Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Nature ; 586(7830): 578-582, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32731258

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in December 20191,2 and is responsible for the coronavirus disease 2019 (COVID-19) pandemic3. Vaccines are an essential countermeasure and are urgently needed to control the pandemic4. Here we show that the adenovirus-vector-based vaccine ChAdOx1 nCoV-19, which encodes the spike protein of SARS-CoV-2, is immunogenic in mice and elicites a robust humoral and cell-mediated response. This response was predominantly mediated by type-1 T helper cells, as demonstrated by the profiling of the IgG subclass and the expression of cytokines. Vaccination with ChAdOx1 nCoV-19 (using either a prime-only or a prime-boost regimen) induced a balanced humoral and cellular immune response of type-1 and type-2 T helper cells in rhesus macaques. We observed a significantly reduced viral load in the bronchoalveolar lavage fluid and lower respiratory tract tissue of vaccinated rhesus macaques that were challenged with SARS-CoV-2 compared with control animals, and no pneumonia was observed in vaccinated SARS-CoV-2-infected animals. However, there was no difference in nasal shedding between vaccinated and control SARS-CoV-2-infected macaques. Notably, we found no evidence of immune-enhanced disease after viral challenge in vaccinated SARS-CoV-2-infected animals. The safety, immunogenicity and efficacy profiles of ChAdOx1 nCoV-19 against symptomatic PCR-positive COVID-19 disease will now be assessed in randomized controlled clinical trials in humans.


Asunto(s)
Betacoronavirus/inmunología , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/prevención & control , Modelos Animales de Enfermedad , Macaca mulatta , Pandemias/prevención & control , Neumonía Viral/prevención & control , Vacunas Virales/inmunología , Adenoviridae/genética , Animales , Líquido del Lavado Bronquioalveolar , COVID-19 , Vacunas contra la COVID-19 , Infecciones por Coronavirus/genética , Infecciones por Coronavirus/virología , Citocinas/inmunología , Femenino , Inmunidad Celular , Inmunidad Humoral , Inmunoglobulina G/inmunología , Pulmón/inmunología , Pulmón/patología , Pulmón/virología , Macaca mulatta/inmunología , Macaca mulatta/virología , Masculino , Ratones , Neumonía Viral/inmunología , Neumonía Viral/virología , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/inmunología , Células TH1/inmunología , Vacunación , Carga Viral , Vacunas Virales/administración & dosificación , Vacunas Virales/genética
3.
NPJ Vaccines ; 9(1): 118, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38926455

RESUMEN

Although licensed vaccines against influenza virus have been successful in reducing pathogen-mediated disease, they have been less effective at preventing viral infection of the airways and current seasonal updates to influenza vaccines do not always successfully accommodate viral drift. Most licensed influenza and recently licensed RSV vaccines are administered via the intramuscular route. Alternative immunisation strategies, such as intranasal vaccinations, and "prime-pull" regimens, may deliver a more sterilising form of protection against respiratory viruses. A bivalent ChAdOx1-based vaccine (ChAdOx1-NP + M1-RSVF) encoding conserved nucleoprotein and matrix 1 proteins from influenza A virus and a modified pre-fusion stabilised RSV A F protein, was designed, developed and tested in preclinical animal models. The aim was to induce broad, cross-protective tissue-resident T cells against heterotypic influenza viruses and neutralising antibodies against RSV in the respiratory mucosa and systemically. When administered via an intramuscular prime-intranasal boost (IM-IN) regimen in mice, superior protection was generated against challenge with either RSV A, Influenza A H3N2 or H1N1. These results support further clinical development of a pan influenza & RSV vaccine administered in a prime-pull regimen.

4.
EBioMedicine ; 77: 103902, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35228013

RESUMEN

BACKGROUND: There is an ongoing global effort to design, manufacture, and clinically assess vaccines against SARS-CoV-2. Over the course of the ongoing pandemic a number of new SARS-CoV-2 virus isolates or variants of concern (VoC) have been identified containing mutations in key proteins. METHODS: In this study we describe the generation and preclinical assessment of a ChAdOx1-vectored vaccine (AZD2816) which expresses the spike protein of the Beta VoC (B.1.351). FINDINGS: We demonstrate that AZD2816 is immunogenic after a single dose. When AZD2816 is used as a booster dose in animals primed with a vaccine encoding the original spike protein (ChAdOx1 nCoV-19/ [AZD1222]), an increase in binding and neutralising antibodies against Beta (B.1.351), Gamma (P.1) and Delta (B.1.617.2) is observed following each additional dose. In addition, a strong and polyfunctional T cell response was measured all booster regimens. INTERPRETATION: Real world data is demonstrating that one or more doses of licensed SARS-CoV-2 vaccines confer reduced protection against hospitalisation and deaths caused by divergent VoC, including Omicron. Our data support the ongoing clinical development and testing of booster vaccines to increase immunity against highly mutated VoC. FUNDING: This research was funded by AstraZeneca with supporting funds from MRC and BBSRC.


Asunto(s)
COVID-19 , SARS-CoV-2 , COVID-19/prevención & control , Vacunas contra la COVID-19 , ChAdOx1 nCoV-19 , Humanos , SARS-CoV-2/genética
5.
Front Immunol ; 12: 763912, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34804053

RESUMEN

There is a critical need to develop superior influenza vaccines that provide broader protection. Influenza vaccines are traditionally tested in naive animals, although humans are exposed to influenza in the first years of their lives, but the impact of prior influenza exposure on vaccine immune responses has not been well studied. Pigs are an important natural host for influenza, are a source of pandemic viruses, and are an excellent model for human influenza. Here, we investigated the immunogenicity of the ChAdOx2 viral vectored vaccine, expressing influenza nucleoprotein, matrix protein 1, and neuraminidase in H1N1pdm09 pre-exposed pigs. We evaluated the importance of the route of administration by comparing intranasal, aerosol, and intramuscular immunizations. Aerosol delivery boosted the local lung T-cell and antibody responses, while intramuscular immunization boosted peripheral blood immunity. These results will inform how best to deliver vaccines in order to harness optimal protective immunity.


Asunto(s)
Anticuerpos Antivirales/sangre , Subtipo H1N1 del Virus de la Influenza A/inmunología , Vacunas contra la Influenza/inmunología , Proteínas de la Matriz Viral/inmunología , Adenoviridae/genética , Aerosoles , Animales , Citocinas/biosíntesis , Vacunas contra la Influenza/administración & dosificación , Neuraminidasa/inmunología , Proteínas de la Nucleocápside/inmunología , Porcinos , Vacunación , Esparcimiento de Virus
6.
Nat Commun ; 12(1): 2893, 2021 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-34001897

RESUMEN

Several vaccines have demonstrated efficacy against SARS-CoV-2 mediated disease, yet there is limited data on the immune response induced by heterologous vaccination regimens using alternate vaccine modalities. Here, we present a detailed description of the immune response, in mice, following vaccination with a self-amplifying RNA (saRNA) vaccine and an adenoviral vectored vaccine (ChAdOx1 nCoV-19/AZD1222) against SARS-CoV-2. We demonstrate that antibody responses are higher in two-dose heterologous vaccination regimens than single-dose regimens. Neutralising titres after heterologous prime-boost were at least comparable or higher than the titres measured after homologous prime boost vaccination with viral vectors. Importantly, the cellular immune response after a heterologous regimen is dominated by cytotoxic T cells and Th1+ CD4 T cells, which is superior to the response induced in homologous vaccination regimens in mice. These results underpin the need for clinical trials to investigate the immunogenicity of heterologous regimens with alternate vaccine technologies.


Asunto(s)
Vacunas contra la COVID-19/administración & dosificación , COVID-19/prevención & control , ARN Viral/administración & dosificación , SARS-CoV-2/inmunología , Vacunación/métodos , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , COVID-19/inmunología , Vacunas contra la COVID-19/genética , Vacunas contra la COVID-19/inmunología , ChAdOx1 nCoV-19 , Inmunización Secundaria , Inmunogenicidad Vacunal , Ratones , ARN Viral/genética , ARN Viral/inmunología , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/inmunología , Linfocitos T Citotóxicos/inmunología , Células TH1/inmunología , Vacunas Sintéticas/administración & dosificación , Vacunas Sintéticas/genética , Vacunas Sintéticas/inmunología
7.
bioRxiv ; 2021 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-33501433

RESUMEN

Vaccine development against the SARS-CoV-2 virus focuses on the principal target of the neutralizing immune response, the spike (S) glycoprotein. Adenovirus-vectored vaccines offer an effective platform for the delivery of viral antigen, but it is important for the generation of neutralizing antibodies that they produce appropriately processed and assembled viral antigen that mimics that observed on the SARS-CoV-2 virus. Here, we describe the structure, conformation and glycosylation of the S protein derived from the adenovirus-vectored ChAdOx1 nCoV-19/AZD1222 vaccine. We demonstrate native-like post-translational processing and assembly, and reveal the expression of S proteins on the surface of cells adopting the trimeric prefusion conformation. The data presented here confirms the use of ChAdOx1 adenovirus vectors as a leading platform technology for SARS-CoV-2 vaccines.

8.
ACS Cent Sci ; 7(4): 594-602, 2021 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-34056089

RESUMEN

Vaccine development against the SARS-CoV-2 virus focuses on the principal target of the neutralizing immune response, the spike (S) glycoprotein. Adenovirus-vectored vaccines offer an effective platform for the delivery of viral antigen, but it is important for the generation of neutralizing antibodies that they produce appropriately processed and assembled viral antigen that mimics that observed on the SARS-CoV-2 virus. Here, we describe the structure, conformation, and glycosylation of the S protein derived from the adenovirus-vectored ChAdOx1 nCoV-19/AZD1222 vaccine. We demonstrate native-like post-translational processing and assembly, and reveal the expression of S proteins on the surface of cells adopting the trimeric prefusion conformation. The data presented here confirm the use of ChAdOx1 adenovirus vectors as a leading platform technology for SARS-CoV-2 vaccines.

9.
iScience ; 23(11): 101669, 2020 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-33134899

RESUMEN

Rift Valley fever (RVF) is a viral hemorrhagic disease first discovered in Kenya in 1930. Numerous animal studies have demonstrated that protective immunity is acquired following RVF virus (RVFV) infection and that this correlates with acquisition of virus-neutralizing antibodies (nAbs) that target the viral envelope glycoproteins. However, naturally acquired immunity to RVF in humans is poorly described. Here, we characterized the immune response to the viral envelope glycoproteins, Gn and Gc, in RVFV-exposed Kenyan adults. Long-lived IgG (dominated by IgG1 subclass) and T cell responses were detected against both Gn and Gc. However, antigen-specific antibody depletion experiments showed that Gn-specific antibodies dominate the RVFV nAb response. IgG avidity against Gn, but not Gc, correlated with nAb titers. These data are consistent with the greater level of immune accessibility of Gn on the viral envelope surface and confirm the importance of Gn as an integral component for RVF vaccine development.

10.
bioRxiv ; 2020 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-32511340

RESUMEN

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) emerged in December 20191,2 and is responsible for the COVID-19 pandemic3. Vaccines are an essential countermeasure urgently needed to control the pandemic4. Here, we show that the adenovirus-vectored vaccine ChAdOx1 nCoV-19, encoding the spike protein of SARS-CoV-2, is immunogenic in mice, eliciting a robust humoral and cell-mediated response. This response was not Th2 dominated, as demonstrated by IgG subclass and cytokine expression profiling. A single vaccination with ChAdOx1 nCoV-19 induced a humoral and cellular immune response in rhesus macaques. We observed a significantly reduced viral load in bronchoalveolar lavage fluid and respiratory tract tissue of vaccinated animals challenged with SARS-CoV-2 compared with control animals, and no pneumonia was observed in vaccinated rhesus macaques. Importantly, no evidence of immune-enhanced disease following viral challenge in vaccinated animals was observed. ChAdOx1 nCoV-19 is currently under investigation in a phase I clinical trial. Safety, immunogenicity and efficacy against symptomatic PCR-positive COVID-19 disease will now be assessed in randomised controlled human clinical trials.

11.
Vaccine ; 37(3): 502-509, 2019 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-30502067

RESUMEN

INTRODUCTION: There is a need for an efficacious vaccine reducing infections due to Staphylococcus aureus, a common cause of community and hospital infection. Infecting organisms originate from S. aureus populations colonising the nares and bowel. Antimicrobials are widely used to transiently reduce S. aureus colonisation prior to surgery, a practice which is selecting for resistant S. aureus isolates. S. aureus secretes multiple proteins, including the protease inhibitors extracellular adhesion protein homologue 1 and 2 (EapH1 and EapH2). METHODS: Mice were vaccinated intramuscularly or intranasally with Adenovirus serotype 5 and Modified Vaccinia Ankara viral vectors expressing EapH1 and EapH2 proteins, or with control viruses. Using murine S. aureus colonisation models, we monitored S. aureus colonisation by sequential stool sampling. Monitoring of S. aureus invasive disease after intravenous challenge was performed using bacterial load and abscess numbers in the kidney. RESULTS: Intramuscular vaccination with Adenovirus serotype 5 and Modified Vaccinia Ankara viral vectors expressing EapH1 and EapH2 proteins significantly reduces bacterial recovery in the murine renal abscess model of infection, but the magnitude of the effect is small. A single intranasal vaccination with an adenoviral vaccine expressing these proteins reduced S. aureus gastrointestinal (GI) tract colonisation. CONCLUSION: Vaccination against EapH1 / EapH2 proteins may offer an antibiotic independent way to reduce S. aureus colonisation, as well as contributing to protection against S. aureus invasive disease.


Asunto(s)
Proteínas Bacterianas/inmunología , Portador Sano/prevención & control , Infecciones Estafilocócicas/prevención & control , Vacunas Estafilocócicas/inmunología , Staphylococcus aureus/inmunología , Adenoviridae/genética , Administración Intranasal , Animales , Carga Bacteriana , Proteínas Bacterianas/genética , Portador Sano/microbiología , Femenino , Ratones
12.
Cell Rep ; 25(13): 3750-3758.e4, 2018 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-30590046

RESUMEN

The Gn subcomponent of the Gn-Gc assembly that envelopes the human and animal pathogen, Rift Valley fever virus (RVFV), is a primary target of the neutralizing antibody response. To better understand the molecular basis for immune recognition, we raised a class of neutralizing monoclonal antibodies (nAbs) against RVFV Gn, which exhibited protective efficacy in a mouse infection model. Structural characterization revealed that these nAbs were directed to the membrane-distal domain of RVFV Gn and likely prevented virus entry into a host cell by blocking fusogenic rearrangements of the Gn-Gc lattice. Genome sequence analysis confirmed that this region of the RVFV Gn-Gc assembly was under selective pressure and constituted a site of vulnerability on the virion surface. These data provide a blueprint for the rational design of immunotherapeutics and vaccines capable of preventing RVFV infection and a model for understanding Ab-mediated neutralization of bunyaviruses more generally.


Asunto(s)
Anticuerpos Monoclonales/farmacología , Anticuerpos Antivirales/farmacología , Virus de la Fiebre del Valle del Rift/inmunología , Secuencia de Aminoácidos , Animales , Anticuerpos Neutralizantes/farmacología , Chlorocebus aethiops , Femenino , Glicoproteínas/química , Glicoproteínas/metabolismo , Células HEK293 , Humanos , Inmunización , Inmunoglobulina G/metabolismo , Ratones Endogámicos BALB C , Modelos Biológicos , Pruebas de Neutralización , Dominios Proteicos , Conejos , Proteínas Recombinantes/farmacología , Virus de la Fiebre del Valle del Rift/efectos de los fármacos , Células Vero , Proteínas del Envoltorio Viral/química , Proteínas del Envoltorio Viral/metabolismo
13.
PLoS One ; 11(5): e0154705, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27228181

RESUMEN

PURPOSE: To develop and validate a sensitive and specific method of abscess enumeration and quantification in a preclinical model of Staphylococcus aureus infection. METHODS: S. aureus infected murine kidneys were fixed in paraformaldehyde, impregnated with gadolinium, and embedded in agar blocks, which were subjected to 3D magnetic resonance microscopy on a 9.4T MRI scanner. Image analysis techniques were developed, which could identify and quantify abscesses. The result of this imaging was compared with histological examination. The impact of a S. aureus Sortase A vaccination regime was assessed using the technique. RESULTS: Up to 32 murine kidneys could be imaged in a single MRI run, yielding images with voxels of about 25 µm3. S. aureus abscesses could be readily identified in blinded analyses of the kidneys after 3 days of infection, with low inter-observer variability. Comparison with histological sections shows a striking correlation between the two techniques: all presumptive abscesses identified by MRI were confirmed histologically, and histology identified no abscesses not evident on MRI. In view of this, simulations were performed assuming that both MRI reconstruction, and histology examining all sections of the tissue, were fully sensitive and specific at abscess detection. This simulation showed that MRI provided more sensitive and precise estimates of abscess numbers and volume than histology, unless at least 5 histological sections are taken through the long axis of the kidney. We used the MRI technique described to investigate the impact of a S. aureus Sortase A vaccine. CONCLUSION: Post mortem MRI scanning of large batches of fixed organs has application in the preclinical assessment of S. aureus vaccines.


Asunto(s)
Absceso , Enfermedades Renales , Riñón , Imagen por Resonancia Magnética , Infecciones Estafilocócicas , Vacunas Estafilocócicas/inmunología , Staphylococcus aureus/inmunología , Absceso/diagnóstico por imagen , Absceso/inmunología , Absceso/microbiología , Administración Intravenosa , Animales , Femenino , Riñón/diagnóstico por imagen , Riñón/inmunología , Riñón/microbiología , Enfermedades Renales/diagnóstico por imagen , Enfermedades Renales/inmunología , Enfermedades Renales/microbiología , Ratones , Ratones Endogámicos BALB C , Infecciones Estafilocócicas/diagnóstico , Infecciones Estafilocócicas/inmunología , Vacunas Estafilocócicas/farmacocinética
14.
MCN Am J Matern Child Nurs ; 29(4): 230-5; quiz 236-7, 2004.
Artículo en Inglés | MEDLINE | ID: mdl-15238748

RESUMEN

This group of Vermont community health nurses from different agencies collaborated to develop a competence validation framework for maternal and child health nursing in the practice areas of perinatal client teaching, breastfeeding, and prenatal, postpartum, and newborn nursing care. The framework is based on the work of Benner, using the "competent" level of nursing practice, and delineates three parameters of competence: technical skills, interpersonal skills, and critical thinking skills. Learning resource materials, including newborn and maternal assessment guidelines, were developed for each competence area. The four competence validation tools were successfully tested for validity and reliability as well as efficiency and effectiveness by nurses in all 13 home health agencies and 12 public health district offices in Vermont. This system of competence validation is now used to support a consistently high quality of care for all recipients of Vermont's Healthy Babies, Kids, and Families services, and is available for use in other care settings.


Asunto(s)
Competencia Clínica/normas , Enfermería en Salud Comunitaria , Servicios de Salud Comunitaria , Modelos de Enfermería , Adulto , Enfermería en Salud Comunitaria/métodos , Servicios de Salud Comunitaria/métodos , Servicios de Salud Comunitaria/organización & administración , Femenino , Humanos , Recién Nacido , Enfermería Maternoinfantil/métodos , Enfermería Maternoinfantil/normas , Proceso de Enfermería/organización & administración , Evaluación de Procesos y Resultados en Atención de Salud/normas , Embarazo , Evaluación de Programas y Proyectos de Salud/métodos , Garantía de la Calidad de Atención de Salud , Vermont
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA