Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Bioelectromagnetics ; 2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-39315584

RESUMEN

In our previous studies, we demonstrated that 20 h pre-exposure of SH-SY5Y human neuroblastoma cells to 1950 MHz, UMTS signal, at specific absorption rate of 0.3 and 1.25 W/kg, was able to reduce the oxidative DNA damage induced by a subsequent treatment with menadione in the alkaline comet assay while not inducing genotoxicity per se. In this study, the same cell model was used to test the same experimental conditions by setting different radiofrequency exposure duration and timing along the 72 h culture period. The results obtained in at least three independent experiments indicate that shorter exposure durations than 20 h, that is, 10, 3, and 1 h per day for 3 days, were still capable to exert the protective effect while not inducing DNA damage per se. In addition, to provide some hints into the mechanisms underpinning the observed phenomenon, thioredoxin-1, heat shock transcription factor 1, heat shock protein 70, and poly [ADP-ribose] polymerase 1, as key molecular players involved in the cellular stress response, were tested following 3 h of radiofrequency exposure in western blot and qRT-PCR experiments. No effect resulted from molecular analysis under the experimental conditions adopted.

2.
Bioelectromagnetics ; 45(3): 97-109, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37493434

RESUMEN

This study aims to investigate the cellular effects of radiofrequency exposure, 1950 MHz, long-term evolution (LTE) signal, administered alone and in combination with mitomycin-C (MMC), a well-known cytotoxic agent. Chinese hamster lung fibroblast (V79) cells were exposed/sham exposed in a waveguide-based system under strictly controlled conditions of both electromagnetic and environmental parameters, at specific absorption rate (SAR) of 0.3 and 1.25 W/kg. Chromosomal damage (micronuclei formation), oxidative stress (reactive oxygen species [ROS] formation), and cell cycle progression were analyzed after exposure and coexposure. No differences between exposed samples and sham-controls were detected following radiofrequency exposure alone, for all the experimental conditions tested and biological endpoints investigated. When radiofrequency exposure was followed by MMC treatment, 3 h pre-exposure did not modify MMC-induced micronuclei. Pre-exposure of 20 h at 0.3 W/kg did not modify the number of micronuclei induced by MMC, while 1.25 W/kg resulted in a significant reduction of MMC-induced damage. Absence of effects was also detected when CW was used, at both SAR levels. MMC-induced ROS formation resulted significantly decreased at both SAR levels investigated, while cell proliferation and cell cycle progression were not affected by coexposures. The results here reported provide no evidence of direct effects of 1950 MHz, LTE signal. Moreover, they further support our previous findings on the capability of radiofrequency pre-exposure to induce protection from a subsequent toxic treatment, and the key role of the modulated signals and the experimental conditions adopted in eliciting the effect.


Asunto(s)
Pulmón , Mitomicina , Cricetinae , Animales , Cricetulus , Mitomicina/toxicidad , Especies Reactivas de Oxígeno , Fibroblastos
3.
Int J Mol Sci ; 24(2)2023 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-36674610

RESUMEN

Fabry disease is a lysosomal storage disease caused by mutations in the GLA gene that encodes alpha-galactosidase (AGAL). The disease causes abnormal globotriaosylceramide (Gb3) storage in the lysosomes. Variants responsible for the genotypic spectrum of Fabry disease include mutations that abolish enzymatic activity and those that cause protein instability. The latter can be successfully treated with small molecules that either bind and stabilize AGAL or indirectly improve its cellular activity. This paper describes the first attempt to reposition curcumin, a nutraceutical, to treat Fabry disease. We tested the efficacy of curcumin in a cell model and found an improvement in AGAL activity for 80% of the tested mutant genotypes (four out of five tested). The fold-increase was dependent on the mutant and ranged from 1.4 to 2.2. We produced evidence that supports a co-chaperone role for curcumin when administered with AGAL pharmacological chaperones (1-deoxygalactonojirimycin and galactose). The combined treatment with curcumin and either pharmacological chaperone was beneficial for four out of five tested mutants and showed fold-increases ranging from 1.1 to 2.3 for DGJ and from 1.1 to 2.8 for galactose. Finally, we tested a long-term treatment on one mutant (L300F) and detected an improvement in Gb3 clearance and lysosomal markers (LAMP-1 and GAA). Altogether, our findings confirmed the necessity of personalized therapies for Fabry patients and paved the way to further studies and trials of treatments for Fabry disease.


Asunto(s)
Curcumina , Enfermedad de Fabry , Humanos , Enfermedad de Fabry/tratamiento farmacológico , Enfermedad de Fabry/genética , alfa-Galactosidasa/metabolismo , Curcumina/farmacología , Curcumina/uso terapéutico , Curcumina/metabolismo , Galactosa/metabolismo , Mutación , Lisosomas/metabolismo , 1-Desoxinojirimicina/farmacología , 1-Desoxinojirimicina/uso terapéutico
4.
Int J Mol Sci ; 23(9)2022 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-35563496

RESUMEN

Fabry disease is caused by a deficiency of lysosomal alpha galactosidase and has a very large genotypic and phenotypic spectrum. Some patients who carry hypomorphic mutations can benefit from oral therapy with a pharmacological chaperone. The drug requires a very precise regimen because it is a reversible inhibitor of alpha-galactosidase. We looked for molecules that can potentiate this pharmacological chaperone, among drugs that have already been approved for other diseases. We tested candidate molecules in fibroblasts derived from a patient carrying a large deletion in the gene GLA, which were stably transfected with a plasmid expressing hypomorphic mutants. In our cell model, three drugs were able to potentiate the action of the pharmacological chaperone. We focused our attention on one of them, acetylsalicylic acid. We expect that acetylsalicylic acid can be used in synergy with the Fabry disease pharmacological chaperone and prolong its stabilizing effect on alpha-galactosidase.


Asunto(s)
Enfermedad de Fabry , alfa-Galactosidasa , 1-Desoxinojirimicina/farmacología , 1-Desoxinojirimicina/uso terapéutico , Aspirina/farmacología , Aspirina/uso terapéutico , Reposicionamiento de Medicamentos , Enfermedad de Fabry/tratamiento farmacológico , Enfermedad de Fabry/genética , Humanos , Lisosomas , Chaperonas Moleculares/genética , Mutación , alfa-Galactosidasa/genética , alfa-Galactosidasa/uso terapéutico
5.
Int J Mol Sci ; 23(15)2022 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-35955863

RESUMEN

Advances in research have boosted therapy development for congenital disorders of glycosylation (CDG), a group of rare genetic disorders affecting protein and lipid glycosylation and glycosylphosphatidylinositol anchor biosynthesis. The (re)use of known drugs for novel medical purposes, known as drug repositioning, is growing for both common and rare disorders. The latest innovation concerns the rational search for repositioned molecules which also benefits from artificial intelligence (AI). Compared to traditional methods, drug repositioning accelerates the overall drug discovery process while saving costs. This is particularly valuable for rare diseases. AI tools have proven their worth in diagnosis, in disease classification and characterization, and ultimately in therapy discovery in rare diseases. The availability of biomarkers and reliable disease models is critical for research and development of new drugs, especially for rare and heterogeneous diseases such as CDG. This work reviews the literature related to repositioned drugs for CDG, discovered by serendipity or through a systemic approach. Recent advances in biomarkers and disease models are also outlined as well as stakeholders' views on AI for therapy discovery in CDG.


Asunto(s)
Trastornos Congénitos de Glicosilación , Inteligencia Artificial , Biomarcadores , Trastornos Congénitos de Glicosilación/genética , Reposicionamiento de Medicamentos , Humanos , Enfermedades Raras
6.
BMC Bioinformatics ; 21(Suppl 10): 348, 2020 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-32838733

RESUMEN

BACKGROUND: Bioinformatics has pervaded all fields of biology and has become an indispensable tool for almost all research projects. Although teaching bioinformatics has been incorporated in all traditional life science curricula, practical hands-on experiences in tight combination with wet-lab experiments are needed to motivate students. RESULTS: We present a tutorial that starts from a practical problem: finding novel enzymes from marine environments. First, we introduce the idea of metagenomics, a recent approach that extends biotechnology to non-culturable microbes. We presuppose that a probe for the screening of metagenomic cosmid library is needed. The students start from the chemical structure of the substrate that should be acted on by the novel enzyme and end with the sequence of the probe. To attain their goal, they discover databases such as BRENDA and programs such as BLAST and Clustal Omega. Students' answers to a satisfaction questionnaire show that a multistep tutorial integrated into a research wet-lab project is preferable to conventional lectures illustrating bioinformatics tools. CONCLUSION: Experimental biologists can better operate basic bioinformatics if a problem-solving approach is chosen.


Asunto(s)
Biotecnología/educación , Biología Computacional/educación , Biología Marina/educación , Metagenómica , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Secuencia de Bases , Bases de Datos Factuales , Bases de Datos de Proteínas , Objetivos , Humanos , Aprendizaje , Interfaz Usuario-Computador
7.
Int J Mol Sci ; 21(2)2020 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-31940970

RESUMEN

The term "pharmacological chaperone" was introduced 20 years ago. Since then the approach with this type of drug has been proposed for several diseases, lysosomal storage disorders representing the most popular targets. The hallmark of a pharmacological chaperone is its ability to bind a protein specifically and stabilize it. This property can be beneficial for curing diseases that are associated with protein mutants that are intrinsically active but unstable. The total activity of the affected proteins in the cell is lower than normal because they are cleared by the quality control system. Although most pharmacological chaperones are reversible competitive inhibitors or antagonists of their target proteins, the inhibitory activity is neither required nor desirable. This issue is well documented by specific examples among which those concerning Fabry disease. Direct specific binding is not the only mechanism by which small molecules can rescue mutant proteins in the cell. These drugs and the properly defined pharmacological chaperones can work together with different and possibly synergistic modes of action to revert a disease phenotype caused by an unstable protein.


Asunto(s)
Enfermedad de Fabry , Chaperonas Moleculares/uso terapéutico , Mutación Missense , alfa-Galactosidasa , Enfermedad de Fabry/tratamiento farmacológico , Enfermedad de Fabry/enzimología , Enfermedad de Fabry/genética , Humanos , alfa-Galactosidasa/genética , alfa-Galactosidasa/metabolismo
8.
Molecules ; 25(9)2020 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-32397334

RESUMEN

The 3,3',5,5'-tetrachloro-2-iodo-4,4'-bipyridine structure is proposed as a novel chemical scaffold for the design of new transthyretin (TTR) fibrillogenesis inhibitors. In the frame of a proof-of-principle exploration, four chiral 3,3',5,5'-tetrachloro-2-iodo-2'-substituted-4,4'- bipyridines were rationally designed and prepared from a simple trihalopyridine in three steps, including a Cu-catalysed Finkelstein reaction to introduce iodine atoms on the heteroaromatic scaffold, and a Pd-catalysed coupling reaction to install the 2'-substituent. The corresponding racemates, along with other five chiral 4,4'-bipyridines containing halogens as substituents, were enantioseparated by high-performance liquid chromatography in order to obtain pure enantiomer pairs. All stereoisomers were tested against the amyloid fibril formation (FF) of wild type (WT)-TTR and two mutant variants, V30M and Y78F, in acid mediated aggregation experiments. Among the 4,4'-bipyridine derivatives, interesting inhibition activity was obtained for both enantiomers of the 3,3',5,5'-tetrachloro-2'-(4-hydroxyphenyl)-2-iodo-4,4'-bipyridine. In silico docking studies were carried out in order to explore possible binding modes of the 4,4'-bipyridine derivatives into the TTR. The gained results point out the importance of the right combination of H-bond sites and the presence of iodine as halogen-bond donor. Both experimental and theoretical evidences pave the way for the utilization of the iodinated 4,4'-bipyridine core as template to design new promising inhibitors of TTR amyloidogenesis.


Asunto(s)
Amiloide/química , Hidrocarburos Yodados , Simulación del Acoplamiento Molecular , Prealbúmina/química , Agregado de Proteínas , Piridinas , Sustitución de Aminoácidos , Amiloide/genética , Humanos , Hidrocarburos Yodados/síntesis química , Hidrocarburos Yodados/química , Mutación Missense , Prealbúmina/genética , Piridinas/síntesis química , Piridinas/química
9.
Environ Sci Technol ; 53(7): 3938-3947, 2019 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-30821457

RESUMEN

Indium phosphide quantum dots (QDs) have emerged as a new class of fluorescent nanocrystals for manifold applications, from biophotonics to nanomedicine. Recent efforts in improving the photoluminescence quantum yield, the chemical stability and the biocompatibility turned them into a valid alternative to well established Cd-based nanocrystals. In vitro studies provided first evidence for the lower toxicity of In-based QDs. Nonetheless, an urgent need exists for further assessment of the potential toxic effects in vivo. Here we use the freshwater polyp Hydra vulgaris, a well-established model previously adopted to assess the toxicity of CdSe/CdS nanorods and CdTe QDs. A systematic multilevel analysis was carried out in vivo, ex vivo, and in vitro comparing toxicity end points of CdSe- and InP-based QDs, passivated by ZnSe/ZnS shells and surface functionalized with penicillamine. Final results demonstrate that both the chemical composition of the QD core (InP vs CdSe) and the shell play a crucial role for final outcomes. Remarkably, in absence of in vivo alterations, cell and molecular alterations revealed hidden toxicity aspects, highlighting the biosafety of InP-based nanocrystals and outlining the importance of integrated multilevel analyses for proper QDs risk assessment.


Asunto(s)
Compuestos de Cadmio , Puntos Cuánticos , Telurio , Cadmio , Contención de Riesgos Biológicos , Indio , Análisis Multinivel , Compuestos de Zinc
10.
Int J Mol Sci ; 20(17)2019 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-31454904

RESUMEN

A large number of mutations causing PMM2-CDG, which is the most frequent disorder of glycosylation, destabilize phosphomannomutase2. We looked for a pharmacological chaperone to cure PMM2-CDG, starting from the structure of a natural ligand of phosphomannomutase2, α-glucose-1,6-bisphosphate. The compound, ß-glucose-1,6-bisphosphate, was synthesized and characterized via 31P-NMR. ß-glucose-1,6-bisphosphate binds its target enzyme in silico. The binding induces a large conformational change that was predicted by the program PELE and validated in vitro by limited proteolysis. The ability of the compound to stabilize wild type phosphomannomutase2, as well as frequently encountered pathogenic mutants, was measured using thermal shift assay. ß-glucose-1,6-bisphosphate is relatively resistant to the enzyme that specifically hydrolyses natural esose-bisphosphates.


Asunto(s)
Trastornos Congénitos de Glicosilación/genética , Trastornos Congénitos de Glicosilación/metabolismo , Glucosa-6-Fosfato/análogos & derivados , Mutación , Fosfotransferasas (Fosfomutasas)/deficiencia , Trastornos Congénitos de Glicosilación/tratamiento farmacológico , Glucosa-6-Fosfato/química , Glucosa-6-Fosfato/metabolismo , Glucosa-6-Fosfato/farmacología , Humanos , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Conformación Molecular , Fosfotransferasas (Fosfomutasas)/genética , Unión Proteica
11.
Artículo en Inglés | MEDLINE | ID: mdl-36673723

RESUMEN

At least 50% of chronic disease patients don't follow their care plans, leading to lower health outcomes and higher medical costs. Providing Patient Education Materials (PEMs) to individuals living with a disease can help to overcome these problems. PEMs are especially beneficial for people suffering from multisystemic and underrecognized diseases, such as rare diseases. Congenital disorders of glycosylation (CDG) are ultra-rare diseases, where a need was identified for PEMs in plain language that can clearly explain complex information. Community involvement in the design of PEMs is extremely important for diseases whose needs are underserved, such as rare diseases; however, attempts to involve lay and professional stakeholders are lacking. This paper presents a community-based participatory framework to co-create PEMs for CDG, that is transferable to other diseases. A literature review and questionnaire were performed, and only four articles describing the development of PEMS for rare diseases have been found, which demonstrates a lack of standardized approaches. The framework and PEMs were co-developed with CDG families and will be crucial in increasing health literacy and empowering families. We will close a gap in the creation of PEMs for CDG by delivering these resources in lay language in several languages.


Asunto(s)
Trastornos Congénitos de Glicosilación , Alfabetización en Salud , Humanos , Enfermedades Raras/terapia , Educación del Paciente como Asunto , Participación de la Comunidad
12.
Elife ; 112022 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-36214454

RESUMEN

The most common cause of human congenital disorders of glycosylation (CDG) are mutations in the phosphomannomutase gene PMM2, which affect protein N-linked glycosylation. The yeast gene SEC53 encodes a homolog of human PMM2. We evolved 384 populations of yeast harboring one of two human-disease-associated alleles, sec53-V238M and sec53-F126L, or wild-type SEC53. We find that after 1000 generations, most populations compensate for the slow-growth phenotype associated with the sec53 human-disease-associated alleles. Through whole-genome sequencing we identify compensatory mutations, including known SEC53 genetic interactors. We observe an enrichment of compensatory mutations in other genes whose human homologs are associated with Type 1 CDG, including PGM1, which encodes the minor isoform of phosphoglucomutase in yeast. By genetic reconstruction, we show that evolved pgm1 mutations are dominant and allele-specific genetic interactors that restore both protein glycosylation and growth of yeast harboring the sec53-V238M allele. Finally, we characterize the enzymatic activity of purified Pgm1 mutant proteins. We find that reduction, but not elimination, of Pgm1 activity best compensates for the deleterious phenotypes associated with the sec53-V238M allele. Broadly, our results demonstrate the power of experimental evolution as a tool for identifying genes and pathways that compensate for human-disease-associated alleles.


Asunto(s)
Trastornos Congénitos de Glicosilación , Proteínas de Saccharomyces cerevisiae , Humanos , Saccharomyces cerevisiae/genética , Trastornos Congénitos de Glicosilación/genética , Trastornos Congénitos de Glicosilación/metabolismo , Fosfoglucomutasa/genética , Proteínas Mutantes , Proteínas de Saccharomyces cerevisiae/genética
13.
Front Genet ; 10: 51, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30881374

RESUMEN

Cancer is a multistep disease driven by the activation of specific oncogenic pathways concomitantly with the loss of function of tumor suppressor genes that act as sentinels to control physiological growth. The conservation of most of these signaling pathways in Drosophila, and the ability to easily manipulate them genetically, has made the fruit fly a useful model organism to study cancer biology. In this review we outline the basic mechanisms and signaling pathways conserved between humans and flies responsible of inducing uncontrolled growth and cancer development. Second, we describe classic and novel Drosophila models used to study different cancers, with the objective to discuss their strengths and limitations on their use to identify signals driving growth cell autonomously and within organs, drug discovery and for therapeutic approaches.

14.
Nanotoxicology ; 11(2): 289-303, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28248594

RESUMEN

Water ecosystems represent main targets of unintentional contamination of nanomaterials, due to industrial waste or other anthropogenic activities. Nanoparticle insult to living organisms may occur in a sequential way, first by chemical interactions of the material with the target membrane, then by progressive internalisation and interaction with cellular structures and organelles. These events trigger a signal transduction, through which cells modulate molecular pathway in order to respond and survive to the external elicitation. Therefore, the analysis of the global changes of the molecular machinery, possibly induced in an organism upon exposure to a given nanomaterial, may provide unique clues for proper and exhaustive risk assessment. Here, we tested the impact of core/shell CdSe/ZnS QDs coated by a positively charged polymer on two aquatic species, the polyp Hydra vulgaris and the coral S. pistillata, representative of freshwater and sea habitats, respectively. By using reliable approaches based on animal behaviour and physiology together with a whole transcriptomic profiling, we determined several toxicity endpoints. Despite the difference in the efficiency of uptake, both species were severely affected by QD treatment, resulting in dramatic morphological damages and tissue bleaching. Global transcriptional changes were also detected in both organisms, but presenting different temporal dynamics, suggesting both common and divergent functional responses in the two sentinel organisms. Due to the striking conservation of structure and genomic organisation among animals throughout evolution, our expression profiling offers new clues to identify novel molecular markers and pathways for comparative transcriptomics of nanotoxicity.


Asunto(s)
Antozoos/efectos de los fármacos , Compuestos de Cadmio/toxicidad , Agua Dulce/química , Hydra/efectos de los fármacos , Puntos Cuánticos/toxicidad , Compuestos de Selenio/toxicidad , Compuestos de Zinc/toxicidad , Animales , Antozoos/genética , Antozoos/metabolismo , Compuestos de Cadmio/química , Coloides , Endocitosis/efectos de los fármacos , Perfilación de la Expresión Génica , Hydra/genética , Hydra/metabolismo , Puntos Cuánticos/química , Compuestos de Selenio/química , Análisis de Secuencia de ARN , Transcriptoma/efectos de los fármacos , Compuestos de Zinc/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA