Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Methods ; 200: 15-22, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-33189829

RESUMEN

Asparagines in proteins deamidate spontaneously, which changes the chemical structure of a protein and often affects its function. Current prediction algorithms for asparagine deamidation require a structure as an input or are too slow to be applied at a proteomic scale. We present NGOME-Lite, a new version of our sequence-based predictor for spontaneous asparagine deamidation that is faster by over two orders of magnitude at a similar degree of accuracy. The algorithm takes into account intrinsic sequence propensities and slowing down of deamidation by local structure. NGOME-Lite can run in a proteomic analysis mode that provides the half-time of the intact form of each protein, predicted by taking into account sequence propensities and structural protection or sequence propensities only, and a structure protection factor. The detailed analysis mode also provides graphical output for all Asn residues in the query sequence. We applied NGOME-Lite to over 257,000 sequences in 38 proteomes and found that different taxa differ in their predicted deamidation dynamics. Spontaneous protein deamidation is faster in Eukarya than in Bacteria because of a higher degree of structural protection in the latter. Predicted protein deamidation half-lifes correlate with protein turnover in human, mouse, rat, C. elegans and budding yeast but not in two plants and two bacteria. NGOME-Lite is implemented in a docker container available at https://ngome.proteinphysiologylab.org.


Asunto(s)
Proteoma , Proteómica , Amidas/química , Animales , Asparagina/química , Asparagina/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Ratones , Proteoma/genética , Ratas
2.
J Biol Chem ; 297(4): 101175, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34499924

RESUMEN

The spike protein is the main protein component of the SARS-CoV-2 virion surface. The spike receptor-binding motif mediates recognition of the human angiotensin-converting enzyme 2 receptor, a critical step in infection, and is the preferential target for spike-neutralizing antibodies. Posttranslational modifications of the spike receptor-binding motif have been shown to modulate viral infectivity and host immune response, but these modifications are still being explored. Here we studied asparagine deamidation of the spike protein, a spontaneous event that leads to the appearance of aspartic and isoaspartic residues, which affect both the protein backbone and its charge. We used computational prediction and biochemical experiments to identify five deamidation hotspots in the SARS-CoV-2 spike protein. Asparagine residues 481 and 501 in the receptor-binding motif deamidate with a half-life of 16.5 and 123 days at 37 °C, respectively. Deamidation is significantly slowed at 4 °C, indicating a strong dependence of spike protein molecular aging on environmental conditions. Deamidation of the spike receptor-binding motif decreases the equilibrium constant for binding to the human angiotensin-converting enzyme 2 receptor more than 3.5-fold, yet its high conservation pattern suggests some positive effect on viral fitness. We propose a model for deamidation of the full SARS-CoV-2 virion illustrating how deamidation of the spike receptor-binding motif could lead to the accumulation on the virion surface of a nonnegligible chemically diverse spike population in a timescale of days. Our findings provide a potential mechanism for molecular aging of the spike protein with significant consequences for understanding virus infectivity and vaccine development.


Asunto(s)
SARS-CoV-2/metabolismo , Glicoproteína de la Espiga del Coronavirus/metabolismo , Secuencias de Aminoácidos , Enzima Convertidora de Angiotensina 2/química , Enzima Convertidora de Angiotensina 2/genética , Enzima Convertidora de Angiotensina 2/metabolismo , COVID-19/patología , COVID-19/virología , Humanos , Concentración de Iones de Hidrógeno , Interferometría , Cinética , Unión Proteica , Dominios Proteicos , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , SARS-CoV-2/aislamiento & purificación , Alineación de Secuencia , Glicoproteína de la Espiga del Coronavirus/química
3.
Mol Biol Evol ; 36(7): 1521-1532, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-30982925

RESUMEN

Redox regulation in biology is largely operated by cysteine chemistry in response to a variety of cell environmental and intracellular stimuli. The high chemical reactivity of cysteines determines their conservation in functional roles, but their presence can also result in harmful oxidation limiting their general use by proteins. Papillomaviruses constitute a unique system for studying protein sequence evolution since there are hundreds of anciently evolved stable genomes. E7, the viral transforming factor, is a dimeric, cysteine-rich oncoprotein that shows both conserved structural and variable regulatory cysteines constituting an excellent model for uncovering the mechanism that drives the acquisition of redox-sensitive groups. By analyzing over 300 E7 sequences, we found that although noncanonical cysteines show no obvious sequence conservation pattern, they are nonrandomly distributed based on topological constrains. Regulatory residues are strictly excluded from six positions stabilizing the hydrophobic core while they are enriched in key positions located at the dimerization interface or around the Zn+2 ion. Oxidation of regulatory cysteines is linked to dimer dissociation, acting as a reversible redox-sensing mechanism that triggers a conformational switch. Based on comparative sequence analysis, molecular dynamics simulations and biophysical analysis, we propose a model in which the occurrence of cysteine-rich positions is dictated by topological constrains, providing an explanation to why a degenerate pattern of cysteines can be achieved in a family of homologs. Thus, topological principles should enable the possibility to identify hidden regulatory cysteines that are not accurately detected using sequence based methodology.


Asunto(s)
Cisteína , Evolución Molecular , Proteínas E7 de Papillomavirus/genética , Secuencia de Aminoácidos , Dimerización
4.
Biochemistry ; 58(26): 2883-2892, 2019 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-31243994

RESUMEN

Interferon response suppression by the respiratory syncytial virus relies on two unique nonstructural proteins, NS1 and NS2, that interact with cellular partners through high-order complexes. We hypothesized that two conserved proline residues, P81 and P67, participate in the conformational change leading to oligomerization. We found that the molecular dynamics of NS1 show a highly mobile C-terminal helix, which becomes rigid upon in silico replacement of P81. A soluble oligomerization pathway into regular spherical structures at low ionic strengths competes with an aggregation pathway at high ionic strengths with an increase in temperature. P81A requires higher temperatures to oligomerize and has a small positive effect on aggregation, while P67A is largely prone to aggregation. Chemical denaturation shows a first transition, involving a high fluorescence and ellipticity change corresponding to both a conformational change and substantial effects on the environment of its single tryptophan, that is strongly destabilized by P67A but stabilized by P81A. The subsequent global cooperative unfolding corresponding to the main ß-sheet core is not affected by the proline mutations. Thus, a clear link exists between the effect of P81 and P67 on the stability of the first transition and oligomerization/aggregation. Interestingly, both P67 and P81 are located far away in space and sequence from the C-terminal helix, indicating a marked global structural dynamics. This provides a mechanism for modulating the oligomerization of NS1 by unfolding of a weak helix that exposes hydrophobic surfaces, linked to the participation of NS1 in multiprotein complexes.


Asunto(s)
Interferones/inmunología , Prolina/química , Infecciones por Virus Sincitial Respiratorio/virología , Virus Sincitial Respiratorio Humano/química , Proteínas no Estructurales Virales/química , Humanos , Isomerismo , Modelos Moleculares , Prolina/inmunología , Conformación Proteica , Conformación Proteica en Hélice alfa , Multimerización de Proteína , Desplegamiento Proteico , Infecciones por Virus Sincitial Respiratorio/inmunología , Virus Sincitial Respiratorio Humano/inmunología , Proteínas no Estructurales Virales/inmunología
5.
Biochemistry ; 56(41): 5560-5569, 2017 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-28952717

RESUMEN

Intrinsic disorder is a major structural category in biology, accounting for more than 30% of coding regions across the domains of life, yet consists of conformational ensembles in equilibrium, a major challenge in protein chemistry. Anciently evolved papillomavirus genomes constitute an unparalleled case for sequence to structure-function correlation in cases in which there are no folded structures. E7, the major transforming oncoprotein of human papillomaviruses, is a paradigmatic example among the intrinsically disordered proteins. Analysis of a large number of sequences of the same viral protein allowed for the identification of a handful of residues with absolute conservation, scattered along the sequence of its N-terminal intrinsically disordered domain, which intriguingly are mostly leucine residues. Mutation of these led to a pronounced increase in both α-helix and ß-sheet structural content, reflected by drastic effects on equilibrium propensities and oligomerization kinetics, and uncovers the existence of local structural elements that oppose canonical folding. These folding relays suggest the existence of yet undefined hidden structural codes behind intrinsic disorder in this model protein. Thus, evolution pinpoints conformational hot spots that could have not been identified by direct experimental methods for analyzing or perturbing the equilibrium of an intrinsically disordered protein ensemble.


Asunto(s)
Papillomavirus Humano 16/metabolismo , Proteínas Intrínsecamente Desordenadas/química , Modelos Moleculares , Proteínas E7 de Papillomavirus/química , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Secuencia de Bases , Secuencia Conservada , ADN Viral/química , ADN Viral/metabolismo , Eliminación de Gen , Concentración de Iones de Hidrógeno , Proteínas Intrínsecamente Desordenadas/genética , Proteínas Intrínsecamente Desordenadas/metabolismo , Leucina/química , Mutagénesis Sitio-Dirigida , Proteínas E7 de Papillomavirus/genética , Proteínas E7 de Papillomavirus/metabolismo , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Mutación Puntual , Conformación Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Pliegue de Proteína , Estabilidad Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Alineación de Secuencia
6.
Mol Biol Evol ; 31(11): 2905-12, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25086000

RESUMEN

The 20 protein-coding amino acids are found in proteomes with different relative abundances. The most abundant amino acid, leucine, is nearly an order of magnitude more prevalent than the least abundant amino acid, cysteine. Amino acid metabolic costs differ similarly, constraining their incorporation into proteins. On the other hand, a diverse set of protein sequences is necessary to build functional proteomes. Here, we present a simple model for a cost-diversity trade-off postulating that natural proteomes minimize amino acid metabolic flux while maximizing sequence entropy. The model explains the relative abundances of amino acids across a diverse set of proteomes. We found that the data are remarkably well explained when the cost function accounts for amino acid chemical decay. More than 100 organisms reach comparable solutions to the trade-off by different combinations of proteome cost and sequence diversity. Quantifying the interplay between proteome size and entropy shows that proteomes can get optimally large and diverse.


Asunto(s)
Aminoácidos/metabolismo , Genoma , Modelos Biológicos , Biosíntesis de Proteínas/genética , Proteoma/metabolismo , Adenosina Trifosfato/metabolismo , Secuencia de Aminoácidos , Aminoácidos/química , Aminoácidos/genética , Entropía , Variación Estructural del Genoma , Análisis de los Mínimos Cuadrados , Datos de Secuencia Molecular , Proteoma/química , Proteoma/genética
7.
Biochemistry ; 53(10): 1680-96, 2014 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-24559112

RESUMEN

The E7 protein from high-risk human papillomavirus is essential for cell transformation in cervical, oropharyngeal, and other HPV-related cancers, mainly through the inactivation of the retinoblastoma (Rb) tumor suppressor. Its high cysteine content (~7%) and the observation that HPV-transformed cells are under oxidative stress prompted us to investigate the redox properties of the HPV16 E7 protein under biologically compatible oxidative conditions. The seven cysteines in HPV16 E7 remain reduced in conditions resembling the basal reduced state of a cell. However, under oxidative stress, a stable disulfide bridge forms between cysteines 59 and 68. Residue 59 has a protective effect on the other cysteines, and its mutation leads to an overall increase in the oxidation propensity of E7, including cysteine 24 central to the Rb binding motif. Gluthationylation of Cys 24 abolishes Rb binding, which is reversibly recovered upon reduction. Cysteines 59 and 68 are located 18.6 Å apart, and the formation of the disulfide bridge leads to a large structural rearrangement while retaining strong Zn association. These conformational and covalent changes are fully reversible upon restoration of the reductive environment. In addition, this is the first evidence of an interaction between the N-terminal intrinsically disordered and the C-terminal globular domains, known to be highly and separately conserved among human papillomaviruses. The significant conservation of such noncanonical cysteines in HPV E7 proteins leads us to propose a functional redox activity. Such an activity adds to the previously discovered chaperone activity of E7 and supports the picture of a moonlighting pathological role of this paradigmatic viral oncoprotein.


Asunto(s)
Cisteína/química , Papillomavirus Humano 16/metabolismo , Proteínas E7 de Papillomavirus/metabolismo , Infecciones por Papillomavirus/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Cisteína/genética , Cisteína/metabolismo , Papillomavirus Humano 16/química , Papillomavirus Humano 16/genética , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Estrés Oxidativo , Proteínas E7 de Papillomavirus/química , Proteínas E7 de Papillomavirus/genética , Infecciones por Papillomavirus/virología , Alineación de Secuencia , Dedos de Zinc
8.
Free Radic Biol Med ; 224: 494-505, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39277119

RESUMEN

The cell cycle is a tightly regulated, dynamic process controlled by multiple checkpoints. When the prevention of cell cycle progression is needed, key effectors such as members of the p21 (CIP/KIP) inhibit cyclin-dependent kinases (CDKs). It is accepted that p21 does not sense DNA damage and that stress signals affect p21 indirectly. A plethora of DNA damaging events activate the tumor suppressor p53, which in turn transcriptionally activates p21, steeply changing its levels to reach CDK inhibition. The levels of p21 are also controlled by phosphorylation and ubiquitination events, which are relevant as they modulate p21 activity, localization, and stability. Intriguingly, here we report the first evidence of the direct control of p21 cell proliferation inhibition by DNA damaging signals. Specifically, we have identified a redox regulating mechanism that controls p21 capacity to reduce cell proliferation. Using the human p21 protein, we identified two cysteine-switches that independently regulate its cyclin-binding and linker (LH) modules respectively. Additionally, we provide a mechanistic explanation of how reactive cysteines embedded in unstructured regions of intrinsically disordered proteins respond to ROS without the guidance of protein structure, contributing to a vastly unexplored area of research. Cellular experiments utilizing p21KID mutants that disrupt disulfide-based switches demonstrate their impact on the capacity of p21 to inhibit cell cycle progression, thus highlighting the functional relevance of our findings. Furthermore, our investigation reveals that reactive cysteine residues are highly conserved across the Kinase Inhibitory Domain (KID) sequences of p21 proteins from higher eukaryotes, and the p27 and p57 human paralogs. We propose that the presence of conserved regulatory cysteines within the KIDs of p21 family members from multiple taxa provides those proteins with the capability for directly sensing ROS, enabling the direct regulation of cyclin kinase activity by ROS levels.

9.
Int J Cancer ; 130(8): 1813-20, 2012 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-21780110

RESUMEN

Cervical cancer and many other anogenital and oropharyngeal carcinomas are strongly associated with high-risk human papillomavirus (HPV) persistent infections. HPV E7 oncoprotein is the major viral transforming factor, emerging as a natural candidate for immunotherapy, since it is constitutively expressed in HPV-induced cancer cells. We have previously shown that E7 can self-assemble into soluble and homogeneous spherical oligomers, named E7 soluble oligomers (E7SOs). These are highly resistant to thermal denaturation, providing an additional advantage given the demand for highly stable vaccine formulations. Here, we present a new chemically stabilized form of the E7SOs (E7SOx) and analyzed its effect in a murine HPV-tumor model. Vaccination of female mice with low doses of E7SOx combined with a CpG-rich oligonucleotide (ODN) as adjuvant elicits a strong long-lasting protection against E7-expressing tumor cells, preventing tumor outgrowth after rechallenge 90-days later. Therapeutic experiments showed that E7SOx/ODN vaccination significantly delays tumor growth and extends the time of survival of the treated mice in a dose-dependent manner. These proof-of-principle preclinical experiments denote the potential applicability of our E7SOx-based vaccine to the treatment of cervical cancer and other mucosal HPV-related neoplastic lesions. In addition to thermal, chemical and proteolysis stability, the combined recombinant and chemical modification nature of the E7SOx vaccine candidate, results in low-cost, of particular interest in developing countries, where most of the cervical cancer cases occur and the most affected population is at reproductive age.


Asunto(s)
Vacunas contra el Cáncer/inmunología , Neoplasias/inmunología , Proteínas E7 de Papillomavirus/inmunología , Infecciones por Papillomavirus/inmunología , Vacunas contra Papillomavirus/inmunología , Neoplasias del Cuello Uterino/inmunología , Adyuvantes Inmunológicos/administración & dosificación , Animales , Vacunas contra el Cáncer/administración & dosificación , Relación Dosis-Respuesta a Droga , Femenino , Humanos , Inmunoterapia/métodos , Estimación de Kaplan-Meier , Ratones , Ratones Endogámicos C57BL , Microscopía Electrónica , Neoplasias/terapia , Neoplasias/virología , Oligodesoxirribonucleótidos/administración & dosificación , Oligodesoxirribonucleótidos/inmunología , Proteínas E7 de Papillomavirus/química , Proteínas E7 de Papillomavirus/ultraestructura , Infecciones por Papillomavirus/inducido químicamente , Infecciones por Papillomavirus/terapia , Vacunas contra Papillomavirus/administración & dosificación , Multimerización de Proteína , Estabilidad Proteica , Resultado del Tratamiento , Neoplasias del Cuello Uterino/terapia , Neoplasias del Cuello Uterino/virología , Vacunación/métodos
10.
Front Microbiol ; 13: 895526, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35875570

RESUMEN

Rhizobium leguminosarum synthesizes an acidic polysaccharide mostly secreted to the extracellular medium, known as exopolysaccharide (EPS) and partially retained on the bacterial surface as a capsular polysaccharide (CPS). Rap proteins, extracellular protein substrates of the PrsDE type I secretion system (TISS), share at least one Ra/CHDL (cadherin-like) domain and are involved in biofilm matrix development either through cleaving the polysaccharide by Ply glycanases or by altering the bacterial adhesive properties. It was shown that the absence or excess of extracellular RapA2 (a monomeric CPS calcium-binding lectin) alters the biofilm matrix's properties. Here, we show evidence of the role of a new Rap protein, RapD, which comprises an N-terminal Ra/CHDL domain and a C-terminal region of unknown function. RapD was completely released to the extracellular medium and co-secreted with the other Rap proteins in a PrsDE-dependent manner. Furthermore, high levels of RapD secretion were found in biofilms under conditions that favor EPS production. Interestingly, size exclusion chromatography of the EPS produced by the ΔrapA2ΔrapD double mutant showed a profile of EPS molecules of smaller sizes than those of the single mutants and the wild type strain, suggesting that both RapA2 and RapD proteins influence EPS processing on the cell surface. Biophysical studies showed that calcium triggers proper folding and multimerization of recombinant RapD. Besides, further conformational changes were observed in the presence of EPS. Enzyme-Linked ImmunoSorbent Assay (ELISA) and Binding Inhibition Assays (BIA) indicated that RapD specifically binds the EPS and that galactose residues would be involved in this interaction. Taken together, these observations indicate that RapD is a biofilm matrix-associated multimeric protein that influences the properties of the EPS, the main structural component of the rhizobial biofilm.

11.
Biochemistry ; 50(8): 1376-83, 2011 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-21226480

RESUMEN

High-risk human papillomavirus E6 participates in tumorigenic progression, mainly by its ability to promote p53 degradation. HPV transcripts show a complex splicing pattern, where E6* is the most abundant transcript in high-risk HPV types, comprising the first 50 amino acids of E6. No structural or biochemical information of this polypeptide, which contains half of the first zinc binding motif of E6, is available, due to the difficulty to acquire a compact monomeric fold in such a small polypeptide. We show that HPV16-E6* can fold into either α-helix or ß-sheet large oligomers at pH 7.5 and 5.0, respectively, in the absence of zinc. The ß-sheet oligomers are highly stable and unaffected by the presence of zinc, while the α-helix oligomers tend to rapidly form aggregates, prevented by the presence of the metal. Two E6* molecules bind per atom of zinc, suggesting a tetrahedral, high-affinity arrangement (K(D) < 10(-12) M), which results in a zinc-mediated E6* dimer with significant secondary structure. Endogenous E6 oligomers were previously found in the cytosol of high-risk HPV transformed cell lines, and we propose that the oligomerization determinant resides within E6*. E6* effects were reported to counteract those of E6 in cells, and the ratio between these two species modulates p53 degradation and other apoptosis-dependent signaling cascades. A residue of an evolved splicing event related to regulation of oncogene expression in HPV or a splicing event resulting from the selection of a small deleterious viral polypeptide, the abundant existence of E6* with a "chameleon" nature correlates with target plasticity, and its fate is linked to a balance between protein levels, zinc availability, redox potential, and oligomerization. In addition, the results presented here have strong implications for zinc binding sites in nascent polypeptides. This evolved promiscuous folder speaks of effect rather than function of a viral product that, when highly increased, can directly or indirectly affect various cellular processes leading to cell deregulation and tumorigenesis.


Asunto(s)
Alphapapillomavirus/fisiología , Proteínas Oncogénicas Virales/química , Proteínas Oncogénicas Virales/metabolismo , Pliegue de Proteína , Empalme del ARN , Alphapapillomavirus/genética , Secuencia Conservada , Humanos , Concentración de Iones de Hidrógeno , Peso Molecular , Proteínas Oncogénicas Virales/genética , Oxidación-Reducción , Unión Proteica , Multimerización de Proteína , Estructura Cuaternaria de Proteína , ARN Mensajero/genética , ARN Mensajero/metabolismo , Riesgo , Soluciones , Zinc/metabolismo
12.
Biochemistry ; 48(50): 11939-49, 2009 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-19899811

RESUMEN

Transcription of the human papillomavirus E7 oncoprotein is negatively controlled by the viral E2 protein, and loss of this repression leads to irreversible transformation and carcinogenesis. Here we show that interaction of the HPV16 E7 protein with the DNA binding domain of the E2 protein (E2C) leads to ionic strength-dependent hetero-oligomerization even at the lowest concentrations measurable. Titration experiments followed by light scattering and native gel electrophoresis show insoluble oligomeric complexes with a >or=2000 nm diameter and intermediate soluble complexes 40 and 115 nm in diameter, respectively, formed in excess of E2C. A discrete oligomeric soluble complex formed in excess of E7 displays a diameter of 12 nm. The N-terminal domain of E7 interacts with E2C with a K(D) of 0.1 muM, where the stretch of residues 25-40 of E7, encompassing both a PEST motif and phosphorylation sites, is sufficient for the interaction. Displacement of the soluble E7-E2C complex by an E2 site DNA duplex and site-directed mutagenesis indicate that the protein-protein interface involves the DNA binding helix of E2. The formation of complexes of different sizes and properties in excess of either of the viral proteins reveals a finely tuned mechanism that could regulate the intracellular levels of both proteins as infection and transformation progress. Sequestering E2 into E7-E2 oligomers provides a possible additional route to uncontrolled E7 expression, in addition and prior to the disruption of the E2 gene during viral integration into the host genome.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Papillomavirus Humano 16/metabolismo , Proteínas Oncogénicas Virales/metabolismo , Secuencia de Aminoácidos , Línea Celular Tumoral , Proliferación Celular , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Papillomavirus Humano 16/química , Papillomavirus Humano 16/genética , Humanos , Datos de Secuencia Molecular , Proteínas Oncogénicas Virales/antagonistas & inhibidores , Proteínas Oncogénicas Virales/química , Proteínas Oncogénicas Virales/genética , Proteínas E7 de Papillomavirus , Estructura Terciaria de Proteína , Integración Viral , Proteínas ras/antagonistas & inhibidores , Proteínas ras/metabolismo
13.
Redox Biol ; 11: 38-50, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-27863297

RESUMEN

Infection with oncogenic human papillomavirus induces deregulation of cellular redox homeostasis. Virus replication and papillomavirus-induced cell transformation require persistent expression of viral oncoproteins E7 and E6 that must retain their functionality in a persistent oxidative environment. Here, we dissected the molecular mechanisms by which E7 oncoprotein can sense and manage the potentially harmful oxidative environment of the papillomavirus-infected cell. The carboxy terminal domain of E7 protein from most of the 79 papillomavirus viral types of alpha genus, which encloses all the tumorigenic viral types, is a cysteine rich domain that contains two classes of cysteines: strictly conserved low reactive Zn+2 binding and degenerate reactive cysteine residues that can sense reactive oxygen species (ROS). Based on experimental data obtained from E7 proteins from the prototypical viral types 16, 18 and 11, we identified a couple of low pKa nucleophilic cysteines that can form a disulfide bridge upon the exposure to ROS and regulate the cytoplasm to nucleus transport. From sequence analysis and phylogenetic reconstruction of redox sensing states we propose that reactive cysteine acquisition through evolution leads to three separate E7s protein families that differ in the ROS sensing mechanism: non ROS-sensitive E7s; ROS-sensitive E7s using only a single or multiple reactive cysteine sensing mechanisms and ROS-sensitive E7s using a reactive-resolutive cysteine couple sensing mechanism.


Asunto(s)
Cisteína/metabolismo , Neoplasias/genética , Estrés Oxidativo/genética , Proteínas E7 de Papillomavirus/metabolismo , Nucléolo Celular/metabolismo , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/patología , Cisteína/genética , Citoplasma/metabolismo , Disulfuros/metabolismo , Neoplasias/metabolismo , Neoplasias/patología , Oxidación-Reducción , Proteínas E7 de Papillomavirus/genética , Transporte de Proteínas/genética , Replicación Viral/genética
14.
J Mol Biol ; 351(3): 672-82, 2005 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-16023675

RESUMEN

The dimeric beta-barrel domain is an unusual topology, shared only by two viral origin binding proteins, where secondary, tertiary and quaternary structure are coupled, and where the dimerization interface is composed of two four-stranded half-beta-barrels. The folding of the DNA binding domain of the E2 transcriptional regulator from human papillomavirus, strain-16, takes place through a stable and compact monomeric intermediate, with 31% the stability of the folded dimeric domain. Double jump multiple wavelength experiments allowed the reconstruction of the fluorescence spectrum of the monomeric intermediate at 100 milliseconds, indicating that tryptophan residues, otherwise buried in the folded state, are accessible to the solvent. Burial of surface area as well as differential behavior to ionic strength and pH with respect to the native ground state, plus the impossibility of having over 2500 A2 of surface area of the half-barrel exposed to the solvent, indicates that the formation of a non-native compact tertiary structure precedes the assembly of native quaternary structure. The monomeric intermediate can dimerize, albeit with a weaker affinity (approximately 1 microM), to yield a non-native dimeric intermediate, which rearranges to the native dimer through a parallel folding channel, with a unimolecular rate-limiting step. Folding pathways from either acid or urea unfolded states are identical, making the folding model robust. Unfolding takes place through a major phase accounting for apparently all the secondary structure change, with identical rate constant to that of the fluorescence unfolding experiment. In contrast to the folding direction, no unfolding intermediate was found.


Asunto(s)
Pliegue de Proteína , Dimerización , Escherichia coli/genética , Concentración de Iones de Hidrógeno , Cinética , Modelos Moleculares , Concentración Osmolar , Desnaturalización Proteica , Proteínas Recombinantes/química , Espectrometría de Fluorescencia , Temperatura
15.
PLoS One ; 10(12): e0145186, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26674530

RESUMEN

Asparagine residues in proteins undergo spontaneous deamidation, a post-translational modification that may act as a molecular clock for the regulation of protein function and turnover. Asparagine deamidation is modulated by protein local sequence, secondary structure and hydrogen bonding. We present NGOME, an algorithm able to predict non-enzymatic deamidation of internal asparagine residues in proteins in the absence of structural data, using sequence-based predictions of secondary structure and intrinsic disorder. Compared to previous algorithms, NGOME does not require three-dimensional structures yet yields better predictions than available sequence-only methods. Four case studies of specific proteins show how NGOME may help the user identify deamidation-prone asparagine residues, often related to protein gain of function, protein degradation or protein misfolding in pathological processes. A fifth case study applies NGOME at a proteomic scale and unveils a correlation between asparagine deamidation and protein degradation in yeast. NGOME is freely available as a webserver at the National EMBnet node Argentina, URL: http://www.embnet.qb.fcen.uba.ar/ in the subpage "Protein and nucleic acid structure and sequence analysis".


Asunto(s)
Amidas/química , Proteínas Intrínsecamente Desordenadas/química , Análisis de Secuencia de Proteína/métodos , Programas Informáticos , Secuencia de Aminoácidos , Animales , Asparagina/química , Humanos , Interferón beta/química , Interferón beta/metabolismo , Datos de Secuencia Molecular , Procesamiento Proteico-Postraduccional , Estructura Secundaria de Proteína , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Superóxido Dismutasa/química , Superóxido Dismutasa/metabolismo , Proteína bcl-X/química , Proteína bcl-X/metabolismo
16.
Methods Mol Biol ; 895: 387-404, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22760329

RESUMEN

Circular dichroism (CD) spectroscopy is a simple and powerful technique, which allows for the assessment of the conformational properties of a protein or protein domain. Intrinsically disordered proteins (IDPs), as discussed throughout this series, differ from random coil polypeptides in that different regions present specific conformational preferences, exhibiting dynamic secondary structure content [1]. These dynamic secondary structure elements can be stabilized or perturbed by different chemical (solvent, ionic strength, pH) or physical (temperature) agents, by posttranslational modifications, and by ligands. This information is important for defining ID nature. As IDPs present dynamic conformations, circular dichroism measurements (and other approaches as well) should be carried out not as single spectra performed in unique conditions, but instead changing the chemical conditions and observing the behavior, as part of the determination of the ID nature.In this chapter, we present the basic methodology for performing Far-UV CD measurements on a protein of interest and for identifying and characterizing intrinsically disordered regions, and several protocols for the analysis of residual secondary structure present in the protein under study. These techniques are straightforward to perform; they require minimal training and can be preliminary to more complex methodologies such as NMR.


Asunto(s)
Dicroismo Circular , Proteínas E7 de Papillomavirus/química , Algoritmos , Modelos Moleculares , Péptidos/química , Fosforilación , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína
17.
PLoS One ; 7(5): e36457, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22590549

RESUMEN

BACKGROUND: Self-assembly is a common theme in proteins of unrelated sequences or functions. The human papillomavirus E7 oncoprotein is an extended dimer with an intrinsically disordered domain, that can form large spherical oligomers. These are the major species in the cytosol of HPV transformed and cancerous cells. E7 binds to a large number of targets, some of which lead to cell transformation. Thus, the assembly process not only is of biological relevance, but represents a model system to investigate a widely distributed mechanism. METHODOLOGY/PRINCIPAL FINDINGS: Using various techniques, we monitored changes in secondary, tertiary and quaternary structure in a time course manner. By applying a robust kinetic model developed by Zlotnik, we determined the slow formation of a monomeric "Z-nucleus" after zinc removal, followed by an elongation phase consisting of sequential second-order events whereby one monomer is added at a time. This elongation process takes place at a strikingly slow overall average rate of one monomer added every 28 seconds at 20 µM protein concentration, strongly suggesting either a rearrangement of the growing complex after binding of each monomer or the existence of a "conformation editing" mechanism through which the monomer binds and releases until the appropriate conformation is adopted. The oligomerization determinant lies within its small 5 kDa C-terminal globular domain and, remarkably, the E7 N-terminal intrinsically disordered domain stabilizes the oligomer, preventing an insoluble amyloid route. CONCLUSION: We described a controlled ordered mechanism with features in common with soluble amyloid precursors, chaperones, and other spherical oligomers, thus sharing determining factors for symmetry, size and shape. In addition, such a controlled and discrete polymerization reaction provides a valuable tool for nanotechnological applications. Finally, its increased immunogenicity related to its supramolecular structure is the basis for the development of a promising therapeutic vaccine candidate for treating HPV cancerous lesions.


Asunto(s)
Papillomavirus Humano 16/química , Proteínas E7 de Papillomavirus/química , Multimerización de Proteína , Zinc/química , Papillomavirus Humano 16/genética , Papillomavirus Humano 16/metabolismo , Humanos , Proteínas E7 de Papillomavirus/genética , Proteínas E7 de Papillomavirus/metabolismo , Estabilidad Proteica , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Zinc/metabolismo
18.
PLoS One ; 7(10): e47661, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23118886

RESUMEN

In the present work, we have used the papillomavirus E7 oncoprotein to pursue structure-function and evolutionary studies that take into account intrinsic disorder and the conformational diversity of globular domains. The intrinsically disordered (E7N) and globular (E7C) domains of E7 show similar degrees of conservation and co-evolution. We found that E7N can be described in terms of conserved and coevolving linear motifs separated by variable linkers, while sequence evolution of E7C is compatible with the known homodimeric structure yet suggests other activities for the domain. Within E7N, inter-residue relationships such as residue co-evolution and restricted intermotif distances map functional coupling and co-occurrence of linear motifs that evolve in a coordinate manner. Within E7C, additional cysteine residues proximal to the zinc-binding site may allow redox regulation of E7 function. Moreover, we describe a conserved binding site for disordered domains on the surface of E7C and suggest a putative target linear motif. Both homodimerization and peptide binding activities of E7C are also present in the distantly related host PHD domains, showing that these two proteins share not only structural homology but also functional similarities, and strengthening the view that they evolved from a common ancestor. Finally, we integrate the multiple activities and conformations of E7 into a hierarchy of structure-function relationships.


Asunto(s)
Secuencias de Aminoácidos , Evolución Molecular , Proteínas E7 de Papillomavirus , Relación Estructura-Actividad , Secuencia de Aminoácidos , Sitios de Unión , Dimerización , Humanos , Proteínas E7 de Papillomavirus/química , Proteínas E7 de Papillomavirus/genética , Conformación Proteica , Estructura Terciaria de Proteína , Alineación de Secuencia , Zinc/química
19.
J Biol Chem ; 283(25): 17039-48, 2008 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-18411275

RESUMEN

Insulin-degrading enzyme (IDE) is central to the turnover of insulin and degrades amyloid beta (Abeta) in the mammalian brain. Biochemical and genetic data support the notion that IDE may play a role in late onset Alzheimer disease (AD), and recent studies suggest an association between AD and diabetes mellitus type 2. Here we show that a natively folded recombinant IDE was capable of forming a stable complex with Abeta that resisted dissociation after treatment with strong denaturants. This interaction was also observed with rat brain IDE and detected in an SDS-soluble fraction from AD cortical tissue. Abeta sequence 17-27, known to be crucial in amyloid assembly, was sufficient to form a stable complex with IDE. Monomeric as opposed to aggregated Abeta was competent to associate irreversibly with IDE following a very slow kinetics (t(1/2) approximately 45 min). Partial denaturation of IDE as well as preincubation with a 10-fold molar excess of insulin prevented complex formation, suggesting that the irreversible interaction of Abeta takes place with at least part of the substrate binding site of the protease. Limited proteolysis showed that Abeta remained bound to a approximately 25-kDa N-terminal fragment of IDE in an SDS-resistant manner. Mass spectrometry after in gel digestion of the IDE .Abeta complex showed that peptides derived from the region that includes the catalytic site of IDE were recovered with Abeta. Taken together, these results are suggestive of an unprecedented mechanism of conformation-dependent substrate binding that may perturb Abeta clearance, insulin turnover, and promote AD pathogenesis.


Asunto(s)
Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/química , Insulisina/química , Enfermedad de Alzheimer/metabolismo , Animales , Sitios de Unión , Encéfalo/metabolismo , Dominio Catalítico , Humanos , Cinética , Espectrometría de Masas , Modelos Biológicos , Unión Proteica , Ratas , Dispersión de Radiación , Especificidad por Sustrato
20.
Biochemistry ; 46(37): 10405-12, 2007 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-17715947

RESUMEN

The HPV16 E7 oncoprotein is an extended dimer, with a stable and cooperative fold, but that displays properties of "natively unfolded" proteins. Two regions of conserved sequence are found in E7 proteins, where the N-terminus (1-40) includes the retinoblastoma tumor suppressor binding and casein kinase II phosphorylation sites. A fragment containing the highly acidic N-terminal half shows an apparently disordered conformation by far-UV-circular dichroism (CD) at neutral pH, and its hydrodynamic radius is much larger than a neutral peptide of the same length. Trifluoroethanol and micellar concentrations of sodium dodecyl sulfate stabilize a much more helical structure at pH 4.0 than at pH 7.5, while submicellar concentrations of the detergent yield a beta-strand. The shape, pH, and temperature dependence of the CD spectrum at pH 7.5 are indicative of a poly proline type II structure. This structure is stabilized by phosphorylation, which would translate into increased transforming activity in the cell. Thus, the intrinsically disordered properties of the N-terminal module of E7 are responsible for the structural plasticity of the oncoprotein. Although the domain is not a compact and cooperatively folded unit, it is a bona fide functional domain, evolved to maintain a dynamic but extended structure in the cell. These properties allow adaptation to a variety of protein targets and expose the PEST degradation sequence that regulates its turnover in the cell, a modification of which leads to the accumulation of E7 species with consequences in the transformation process.


Asunto(s)
Proteínas Oncogénicas Virales/química , Proteínas Oncogénicas Virales/metabolismo , Secuencia de Aminoácidos , Cromatografía en Gel , Dicroismo Circular , Detergentes/farmacología , Interacciones Hidrofóbicas e Hidrofílicas , Datos de Secuencia Molecular , Proteínas E7 de Papillomavirus , Péptidos/química , Fosforilación/efectos de los fármacos , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA