Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 22(8)2021 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-33924276

RESUMEN

An increase of oxygen saturation within blood bags and metabolic dysregulation occur during storage of red blood cells (RBCs). It leads to the gradual exhaustion of RBC antioxidant protective system and, consequently, to a deleterious state of oxidative stress that plays a major role in the apparition of the so-called storage lesions. The present study describes the use of a test (called TSOX) based on fluorescence and label-free morphology readouts to simply and quickly evaluate the oxidant and antioxidant properties of various compounds in controlled conditions. Here, TSOX was applied to RBCs treated with four antioxidants (ascorbic acid, uric acid, trolox and resveratrol) and three oxidants (AAPH, diamide and H2O2) at different concentrations. Two complementary readouts were chosen: first, where ROS generation was quantified using DCFH-DA fluorescent probe, and second, based on digital holographic microscopy that measures morphology alterations. All oxidants produced an increase of fluorescence, whereas H2O2 did not visibly impact the RBC morphology. Significant protection was observed in three out of four of the added molecules. Of note, resveratrol induced diamond-shape "Tirocytes". The assay design was selected to be flexible, as well as compatible with high-throughput screening. In future experiments, the TSOX will serve to screen chemical libraries and probe molecules that could be added to the additive solution for RBCs storage.


Asunto(s)
Eritrocitos/metabolismo , Microscopía Fluorescente , Imagen Molecular , Oxidantes/metabolismo , Estrés Oxidativo , Antioxidantes/farmacología , Descubrimiento de Drogas , Eritrocitos/efectos de los fármacos , Ensayos Analíticos de Alto Rendimiento , Humanos , Microscopía Fluorescente/métodos , Imagen Molecular/métodos , Oxidantes/farmacología , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Resveratrol/farmacología , Flujo de Trabajo
2.
Tissue Eng Part A ; 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39041619

RESUMEN

Fracture healing, a critical and complex biological process, often presents challenges in clinical practice with the current standards failing to fully address the medical needs for rapid and effective recovery. In this work, a localized cold therapy is investigated as an alternative approach to expedite bone healing. We hypothesized that optimized cold application can enhance bone healing within a fracture model by inducing hypoxia, leading to accelerated angiogenesis along with improved osteogenesis. A short, localized cold exposure is directly applied to the fracture site over a four-week period in a mouse fracture model, aiming to assess its impact on bone formation through mechanisms of angiogenesis and osteogenesis. Our results revealed a significantly greater volume of new bone tissue and enhanced vascularity at the fracture site in the cold-treated group compared to controls. Calcified tissue histology analysis showed that the accelerated callus maturation and development of the vascular network following cold exposure were associated with an activity increase of alkaline phosphatase (ALP) and transient receptor potential vanilloid 1 (TRPV1). These biological changes were accompanied by a hypoxic environment induced during cold therapy. The study provides compelling evidence supporting the efficacy of intermittent cold therapy in accelerating fracture healing. These promising results highlight the need for further research in larger-scale studies and diverse fracture models, underlining the potential of cold therapy as a novel, non-invasive treatment strategy in orthopedic care.

3.
Nanomaterials (Basel) ; 12(24)2022 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-36558285

RESUMEN

Recently, the abnormal level of zinc emerged as a powerful indicator or risk factor for metabolic, endocrine, neurodegenerative and cardiovascular diseases, including cancer. Electrochemical detection has been explored to quantify zinc in a precise, rapid, and non-expensive way; however, most of the current electrochemical systems lack in specificity. In this work we studied a highly selective and sensitive electrochemical method to detect quickly and reliably free zinc ions (Zn2+). The surface of the working electrode was modified with zincon electropolymerized on carbon nanotube (CNT) to enable the binding of zinc in complex body fluids. After being physicochemically characterized, the performances of the zincon-CNT complex was electrochemically assessed. Square Wave Voltammetry (SWV) was used to determine the calibration curve and the linear range of zinc quantification in artificial saliva and urine. This zincon- CNT system could specifically quantify mobile Zn2+ in salivary and urinary matrices with a sensitivity of ~100 ng·mL-1 and a limit of detection (LOD) of ~20 ng·mL-1. Zincon-modified CNT presented as a desirable candidate for the detection and quantification of free zinc in easily body fluids that potentially can become a diagnostic non-invasive testing platform.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA