perfusion imaging. Stress magnetic resonance imaging, nuclear stress myocardial perfusion imaging, and stress echocardiography can assess myocardial ischaemia and other cardiac functional parameters. Coronary CT angiography can be used as a first-line test for many patients with stable chest pain, particularly those with low to intermediate pre-test probability. Functional testing may be considered for patients with known CAD, where the clinical significance is uncertain based on anatomical testing, or in patients with high pre-test probability. This practice recommendations document can be used to guide the selection of non-invasive imaging for patients with stable chest pain and provides brief recommendations on how to perform and report these diagnostic tests. KEY POINTS: The selection of non-invasive imaging tests for patients with stable chest pain should be based on symptoms, pre-test probability, and previous history. Coronary CT angiography can be used as a first-line test for many patients with stable chest pain, particularly those with low to intermediate pre-test probability. Functional testing can be considered for patients with known CAD, where the clinical significance of CAD is uncertain based on anatomical testing, or in patients with high pre-test probability. KEY RECOMMENDATIONS: Non-invasive imaging is an important part of the assessment of patients with stable chest pain. The selection of non-invasive imaging test should be based on symptoms, pre-test probability, and previous history. (Level of evidence: High). Coronary CT angiography can be used as a first line test for many patients with stable chest pain, particularly those with low to intermediate pre-test probability. CT provides information on stenoses, plaque type, plaque volume, and if required functional information with CT fractional flow reserve or CT perfusion. (Level of evidence: High). Functional testing can be considered for patients with known CAD, where the clinical significance of CAD is uncertain based on anatomical testing, or in patients with high pre-test probability. Stress MRI, SPECT, PET, and echocardiography can provide information on myocardial ischemia, along with cardiac functional and other information. (Level of evidence: Medium).

4.
Eur Radiol ; 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38418626

RESUMEN

RATIONALE: To provide an overview of the current status of cardiac multimodality imaging practices in Europe and radiologist involvement using data from the European Society of Cardiovascular Radiology (ESCR) MRCT-registry. MATERIALS AND METHODS: Numbers on cardiac CT and MRI examinations were extracted from the MRCT-registry of the ESCR, entered between January 2011 and October 2023 (n = 432,265). Data collection included the total/annual numbers of examinations, indications, complications, and reporting habits. RESULTS: Thirty-two countries contributed to the MRCT-registry, including 29 European countries. Between 2011 and 2022, there was a 4.5-fold increase in annually submitted CT examinations, from 3368 to 15,267, and a 3.8-fold increase in MRI examinations, from 3445 to 13,183. The main indications for cardiac CT were suspected coronary artery disease (CAD) (59%) and transcatheter aortic valve replacement planning (21%). The number of patients with intermediate pretest probability who underwent CT for suspected CAD showed an increase from 61% in 2012 to 82% in 2022. The main MRI indications were suspected myocarditis (26%), CAD (21%), and suspected cardiomyopathy (19%). Adverse event rates were very low for CT (0.3%) and MRI (0.7%) examinations. Reporting of CT and MRI examinations was performed mainly by radiologists (respectively 76% and 71%) and, to a lesser degree, in consensus with non-radiologists (19% and 27%, respectively). The remaining examinations (4.9% CT and 1.7% MRI) were reported by non-radiological specialties or in separate readings of radiologists and non-radiologists. CONCLUSIONS: Real-life data on cardiac imaging in Europe using the largest available MRCT-registry demonstrate a considerable increase in examinations over the past years, the vast majority of which are read by radiologists. These findings indicate that radiologists contribute to meeting the increasing demands of competent and effective care in cardiac imaging to a relevant extent. CLINICAL RELEVANCE STATEMENT: The number of cardiac CT and MRI examinations has risen over the past years, and radiologists read the vast majority of these studies as recorded in the MRCT-registry. KEY POINTS: • The number of cardiac imaging examinations is constantly increasing. • Radiologists play a central role in providing cardiac CT and MR imaging services to a large volume of patients. • Cardiac CT and MR imaging examinations performed and read by radiologists show a good safety profile.

5.
Eur Radiol ; 34(4): 2426-2436, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37831139

RESUMEN

OBJECTIVES: Coronary computed tomography angiography (CCTA) has higher diagnostic accuracy than coronary artery calcium (CAC) score for detecting obstructive coronary artery disease (CAD) in patients with stable chest pain, while the added diagnostic value of combining CCTA with CAC is unknown. We investigated whether combining coronary CCTA with CAC score can improve the diagnosis of obstructive CAD compared with CCTA alone. METHODS: A total of 2315 patients (858 women, 37%) aged 61.1 ± 10.2 from 29 original studies were included to build two CAD prediction models based on either CCTA alone or CCTA combined with the CAC score. CAD was defined as at least 50% coronary diameter stenosis on invasive coronary angiography. Models were built by using generalized linear mixed-effects models with a random intercept set for the original study. The two CAD prediction models were compared by the likelihood ratio test, while their diagnostic performance was compared using the area under the receiver-operating-characteristic curve (AUC). Net benefit (benefit of true positive versus harm of false positive) was assessed by decision curve analysis. RESULTS: CAD prevalence was 43.5% (1007/2315). Combining CCTA with CAC improved CAD diagnosis compared with CCTA alone (AUC: 87% [95% CI: 86 to 89%] vs. 80% [95% CI: 78 to 82%]; p < 0.001), likelihood ratio test 236.3, df: 1, p < 0.001, showing a higher net benefit across almost all threshold probabilities. CONCLUSION: Adding the CAC score to CCTA findings in patients with stable chest pain improves the diagnostic performance in detecting CAD and the net benefit compared with CCTA alone. CLINICAL RELEVANCE STATEMENT: CAC scoring CT performed before coronary CTA and included in the diagnostic model can improve obstructive CAD diagnosis, especially when CCTA is non-diagnostic. KEY POINTS: • The combination of coronary artery calcium with coronary computed tomography angiography showed significantly higher AUC (87%, 95% confidence interval [CI]: 86 to 89%) for diagnosis of coronary artery disease compared to coronary computed tomography angiography alone (80%, 95% CI: 78 to 82%, p < 0.001). • Diagnostic improvement was mostly seen in patients with non-diagnostic C. • The improvement in diagnostic performance and the net benefit was consistent across age groups, chest pain types, and genders.


Asunto(s)
Enfermedad de la Arteria Coronaria , Estenosis Coronaria , Femenino , Humanos , Masculino , Calcio , Dolor en el Pecho/diagnóstico , Angiografía por Tomografía Computarizada/métodos , Angiografía Coronaria/métodos , Enfermedad de la Arteria Coronaria/diagnóstico por imagen , Estenosis Coronaria/diagnóstico por imagen , Valor Predictivo de las Pruebas , Tomografía Computarizada por Rayos X/métodos , Persona de Mediana Edad , Anciano
6.
Eur Radiol ; 33(1): 339-347, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35984513

RESUMEN

OBJECTIVES: In patients of advanced age, the feasibility of myocardial ischemia testing might be limited by age-related comorbidities and falling compliance abilities. Therefore, we aimed to test the accuracy of 3D cardiac magnetic resonance (CMR) stress perfusion in the elderly population as compared to reference standard fractional flow reserve (FFR). METHODS: Fifty-six patients at age 75 years or older (mean age 79 ± 4 years, 35 male) underwent 3D CMR perfusion imaging and invasive coronary angiography with FFR in 5 centers using the same study protocol. The diagnostic accuracy of CMR was compared to a control group of 360 patients aged below 75 years (mean age 61 ± 9 years, 262 male). The percentage of myocardial ischemic burden (MIB) relative to myocardial scar burden was further analyzed using semi-automated software. RESULTS: Sensitivity, specificity, and positive and negative predictive values of 3D perfusion CMR deemed similar for both age groups in the detection of hemodynamically relevant (FFR < 0.8) stenosis (≥ 75 years: 86%, 83%, 92%, and 75%; < 75 years: 87%, 80%, 82%, and 85%; p > 0.05 all). While MIB was larger in the elderly patients (15% ± 17% vs. 9% ± 13%), the diagnostic accuracy of 3D CMR perfusion was high in both elderly and non-elderly populations to predict pathological FFR (AUC: 0.906 and 0.866). CONCLUSIONS: 3D CMR perfusion has excellent diagnostic accuracy for the detection of hemodynamically relevant coronary stenosis, independent of patient age. KEY POINTS: • The increasing prevalence of coronary artery disease in elderly populations is accompanied with a larger ischemic burden of the myocardium as compared to younger individuals. • 3D cardiac magnetic resonance perfusion imaging predicts pathological fractional flow reserve in elderly patients aged ≥ 75 years with high diagnostic accuracy. • Ischemia testing with 3D CMR perfusion imaging has similarly high accuracy in the elderly as in younger patients and it might be particularly useful when other non-invasive techniques are limited by aging-related comorbidities and falling compliance abilities.


Asunto(s)
Enfermedad de la Arteria Coronaria , Estenosis Coronaria , Reserva del Flujo Fraccional Miocárdico , Imagen de Perfusión Miocárdica , Humanos , Masculino , Anciano , Anciano de 80 o más Años , Persona de Mediana Edad , Enfermedad de la Arteria Coronaria/diagnóstico , Imagen de Perfusión Miocárdica/métodos , Índice de Severidad de la Enfermedad , Angiografía Coronaria/métodos , Valor Predictivo de las Pruebas , Perfusión , Espectroscopía de Resonancia Magnética
7.
Eur Radiol ; 33(2): 1102-1111, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36029344

RESUMEN

OBJECTIVES: Establishing the reproducibility of expert-derived measurements on CTA exams of aortic dissection is clinically important and paramount for ground-truth determination for machine learning. METHODS: Four independent observers retrospectively evaluated CTA exams of 72 patients with uncomplicated Stanford type B aortic dissection and assessed the reproducibility of a recently proposed combination of four morphologic risk predictors (maximum aortic diameter, false lumen circumferential angle, false lumen outflow, and intercostal arteries). For the first inter-observer variability assessment, 47 CTA scans from one aortic center were evaluated by expert-observer 1 in an unconstrained clinical assessment without a standardized workflow and compared to a composite of three expert-observers (observers 2-4) using a standardized workflow. A second inter-observer variability assessment on 30 out of the 47 CTA scans compared observers 3 and 4 with a constrained, standardized workflow. A third inter-observer variability assessment was done after specialized training and tested between observers 3 and 4 in an external population of 25 CTA scans. Inter-observer agreement was assessed with intraclass correlation coefficients (ICCs) and Bland-Altman plots. RESULTS: Pre-training ICCs of the four morphologic features ranged from 0.04 (-0.05 to 0.13) to 0.68 (0.49-0.81) between observer 1 and observers 2-4 and from 0.50 (0.32-0.69) to 0.89 (0.78-0.95) between observers 3 and 4. ICCs improved after training ranging from 0.69 (0.52-0.87) to 0.97 (0.94-0.99), and Bland-Altman analysis showed decreased bias and limits of agreement. CONCLUSIONS: Manual morphologic feature measurements on CTA images can be optimized resulting in improved inter-observer reliability. This is essential for robust ground-truth determination for machine learning models. KEY POINTS: • Clinical fashion manual measurements of aortic CTA imaging features showed poor inter-observer reproducibility. • A standardized workflow with standardized training resulted in substantial improvements with excellent inter-observer reproducibility. • Robust ground truth labels obtained manually with excellent inter-observer reproducibility are key to develop reliable machine learning models.


Asunto(s)
Disección Aórtica , Humanos , Variaciones Dependientes del Observador , Reproducibilidad de los Resultados , Estudios Retrospectivos , Disección Aórtica/diagnóstico por imagen , Aorta
8.
Radiology ; 305(1): 107-115, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35670712

RESUMEN

Background Accurate CT attenuation and diagnostic quality of virtual noncontrast (VNC) images acquired with photon-counting detector (PCD) CT are needed to replace true noncontrast (TNC) scans. Purpose To assess the attenuation errors and image quality of VNC images from abdominal PCD CT compared with TNC images. Materials and Methods In this retrospective study, consecutive adult patients who underwent a triphasic examination with PCD CT from July 2021 to October 2021 were included. VNC images were reconstructed from arterial and portal venous phase CT. The absolute attenuation error of VNC compared with TNC images was measured in multiple structures by two readers. Then, two readers blinded to image reconstruction assessed the overall image quality, image noise, noise texture, and delineation of small structures using five-point discrete visual scales (5 = excellent, 1 = nondiagnostic). Overall image quality greater than or equal to 3 was deemed diagnostic. In a phantom, noise texture, spatial resolution, and detectability index were assessed. A detectability index greater than or equal to 5 indicated high diagnostic accuracy. Interreader agreement was evaluated using the Krippendorff α coefficient. The paired t test and Friedman test were applied to compare objective and subjective results. Results Overall, 100 patients (mean age, 72 years ± 10 [SD]; 81 men) were included. In patients, VNC image attenuation values were consistent between readers (α = .60), with errors less than 5 HU in 76% and less than 10 HU in 95% of measurements. There was no evidence of a difference in error of VNC images from arterial or portal venous phase CT (3.3 HU vs 3.5 HU, P = .16). Subjective image quality was rated lower in VNC images for all categories (all, P < .001). Diagnostic quality of VNC images was reached in 99% and 100% of patients for readers 1 and 2, respectively. In the phantom, VNC images exhibited 33% higher noise, blotchier noise texture, similar spatial resolution, and inferior but overall good image quality (detectability index >20) compared with TNC images. Conclusion Abdominal virtual noncontrast images from the arterial and portal venous phase of photon-counting detector CT yielded accurate CT attenuation and good image quality compared with true noncontrast images. © RSNA, 2022 Online supplemental material is available for this article See also the editorial by Sosna in this issue.


Asunto(s)
Imagen Radiográfica por Emisión de Doble Fotón , Abdomen/diagnóstico por imagen , Adulto , Anciano , Humanos , Procesamiento de Imagen Asistido por Computador , Masculino , Imagen Radiográfica por Emisión de Doble Fotón/métodos , Estudios Retrospectivos , Tomografía Computarizada por Rayos X/métodos
9.
Radiology ; 303(2): 339-348, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35103540

RESUMEN

Background An iterative reconstruction (IR) algorithm was introduced for clinical photon-counting detector (PCD) CT. Purpose To investigate the image quality and the optimal strength level of a quantum IR algorithm (QIR; Siemens Healthcare) for virtual monoenergetic images and polychromatic images (T3D) in a phantom and in patients undergoing portal venous abdominal PCD CT. Materials and Methods In this retrospective study, noise power spectrum (NPS) was measured in a water-filled phantom. Consecutive oncologic patients who underwent portal venous abdominal PCD CT between March and April 2021 were included. Virtual monoenergetic images at 60 keV and T3D were reconstructed without QIR (QIR-off; reference standard) and with QIR at four levels (QIR 1-4; index tests). Global noise index, contrast-to-noise ratio (CNR), and voxel-wise CT attenuation differences were measured. Noise and texture, artifacts, diagnostic confidence, and overall quality were assessed qualitatively. Conspicuity of hypodense liver lesions was rated by four readers. Parametric (analyses of variance, paired t tests) and nonparametric tests (Friedman, post hoc Wilcoxon signed-rank tests) were used to compare quantitative and qualitative image quality among reconstructions. Results In the phantom, NPS showed unchanged noise texture across reconstructions with maximum spatial frequency differences of 0.01 per millimeter. Fifty patients (mean age, 59 years ± 16 [standard deviation]; 31 women) were included. Global noise index was reduced from QIR-off to QIR-4 by 45% for 60 keV and by 44% for T3D (both, P < .001). CNR of the liver improved from QIR-off to QIR-4 by 74% for 60 keV and by 69% for T3D (both, P < .001). No evidence of difference was found in mean attenuation of fat and liver (P = .79-.84) and on a voxel-wise basis among reconstructions. Qualitatively, QIR-4 outperformed all reconstructions in every category for 60 keV and T3D (P value range, <.001 to .01). All four readers rated QIR-4 superior to other strengths for lesion conspicuity (P value range, <.001 to .04). Conclusion In portal venous abdominal photon-counting detector CT, an iterative reconstruction algorithm (QIR; Siemens Healthcare) at high strength levels improved image quality by reducing noise and improving contrast-to-noise ratio and lesion conspicuity without compromising image texture or CT attenuation values. © RSNA, 2022 Online supplemental material is available for this article. See also the editorial by Sinitsyn in this issue.


Asunto(s)
Interpretación de Imagen Radiográfica Asistida por Computador , Tomografía Computarizada por Rayos X , Femenino , Humanos , Masculino , Persona de Mediana Edad , Fantasmas de Imagen , Interpretación de Imagen Radiográfica Asistida por Computador/métodos , Estudios Retrospectivos , Relación Señal-Ruido , Tomografía Computarizada por Rayos X/métodos
10.
Eur Radiol ; 32(3): 1823-1832, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34559264

RESUMEN

OBJECTIVES: To investigate, in patients with metastatic prostate cancer, whether radiomics of computed tomography (CT) image data enables the differentiation of bone metastases not visible on CT from unaffected bone using 68 Ga-PSMA PET imaging as reference standard. METHODS: In this IRB-approved retrospective study, 67 patients (mean age 71 ± 7 years; range: 55-84 years) showing a total of 205 68 Ga-PSMA-positive prostate cancer bone metastases in the thoraco-lumbar spine and pelvic bone being invisible in CT were included. Metastases and 86 68 Ga-PSMA-negative bone volumes in the same body region were segmented and further post-processed. Intra- and inter-reader reproducibility was assessed, with ICCs < 0.90 being considered non-reproducible. To account for imbalances in the dataset, data augmentation was performed to achieve improved class balance and to avoid model overfitting. The dataset was split into training, test, and validation set. After a multi-step dimension reduction process and feature selection process, the 11 most important and independent features were selected for statistical analyses. RESULTS: A gradient-boosted tree was trained on the selected 11 radiomic features in order to classify patients' bones into bone metastasis and normal bone using the training dataset. This trained model achieved a classification accuracy of 0.85 (95% confidence interval [CI]: 0.76-0.92, p < .001) with 78% sensitivity and 93% specificity. The tuned model was applied on the original, non-augmented dataset resulting in a classification accuracy of 0.90 (95% CI: 0.82-0.98) with 91% sensitivity and 88% specificity. CONCLUSION: Our proof-of-concept study indicates that radiomics may accurately differentiate unaffected bone from metastatic bone, being invisible by the human eye on CT. KEY POINTS: • This proof-of-concept study showed that radiomics applied on CT images may accurately differentiate between bone metastases and metastatic-free bone in patients with prostate cancer. • Future promising applications include automatic bone segmentation, followed by a radiomics classifier, allowing for a screening-like approach in the detection of bone metastases.


Asunto(s)
Tomografía Computarizada por Tomografía de Emisión de Positrones , Neoplasias de la Próstata , Anciano , Radioisótopos de Galio , Humanos , Masculino , Persona de Mediana Edad , Neoplasias de la Próstata/diagnóstico por imagen , Reproducibilidad de los Resultados , Estudios Retrospectivos , Tomografía Computarizada por Rayos X
11.
Eur Radiol ; 32(8): 5287-5296, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35294585

RESUMEN

OBJECTIVES: To evaluate the feasibility and accuracy of diagnosing acute heart failure (HF) with CT pulmonary angiography (CTPA) in emergency department patients. METHODS: In this retrospective single-center study, we evaluated 150 emergency department patients (mean age 65 ± 17 years) undergoing CTPA with a fixed scan (100 kVp) and contrast media protocol (60 mL, 4 mL/s) who had no pulmonary embolism (PE). Patients were subdivided into training cohort (n = 100) and test cohort (n = 50). Three independent, blinded readers measured the attenuation in the right ventricle (RV) and left ventricle (LV) on axial images. The ratio (HUratio) and difference (HUdiff) between RV and LV attenuation were calculated. Diagnosis of acute HF was made on the basis of clinical, laboratory, and echocardiography data. Optimal thresholds, sensitivity, and specificity were calculated using the area under the curve (AUC) from receiver operating characteristics analysis. RESULTS: Fifty-nine of the 150 patients (40%) were diagnosed with acute HF. Attenuation measurements showed an almost perfect interobserver agreement (intraclass correlation coefficient: 0.986, 95%CI: 0.980-0.991). NT-pro BNP exhibited moderate correlations with HUratio (r = 0.50, p < 0.001) and HUdiff (r = 0.50, p < 0.001). In the training cohort, HUratio (AUC: 0.89, 95%CI: 0.82-0.95) and HUdiff (AUC: 0.88, 95%CI: 0.81-0.95) showed a very good performance to diagnose HF. Optimal cutoff values were 1.42 for HUratio (sensitivity 93%; specificity 75%) and 113 for HUdiff (sensitivity 93%; specificity 73%). Applying these thresholds to the test cohort yielded a sensitivity of 89% and 89% and a specificity of 69% and 63% for HUratio and HUdiff, respectively. CONCLUSION: In emergency department patients undergoing CTPA and showing no PE, both HUratio and HUdiff have a high sensitivity for diagnosing acute HF. KEY POINTS: • Heart failure is a common differential diagnosis in patients undergoing CT pulmonary angiography. • In emergency department patients undergoing CT pulmonary angiography and showing no pulmonary embolism, attenuation differences of the left and right ventricle have a high sensitivity for diagnosing acute heart failure.


Asunto(s)
Insuficiencia Cardíaca , Embolia Pulmonar , Anciano , Anciano de 80 o más Años , Angiografía/métodos , Angiografía por Tomografía Computarizada , Estudios de Factibilidad , Insuficiencia Cardíaca/diagnóstico por imagen , Humanos , Persona de Mediana Edad , Embolia Pulmonar/diagnóstico por imagen , Estudios Retrospectivos , Sensibilidad y Especificidad , Tomografía Computarizada por Rayos X/métodos
12.
Eur Radiol ; 32(8): 5233-5245, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35267094

RESUMEN

OBJECTIVES: There is conflicting evidence about the comparative diagnostic accuracy of the Agatston score versus computed tomography angiography (CTA) in patients with suspected obstructive coronary artery disease (CAD). PURPOSE: To determine whether CTA is superior to the Agatston score in the diagnosis of CAD. METHODS: In total 2452 patients with stable chest pain and a clinical indication for invasive coronary angiography (ICA) for suspected CAD were included by the Collaborative Meta-analysis of Cardiac CT (COME-CCT) Consortium. An Agatston score of > 400 was considered positive, and obstructive CAD defined as at least 50% coronary diameter stenosis on ICA was used as the reference standard. RESULTS: Obstructive CAD was diagnosed in 44.9% of patients (1100/2452). The median Agatston score was 74. Diagnostic accuracy of CTA for the detection of obstructive CAD (81.1%, 95% confidence interval [CI]: 77.5 to 84.1%) was significantly higher than that of the Agatston score (68.8%, 95% CI: 64.2 to 73.1%, p < 0.001). Among patients with an Agatston score of zero, 17% (101/600) had obstructive CAD. Diagnostic accuracy of CTA was not significantly different in patients with low to intermediate (1 to < 100, 100-400) versus moderate to high Agatston scores (401-1000, > 1000). CONCLUSIONS: Results in our international cohort show CTA to have significantly higher diagnostic accuracy than the Agatston score in patients with stable chest pain, suspected CAD, and a clinical indication for ICA. Diagnostic performance of CTA is not affected by a higher Agatston score while an Agatston score of zero does not reliably exclude obstructive CAD. KEY POINTS: • CTA showed significantly higher diagnostic accuracy (81.1%, 95% confidence interval [CI]: 77.5 to 84.1%) for diagnosis of coronary artery disease when compared to the Agatston score (68.8%, 95% CI: 64.2 to 73.1%, p < 0.001). • Diagnostic performance of CTA was not affected by increased amount of calcium and was not significantly different in patients with low to intermediate (1 to <100, 100-400) versus moderate to high Agatston scores (401-1000, > 1000). • Seventeen percent of patients with an Agatston score of zero showed obstructive coronary artery disease by invasive angiography showing absence of coronary artery calcium cannot reliably exclude coronary artery disease.


Asunto(s)
Enfermedad de la Arteria Coronaria , Estenosis Coronaria , Calcio , Dolor en el Pecho/diagnóstico por imagen , Angiografía por Tomografía Computarizada/métodos , Angiografía Coronaria/métodos , Enfermedad de la Arteria Coronaria/diagnóstico por imagen , Humanos , Valor Predictivo de las Pruebas , Tomografía Computarizada por Rayos X
13.
AJR Am J Roentgenol ; 218(5): 822-829, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34877869

RESUMEN

BACKGROUND. Epicardial adipose tissue (EAT) attenuation is a vascular inflammation marker predictive of adverse cardiac events. The fat attenuation index (FAI) assesses fat attenuation for predefined coronary segments. Photon-counting detector (PCD) CT uses routine virtual monoenergetic image (VMI) reconstructions. VMI energy level may affect EAT attenuation and FAI measurements. OBJECTIVE. The purpose of this article was to assess EAT attenuation and FAI measurements at different monoenergetic energy levels in patients undergoing coronary CTA using a first-generation whole-body dual-source PCD CT scanner. METHODS. An anthropomorphic phantom at two sizes with a fat insert was imaged on a first-generation dual-source PCD CT scanner and, as a reference, on a conventional energy-integrating detector (EID) CT scanner at 120 kV. Thirty patients (11 women, 19 men; mean age, 48 ± 10 years; Agatston score < 60) who underwent an ECG-gated unenhanced calcium-scoring scan and contrast-enhanced coronary CTA by PCD CT were retrospectively evaluated. VMIs from 55 to 80 keV at 5-keV increments were reconstructed. EAT attenuation was manually measured on unenhanced and contrast-enhanced images. FAI was calculated using semiautomated software. RESULTS. The attenuation of the phantom fat insert was -69 HU for the reference EID CT; the closest attenuation for PCD CT was observed at 70 keV for the small (-69 HU) and large (-70 HU) phantoms. In patients, EAT attenuation increased for unenhanced acquisition from -111 ± 11 HU at 55 keV to -82 ± 9 HU at 80 keV and for contrast-enhanced acquisition from -104 ± 11 HU at 55 keV to -81 ± 9 HU at 80 keV. The mean attenuation difference between unenhanced and contrast-enhanced scans decreased with increasing energy level (from 7 ± 12 HU to 1 ± 10 HU). The FAI increased from -89 ± 8 HU at 55 keV to -77 ± 12 HU at 80 keV for the right coronary artery, -95 ± 11 HU at 55 keV to -85 ± 11 HU at 80 keV for the left anterior descending artery, and -87 ± 10 HU at 55 keV to -80 ± 12 HU at 80 keV for the circumflex artery. CONCLUSION. EAT attenuation and FAI measurements using PCD CT are impacted by VMI energy level and contrast enhancement. Use of VMI reconstruction at 70 keV provides fat attenuation approximating conventional polychromatic measurements. CLINICAL IMPACT. The findings may help standardize evaluation of pericoronary inflammation by PCD CT as a measure of patients' cardiac risk.


Asunto(s)
Tejido Adiposo , Tomografía Computarizada por Rayos X , Tejido Adiposo/diagnóstico por imagen , Adulto , Femenino , Humanos , Inflamación , Masculino , Persona de Mediana Edad , Fantasmas de Imagen , Estudios Retrospectivos , Tomografía Computarizada por Rayos X/métodos
14.
BMC Cardiovasc Disord ; 22(1): 226, 2022 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-35585495

RESUMEN

BACKGROUND: The purpose of the study was to investigate feasibility of infarct detection in segmental strain derived from non-contrast cardiac magnetic resonance (CMR) cine sequences in patients with acute myocardial infarction (AMI) and in follow-up (FU) exams. METHODS: 57 patients with AMI (mean age 61 ± 12 years, CMR 2.8 ± 2 days after infarction) were retrospectively included, FU exams were available in 32 patients (35 ± 14 days after first CMR). 43 patients with normal CMR (54 ± 11 years) served as controls. Dedicated software (Segment CMR, Medviso) was used to calculate global and segmental strain derived from cine sequences. Cine short axis stacks and segmental circumferential strain calculations of every patient and control were presented to two blinded readers in random order, who were advised to identify potentially infarcted segments, blinded to LGE and clinical information. RESULTS: Impaired global strain was measured in AMI patients compared to controls (global peak circumferential strain [GPCS] p = 0.01; global peak longitudinal strain [GPLS] p = 0.04; global peak radial strain [GPRS] p = 0.01). In both imaging time points, mean segmental peak circumferential strain [SPCS] was impaired in infarcted tissue compared to remote segments (AMI: p = 0.03, FU: p = 0.02). SPCS values in infarcted segments were similar between AMI and FU (p = 0.8). In SPCS calculations, 141 from 189 acutely infarcted segments were accurately detected (74.6%), visual evaluation of correlating cine images detected 43.4% infarcts. In FU, 80% infarcted segments (91/114 segments) were detected in SPCS and 51.8% by visual evaluation of correlating short axis cine images (p = 0.01). CONCLUSION: Segmental circumferential strain derived from routinely acquired native cine sequences detects nearly 75% of acute infarcts and 80% of infarcts in subacute follow-up CMR, significantly more than visual evaluation of correlating cine images alone. Acute infarcts may display only subtle impairment of wall motion and no obvious wall thinning, thus SPCS calculation might be helpful for scar detection in patients with acute infarcts, when LGE images are not available.


Asunto(s)
Cicatriz , Infarto del Miocardio , Anciano , Cicatriz/diagnóstico por imagen , Cicatriz/etiología , Cicatriz/patología , Estudios de Seguimiento , Humanos , Imagen por Resonancia Cinemagnética/métodos , Espectroscopía de Resonancia Magnética , Persona de Mediana Edad , Infarto del Miocardio/diagnóstico por imagen , Infarto del Miocardio/patología , Miocardio/patología , Estudios Retrospectivos , Función Ventricular Izquierda
15.
Surg Endosc ; 36(11): 8607-8618, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36217056

RESUMEN

BACKGROUND: Acute mesenteric ischemia (AMI) is a devastating disease with poor prognosis. Due to the multitude of underlying factors, prediction of outcomes remains poor. We aimed to identify factors governing diagnosis and survival in AMI and develop novel prognostic tools. METHODS: This monocentric retrospective study analyzed patients with suspected AMI undergoing imaging between January 2014 and December 2019. Subgroup analyses were performed for patients with confirmed AMI undergoing surgery. Nomograms were calculated based on multivariable logistic regression models. RESULTS: Five hundred and thirty-nine patients underwent imaging for clinically suspected AMI, with 216 examinations showing radiological indication of AMI. Intestinal necrosis (IN) was confirmed in 125 undergoing surgery, 58 of which survived and 67 died (median 9 days after diagnosis, IQR 22). Increasing age, ASA score, pneumatosis intestinalis, and dilated bowel loops were significantly associated with presence of IN upon radiological suspicion. In contrast, decreased pH, elevated creatinine, radiological atherosclerosis, vascular occlusion (versus non-occlusive AMI), and colonic affection (compared to small bowel ischemia only) were associated with impaired survival in patients undergoing surgery. Based on the identified factors, we developed two nomograms to aid in prediction of IN upon radiological suspicion (C-Index = 0.726) and survival in patients undergoing surgery for IN (C-Index = 0.791). CONCLUSION: As AMI remains a condition with high mortality, we identified factors predicting occurrence of IN with suspected AMI and survival when undergoing surgery for IN. We provide two new tools, which combine these parameters and might prove helpful in treatment of patients with AMI.


Asunto(s)
Enfermedades Intestinales , Isquemia Mesentérica , Humanos , Isquemia Mesentérica/diagnóstico por imagen , Isquemia Mesentérica/etiología , Estudios Retrospectivos , Pronóstico , Intestinos/diagnóstico por imagen , Intestinos/cirugía , Intestinos/irrigación sanguínea , Intestino Delgado , Enfermedad Aguda , Isquemia/etiología , Isquemia/complicaciones
16.
Pediatr Radiol ; 52(13): 2584-2594, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35836016

RESUMEN

BACKGROUND: Exposure of the eye lens to ionizing radiation results in cataract. Several dose optimization techniques to protect the lens are available for computed tomography (CT). OBJECTIVE: The radiation dose to the eye lens, volume CT dose index (CTDIvol) and image quality of various methods of dose optimization were evaluated for pediatric head CT: automated tube current modulation (ATCM), automated tube voltage selection (ATVS), organ-based tube current modulation (OBTCM) and bismuth shielding. MATERIALS AND METHODS: An anthropomorphic phantom of a 5-year-old child was scanned with nine protocols: no dose optimization technique and then adding different dose optimization techniques alone and in combination. Dose to the eye, thyroid and breast were estimated using metal oxide semiconductor field effect transistor (MOSFET) dosimetry. CTDIvol, influence of timing of shield placement, image noise and attenuation values in 13 regions of interest of the head and subjective image quality were compared. RESULTS: The eye shield significantly reduced the eye lens dose when used alone, to a similar degree as when using all software-based techniques together. When used in combination with software-based techniques, the shield reduced the eye lens dose by up to 45% compared to the no dose optimization technique. Noise was significantly increased by the shield, most pronounced in the anterior portion of the eye. CONCLUSION: The combination of ATCM, ATVS, OBTCM and a bismuth shield, with the shield placed after acquiring the localizer image, should be considered to reduce the radiation dose to the eye lens in pediatric head CT.


Asunto(s)
Bismuto , Protección Radiológica , Niño , Humanos , Preescolar , Dosis de Radiación , Protección Radiológica/métodos , Cabeza/diagnóstico por imagen , Tomografía Computarizada por Rayos X/métodos , Fantasmas de Imagen
17.
Radiology ; 298(1): 147-152, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33141002

RESUMEN

Background Bone mineral density (BMD) could be derived from CT localizer radiographs and could potentially enable opportunistic osteoporosis screening. Purpose To assess the accuracy and precision of BMD measurement using two localizer radiographs obtained with energy-integrating detector CT and a single localizer radiograph obtained with photon-counting detector CT. Materials and Methods A calibration phantom and a porcine phantom with lumbar vertebrae were imaged with a dual-energy x-ray absorptiometry (DXA) scanner, a clinical energy-integrating detector CT scanner, and a prototype photon-counting detector CT scanner. Two localizer radiographs at different combinations of tube voltages were obtained with energy-integrating detector CT, and one localizer radiograph was obtained with photon-counting detector CT using different energy thresholds. BMD was calculated for all three approaches and compared with the known specifications in the calibration phantom. In the animal phantom, BMDs from both CT systems were compared with those from the DXA scanner (the reference standard). Accuracy was defined as the measurement error of BMD (ΔBMD), and precision was defined as the coefficient of variation (in percentage). Radiation doses were estimated. Nonparametric tests were applied. Results In the calibration phantom, ΔBMD was smaller with both CT systems compared with the DXA scanner (both P < .05). ΔBMD ranged from -5% to -1.8% for DXA, from -2.3% to -1.7% for energy-integrating detector CT, and from -1.6% to 1.6% for photon-counting detector CT. Precision (range, 0.3%-2.8%) was high for both CT systems. In the animal phantom, ΔBMD ranged from -0.6% to 0.1% for energy-integrating detector CT and from -0.1% to 0.6% for photon-counting detector CT, with no significant differences between CT systems (P = .65). The dose-area product in the animal phantom was 4.6 cGy ∙ cm2 for DXA, 3.5-11.5 cGy ∙ cm2 for energy-integrating detector CT, and 7.2-11.2 cGy ∙ cm2 for photon-counting detector CT, depending on tube voltage and energy threshold combination. Conclusion Experimental evidence suggests that bone mineral density measurements are accurate and precise using two localizer radiographs at different tube voltages from energy-integrating detector CT and a single localizer radiograph with different energy thresholds from photon-counting detector CT. © RSNA, 2020 Online supplemental material is available for this article. See also the editorial by Pourmorteza in this issue.


Asunto(s)
Densidad Ósea/fisiología , Vértebras Lumbares/anatomía & histología , Tomografía Computarizada por Rayos X/métodos , Absorciometría de Fotón , Animales , Modelos Animales , Fantasmas de Imagen , Fotones , Reproducibilidad de los Resultados , Porcinos
18.
Radiology ; 301(1): 105-112, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34342499

RESUMEN

Background Current risk models show limited performances for predicting all-cause mortality after transcatheter aortic valve replacement (TAVR). Purpose To determine the prognostic value of coronary artery calcium (CAC) scoring for predicting 30-day and 1-year mortality in patients undergoing TAVR. Materials and Methods In this single-center institutional review board-approved secondary analysis of prospectively collected data (SwissTAVI Registry), the authors evaluated participants who, before TAVR, underwent CT that included a nonenhanced electrocardiography-gated cardiac scan between May 2008 and September 2019 and who had not undergone previous coronary revascularization. Clinical data, including the European System for Cardiac Operative Risk Evaluation (EuroSCORE II), were recorded. The CAC score was determined, and 30-day and 1-year all-cause mortality were assessed by using Cox regression analyses. Results In total, 309 participants (mean age ± standard deviation, 81 years ± 7; 175 women) were included, with a median CAC score of 334 (interquartile range, 104-987). Seventy-seven of the 309 participants (25%) had a CAC score greater than or equal to 1000. A CAC score of 1000 or greater served as an independent predictor of 30-day (hazard ratio [HR], 4.5 [95% CI: 1.5, 13.6] compared with a CAC score <1000; P = .007) and 1-year (HR, 4.3 [95% CI: 1.5, 12.7] compared with a CAC score of 0-99; P = .008) mortality after TAVR. Similar trends were observed for each point increase of the EuroSCORE II as an independent predictor of 30-day (HR, 1.22 [95% CI: 1.10, 1.36]; P < .001) and 1-year (HR, 1.16 [95% CI: 1.08, 1.25]; P < .001) mortality. Adding the CAC score to the EuroSCORE II provided incremental prognostic value for 1-year mortality after TAVR over the EuroSCORE II alone (concordance index, 0.76 vs 0.69; P = .04). Conclusion In participants without prior coronary revascularization, the coronary artery calcium score represented an independent predictor of 30-day and 1-year mortality after transcatheter aortic valve replacement. ClinicalTrials.gov identifier, NCT01368250 © RSNA, 2021 Online supplemental material is available for this article. See also the editorial by Almeida in this issue.


Asunto(s)
Complicaciones Posoperatorias/diagnóstico , Complicaciones Posoperatorias/mortalidad , Reemplazo de la Válvula Aórtica Transcatéter/mortalidad , Calcificación Vascular/diagnóstico , Calcificación Vascular/mortalidad , Anciano de 80 o más Años , Femenino , Humanos , Masculino , Pronóstico , Estudios Prospectivos , Sistema de Registros/estadística & datos numéricos , Índice de Severidad de la Enfermedad , Suiza/epidemiología , Resultado del Tratamiento
19.
Curr Cardiol Rep ; 22(11): 131, 2020 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-32910325

RESUMEN

PURPOSE OF REVIEW: The aim of this structured review is to summarize the current research applications and opportunities arising from artificial intelligence (AI) and texture analysis with regard to cardiac imaging. RECENT FINDINGS: Current research findings suggest tremendous potential for AI in cardiac imaging, especially with regard to objective image analyses, overcoming the limitations of an observer-dependent subjective image interpretation. Researchers have used this technique across multiple imaging modalities, for instance to detect myocardial scars in cardiac MR imaging, to predict contrast enhancement in non-contrast studies, and to improve image acquisition and reconstruction. AI in medical imaging has the potential to provide novel, much-needed applications for improving patient care pertaining to the cardiovascular system. While several shortcomings are still present in the current methodology, AI may serve as a resourceful assistant to radiologists and clinicians alike.


Asunto(s)
Inteligencia Artificial , Procesamiento de Imagen Asistido por Computador , Técnicas de Imagen Cardíaca , Corazón , Humanos , Radiografía
20.
Clin Anat ; 33(6): 887-898, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32115778

RESUMEN

INTRODUCTION: Intramedullary nailing is the surgical method of choice for the treatment of proximal femur or femoral shaft fractures. Implant manufacturers aim to design implants fitting for the broadest possible population segment. As complete morphological data sets of long bones are not widely available, anatomical collections of historical dry bone specimens may represent abundant additional sources of morphological three-dimensional (3D) data for implant design, provided they are consistent with present populations. This study aims to investigate secular trends and age-related changes of femoral morphology of the Caucasian population over the past 800 years. MATERIALS AND METHODS: Computer graphical measurements of 3D-datasets of right and left femora derived from computed tomography (CT) scans, representative of the present Caucasian population, were compared to computer graphical measurements of 3D-datasets of right and left femora derived from CT scans of specimens from a historical medieval European bone collection. RESULTS: Clinically relevant parameters of historical medieval European femora were found mostly consistent with correlative data of the present Caucasian population. Additionally, for some of the evaluated parameters, particularly anteversion, morphological differences significantly correlated to individual age and sex could be identified, whereas other parameters such as caput-collum-diaphyseal angle or radius of anterior femoral bowing were not correlated to individual age or sex. CONCLUSION: The findings suggest that more recent historical specimen collections may be a convenient and easily accessible source of new 3D morphological data, as well as to complement existing data, to be used by researchers and manufacturers for the development of intramedullary femoral nails.


Asunto(s)
Fémur/anatomía & histología , Fémur/diagnóstico por imagen , Adulto , Factores de Edad , Anciano , Anciano de 80 o más Años , Clavos Ortopédicos , Diseño de Equipo , Femenino , Fijación Intramedular de Fracturas/instrumentación , Humanos , Imagenología Tridimensional , Masculino , Persona de Mediana Edad , Tomografía Computarizada por Rayos X , Población Blanca
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA