Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Molecules ; 28(20)2023 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-37894589

RESUMEN

The solubility and solution thermodynamics of isotretinoin (ITN) (3) in numerous {dimethyl sulfoxide (DMSO) (1) + water (H2O) (2)} combinations were studied at 298.2-318.2 K under fixed atmospheric pressure of 101.1 kPa. A shake flask methodology was used to determine ITN solubility, and correlations were made using the "van't Hoff, Apelblat, Buchowski-Ksiazczak λh, Yalkowsky-Roseman, Jouyban-Acree, and Jouyban-Acree-van't Hoff models". In mixtures of {(DMSO (1) + H2O (2)}, the solubility of ITN in mole fractions was enhanced with the temperature and DMSO mass fraction. The mole fraction solubility of ITN was highest in neat DMSO (1.02 × 10-1 at 318.2 K) and lowest in pure H2O (3.14 × 10-7 at 298.2 K). The output of computational models revealed good relationships between the solubility data from the experiments. The dissolution of ITN was "endothermic and entropy-driven" in all of the {(DMSO (1) + H2O (2)} mixtures examined, according to the positive values of measured thermodynamic parameters. Enthalpy was discovered to be the driving force behind ITN solvation in {(DMSO (1) + H2O (2)} combinations. ITN-DMSO displayed the highest molecular interactions when compared to ITN-H2O. The outcomes of this study suggest that DMSO has a great potential for solubilizing ITN in H2O.

2.
Molecules ; 28(23)2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-38067534

RESUMEN

Cabozantinib malate (CBZM), a new anticancer medication, has been studied for its solubility and thermodynamic properties in a variety of {dimethyl sulfoxide (DMSO) + water (H2O)} mixtures at 298.2-318.2 K and 101.1 kPa. Using the shake flask technique, the solubility of CBZM was assessed and the results were correlated to the van't Hoff, Apelblat, Buchowski-Ksiazczak λh, Yalkowsky-Roseman, Jouyban-Acree, and Jouyban-Acree-van't Hoff models. There was a significant correlation between the experimental CBZM solubility data and all computational models, as evidenced by the error values for all computational models being less than 5.0%. Temperature and DMSO mass percentage improved the CBZM mole fraction solubility in the cosolvent solutions of {DMSO + H2O}. At 318.2 K, pure DMSO had the highest mole fraction solubility of CBZM (4.38 × 10-2), whereas pure H2O had the lowest mole fraction solubility (2.24 × 10-7 at 298.2 K). The positive values of computed thermodynamic parameters indicated that the dissolution of CBZM was endothermic and entropy-driven in all of the {DMSO + H2O} solutions investigated. It was found that the CBZM solvation in {DMSO + H2O} solutions is governed by enthalpy. When compared to CBZM-H2O, CBZM-DMSO showed the highest molecular interactions. The findings of this investigation demonstrated that DMSO has a great deal of potential for CBZM solubilization in H2O.

3.
Molecules ; 28(9)2023 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-37175381

RESUMEN

Lung cancer is the main cause of cancer-related mortality globally. Erlotinib is a tyrosine kinase inhibitor, affecting both cancerous cell proliferation and survival. The emergence of oncological nanotechnology has provided a novel drug delivery system for erlotinib. The aims of this current investigation were to formulate two different polyamidoamine (PAMAM) dendrimer generations-generation 4 (G4) and generation 5 (G5) PAMAM dendrimer-to study the impact of two different PAMAM dendrimer formulations on entrapment by drug loading and encapsulation efficiency tests; to assess various characterizations, including particle size distribution, polydispersity index, and zeta potential; and to evaluate in vitro drug release along with assessing in situ human lung adenocarcinoma cell culture. The results showed that the average particle size of G4 and G5 nanocomposites were 200 nm and 224.8 nm, with polydispersity index values of 0.05 and 0.300, zeta potential values of 11.54 and 4.26 mV of G4 and G5 PAMAM dendrimer, respectively. Comparative in situ study showed that cationic G4 erlotinib-loaded dendrimer was more selective and had higher antiproliferation activity against A549 lung cells compared to neutral G5 erlotinib-loaded dendrimers and erlotinib alone. These conclusions highlight the potential effect of cationic G4 dendrimer as a targeting-sustained-release carrier for erlotinib.


Asunto(s)
Dendrímeros , Neoplasias Pulmonares , Humanos , Clorhidrato de Erlotinib/farmacología , Sistemas de Liberación de Medicamentos/métodos , Neoplasias Pulmonares/tratamiento farmacológico , Pulmón
4.
Saudi Pharm J ; 31(4): 547-553, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37063445

RESUMEN

Background: Ruboxistaurin (RBX) used to treat retinopathy in diabetic patients which caused by microvascular damage and leakage which contributes to visual loss. There are no published studies on the use of liquid chromatography-tandem mass spectrometry for development and validation of a simple, sensitive, and accurate method for measuring RBX in rat plasma. Method: Chromatographic separation of RBX was achieved using ultra-performance liquid chromatography. Multiple-reaction monitoring quantification used RBX [M + H] + ion at m/z 469.18 and daughter ions at m/z 84, 58.12, and 98.10. Atorvastatin was used as internal standard (IS), has a single daughter ion, and was identified using m/z 559.6 â†’ 249.9. Validation of the liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for RBX in rat plasma for linearity (greater than0.997) was carried out at 25-1000 ng/mL. Results: In rat plasma, the accuracy was within 3.4%, and the intra- and inter-day precision was within 11.8%. Stability, recovery, and matrix effect were all within acceptable limits. The drug retention time (0.85 ± 0.03 min) was remarkably short. Conclusion: The method developed in the current study is suitable to quantify RBX in plasma or bulk doses.

5.
Saudi Pharm J ; 31(1): 170-179, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36685302

RESUMEN

Background: Multidrug-resistant (MDR) bacterial infections have become an emerging health concern around the world. Antibiotics resistance among S. pneumoniae strains increased recently contributing to increase in incidence of pneumococcal infection. This necessitates the discovery of novel antipnemococcal such as compound C3-005 which target the interaction between RNA polymerase and σ factors. Chitosan nanoparticles (CNPs) exhibited antibacterial activity including S. pneumonia. Therefore, the aims of the current investigation were to formulate CNPs loaded with C3-005 and characteristic their antimicrobial properties against S. pneumonia. Methods: The CNPs and C3-005 loaded CNPs were produced utilizing ionic gelation method, and their physicochemical characteristics including particle size, zeta potential, polydispersity index (PDI), encapsulation efficiency (EE%), and in vitro release profile were studied. Both differential scanning calorimetry (DSC) and fourier transform infrared spectroscopy (FTIR) were used for chemical characterization. The synthesized NPs' minimum inhibitory concentration (MIC) was determined using killing assay and broth dilution method, and their impact on bacteria induced hemolysis were also studied. Results: The NPs encapsulating C3-005 were successfully prepared with particle size of 343.5 nm ± 1.3, zeta potential of 29.8 ± 0.37, and PDI of 0.20 ± 0.03. 70 % of C3-005 were encapsulated in CNPs and sustained release pattern of C3-005 from CNPs was revealed by an in vitro release study. CNPs containing C3-005 exhibited higher antipnomcoccal activity with MIC50 of 30 µg/ml when compared with C3-005 and empty CNPs alone. The prepared C3-CNPs showed a reduction of bacterial hemolysis in a concentration-related (dependent) manner and was higher than C3-005 alone. Conclusions: The findings of this study showed the potential for using C3-005 loaded CNPs to treat pneumococcal infection.

6.
Molecules ; 27(10)2022 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-35630561

RESUMEN

Psoriatic arthritis is an autoimmune disease of the joints that can lead to persistent inflammation, irreversible joint damage and disability. The current treatments are of limited efficacy and inconvenient. Apremilast (APR) immediate release tablets Otezla® have 20-33% bioavailability compared to the APR absolute bioavailability of 73%. As a result, self-nanoemulsifying drug delivery systems (SNEDDS) of APR were formulated to enhance APR's solubility, dissolution, and oral bioavailability. The drug assay was carried out using a developed and validated HPLC method. Various thermodynamic tests were carried out on APR-SNEDDS. Stable SNEDDS were characterized then subjected to in vitro drug release studies via dialysis membrane. The optimum formulation was F9, which showed the maximum in vitro drug release (94.9%) over 24 h, and this was further investigated in in vivo studies. F9 was composed of 15% oil, 60% Smix, and 25% water and had the lowest droplet size (17.505 ± 0.247 nm), low PDI (0.147 ± 0.014), low ZP (-13.35 mV), highest %T (99.15 ± 0.131) and optimum increases in the relative bioavailability (703.66%) compared to APR suspension (100%) over 24 h. These findings showed that APR-SNEDDS is a possible alternative delivery system for APR. Further studies are warranted to evaluate the major factors that influence the encapsulation efficiency and stability of APR-containing SNEDDS.


Asunto(s)
Nanopartículas , Sistemas de Liberación de Medicamentos , Emulsiones , Tamaño de la Partícula , Diálisis Renal , Talidomida/análogos & derivados
7.
Molecules ; 27(14)2022 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-35889340

RESUMEN

Various chitosan (CS)-based nanoparticles (CS-NPs) of ciprofloxacin hydrochloride (CHCl) have been investigated for therapeutic delivery and to enhance antimicrobial efficacy. However, the Box-Behnken design (BBD)-supported statistical optimization of NPs of CHCl has not been performed in the literature. As a result, the goal of this study was to look into the key interactions and quadratic impacts of formulation variables on the performance of CHCl-CS-NPs in a systematic way. To optimize CHCl-loaded CS-NPs generated by the ionic gelation process, the response surface methodology (RSM) was used. The BBD was used with three factors on three levels and three replicas at the central point. Tripolyphosphate, CS concentrations, and ultrasonication energy were chosen as independent variables after preliminary screening. Particle size (PS), polydispersity index (PDI), zeta potential (ZP), encapsulation efficiency (EE), and in vitro release were the dependent factors (responses). Prepared NPs were found in the PS range of 198-304 nm with a ZP of 27-42 mV. EE and drug release were in the range of 23-45% and 36-61%, respectively. All of the responses were optimized at the same time using a desirability function based on Design Expert® modeling and a desirability factor of 95%. The minimum inhibitory concentration (MIC) of the improved formula against two bacterial strains, Pseudomonas aeruginosa and Staphylococcus aureus, was determined. The MIC of the optimized NPs was found to be decreased 4-fold compared with pure CHCl. The predicted and observed values for the optimized formulation were nearly identical. The BBD aided in a better understanding of the intrinsic relationship between formulation variables and responses, as well as the optimization of CHCl-loaded CS-NPs in a time- and labor-efficient manner.


Asunto(s)
Quitosano , Nanopartículas , Ciprofloxacina/farmacología , Portadores de Fármacos , Tamaño de la Partícula , Proyectos de Investigación
8.
Saudi Pharm J ; 30(7): 946-953, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35903530

RESUMEN

Recently, the focus has been shifting toward Quorum sensing inhibitors which reduce Pseudomonas aeruginosa virulence factors, alleviating infections. In this work, me-ta-bromo-thiolactone (mBTL), a potent quorum and virulence inhibitor for the Pseudomonas aeruginosa strains, were formulated in calcium alginate nanoparticles (CANPs). Alginate is used as nutrients and as backbone virulence aspect for Pseudomonas and therefore was chosen. mBTL-loaded-CANPs were characterized for particle size, polydispersity index, zeta potential, morphology visualized by Transmission Electron Microscopy (TEM) and drug release profile. Chemical and physical analysis of formulated mBTL-loaded-CANPs were evaluated using Fourier transform infrared Spectroscopy (FTIR) and differential scanning calorimetry (DSC) and Physical stability of mBTL-loaded-CANPs assessed at various temperature 25 ± 1 °C, 4 ± 0.5 °C and -30° ± 1 °C over a period of 4 and 9 months. Synthesized CANPs showed nano-size particles ranging from 140 to 200 nm with spherical particles for plain CANPS and irregular shape for mBTL-loaded-CANPs with a sustainable release profile over 48hrs. FTIR showed stable structure of loaded-mBTL and DSC displayed no interaction between mBTL and polymer. State of released mBTL from CANPs kept at 25 °C, 4 °C and -30 °C over 4 and 9 months showed stable formula at room temperature which kept as a goal of nanoparticles storage. The findings of this study revealed successful preparation of mBTL-loaded-CANPs.

9.
Drug Dev Ind Pharm ; 47(4): 654-662, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33823120

RESUMEN

The solubilization, Hansen solubility parameters (HSPs), and thermodynamic properties of delafloxacin (DLN) in various unique combination of Transcutol-HP® (THP) and 1-butyl-3-methyl imidazolium hexafluorophosphate ionic liquid (BMIM-PF6) mixtures were evaluated for the first time in this research. The 'mole fraction solubilities (x3)' of DLN in different (THP + BMIM-PF6) compositions were determined at 'T = 298.2-318.2 K' and 'p = 0.1 MPa'. The HSPs of DLN, neat THP, neat BMIM-PF6, and binary (THP + BMIM-PF6) compositions free of DLN were also determined. The x3 data of DLN was regressed using 'van't Hoff, Apelblat, Yalkowsky-Roseman, Jouyban-Acree and Jouyban-Acree-van't Hoff models' with overall error values of less than 3.0%. The highest and lowest x3 value of DLN was recorded in neat THP (5.48 × 10-3 at T = 318.2 K) and neat BMIM-PF6 (6.50 × 10-4 at T = 298.2 K), respectively. The solubility of DLN was found to be enhanced significantly with an arise in temperature in all (THP + BMIM-PF6) compositions including pure THP and pure BMIM-PF6. However, there was slight increase in DLN solubility with increase in THP mass fraction in all (THP + BMIM-PF6) mixtures. The HSP of pure THP and pure BMIM-PF6 were found very close to each other, suggesting the great potential of both solvents in DLN solubilization. The maximum solute-solvent interactions at molecular level were recorded in DLN-THP compared to DLN-BMIM-PF6. An 'apparent thermodynamic analysis' study indicated an 'endothermic and entropy-driven dissolution' of DLN in all (THP + BMIM-PF6) compositions including neat THP and BMIM-PF6.


Asunto(s)
Agua , Glicoles de Etileno , Fluoroquinolonas , Solubilidad , Termodinámica
10.
Molecules ; 26(3)2021 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-33572688

RESUMEN

The solubility values, various Hansen solubility parameters (HSPs) and thermodynamic behavior of emtricitabine (ECT) in twelve different pure solvents (PS) were estimated using various experimental as well as computational methods. Experimental solubility values (xe) of ECT in twelve different PS were obtained at T = 298.2 K to 318.2 K and p = 0.1 MPa. The xe values of ECT were correlated by "van't Hoff, Apelblat and Buchowski-Ksiazaczak λh models". Various HSPs for ECT and twelve different PS were also calculated using "HSPiP software". The xe values of ECT were estimated maximum in polyethylene glycol-400 (PEG-400; 1.41 × 10-1), followed by ethylene glycol, Transcutol-HP, propylene glycol, methanol, water, isopropanol, ethanol, 1-butanol, dimethyl sulfoxide, 2-butanol and EA (1.28 × 10-3) at T = 318.2 K. "Apparent thermodynamic analysis" showed an "endothermic and entropy-driven dissolution" of ECT. Overall, PEG-400 was found as the best/ideal solvent for solubility/miscibility of ECT compared to other solvents studied.


Asunto(s)
Antivirales/química , Emtricitabina/química , Solventes/química , Solubilidad , Termodinámica
11.
Molecules ; 26(24)2021 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-34946581

RESUMEN

Luteolin (LUT) is a natural pharmaceutical compound that is weakly water soluble and has low bioavailability when taken orally. As a result, the goal of this research was to create self-nanoemulsifying drug delivery systems (SNEDDS) for LUT in an attempt to improve its in vitro dissolution and hepatoprotective effects, resulting in increased oral bioavailability. Using the aqueous phase titration approach and the creation of pseudo-ternary phase diagrams with Capryol-PGMC (oil phase), Tween-80 (surfactant), and Transcutol-HP (co-emulsifier), various SNEDDS of LUT were generated. SNEDDS were assessed for droplet size, polydispersity index (PDI), zeta potential (ZP), refractive index (RI), and percent of transmittance (percent T) after undergoing several thermodynamic stability and self-nanoemulsification experiments. When compared to LUT suspension, the developed SNEDDS revealed considerable LUT release from all SNEDDS. Droplet size was 40 nm, PDI was <0.3, ZP was -30.58 mV, RI was 1.40, percent T was >98 percent, and drug release profile was >96 percent in optimized SNEDDS of LUT. For in vivo hepatoprotective testing in rats, optimized SNEDDS was chosen. When compared to LUT suspension, hepatoprotective tests showed that optimized LUT SNEDDS had a substantial hepatoprotective impact. The findings of this investigation suggested that SNEDDS could improve bioflavonoid LUT dissolution rate and therapeutic efficacy.


Asunto(s)
Sistemas de Liberación de Medicamentos , Hígado/efectos de los fármacos , Luteolina/farmacología , Nanopartículas/química , Sustancias Protectoras/farmacología , Administración Oral , Animales , Tetracloruro de Carbono/farmacología , Emulsiones/administración & dosificación , Emulsiones/metabolismo , Emulsiones/farmacología , Hígado/metabolismo , Luteolina/administración & dosificación , Luteolina/metabolismo , Masculino , Nanopartículas/administración & dosificación , Nanopartículas/metabolismo , Tamaño de la Partícula , Sustancias Protectoras/administración & dosificación , Sustancias Protectoras/metabolismo , Ratas , Ratas Wistar , Solubilidad , Termodinámica
12.
Molecules ; 25(7)2020 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-32231154

RESUMEN

This study was aimed to find out the solubility, thermodynamic behavior, Hansen solubility parameters and molecular interactions of an antiviral drug emtricitabine (ECT) in various "[polyethylene glycol-400 (PEG-400) + water]" mixtures. The solubility of ECT in mole fraction was determined at "T = 298.2 to 318.2 K" and "p = 0.1 MPa" using an isothermal method. The experimental solubilities of ECT in mole fraction were validated and correlated using various computational models which includes "Van't Hoff, Apelblat, Yalkowsky-Roseman, Jouyban-Acree and Jouyban-Acree-Van't Hoff models". All the models performed well in terms of model correlation. The solubility of ECT was increased with the raise in temperature in all "PEG-400 + water" mixtures studied. The highest and lowest solubility values of ECT were found in pure PEG-400 (1.45 × 10-1) at "T = 318.2 K" and pure water (7.95 × 10-3) at "T = 298.2 K", respectively. The quantitative values of activity coefficients indicated higher interactions at molecular level in ECT and PEG-400 combination compared with ECT and water combination. "Apparent thermodynamic analysis" showed an "endothermic and entropy-driven dissolution" of ECT in all "PEG-400 + water" combinations studied. The solvation nature of ECT was found an "enthalpy-driven" in each "PEG-400 + water" mixture studied.


Asunto(s)
Emtricitabina/química , Modelos Químicos , Polietilenglicoles/química , Termodinámica , Agua/química , Algoritmos , Emtricitabina/farmacología , Transición de Fase , Solubilidad , Solventes
13.
Saudi Pharm J ; 28(5): 565-573, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32435137

RESUMEN

Obesity is a metabolic disease that affects all ages; it is considered life-threatening condition as it leads to fatal complications such as; cardiovascular diseases and diabetes. The therapeutic options include; life-style modifications, pharmacotherapy intervention, and surgical intervention. Bariatric surgery (BS) is considered as the most effective option among the others for its rapid weight loss, maintaining the lost mass, and improving the quality of life of the patients. Nevertheless, BS leads to severe changes in the bioavailability of medications, especially for chronic diseases, which may reach to limit where the patient's life endangers. Recently, pharmaceutical formulations had developed several methods to improve the drug bioavailability of drugs though the implying of nanotechnology. Nonotechnology is responsible for reducing the size of the drugs to the nano range (<1000 nm), which increase the drug surface area, dissolution, absorption, and, most importantly, the bioavailability of these drugs. It is believed that BS malabsorption and drugs bioavailability problems can be solved using nanotechnology for its advantages in overcoming BS complications.

14.
Saudi Pharm J ; 27(1): 82-87, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30662310

RESUMEN

Emerging antibiotic resistance necessitates the development of new therapeutic approaches. Many studies have reported the antimicrobial activity of diclofenac sodium (DIC) and chitosan nanoparticles (CNPs). Hence, this study aimed to prepare non-antibiotic DIC-loaded CNPs (DIC.CNPs) and characterize their in vitro antibacterial activity. DIC.CNPs were prepared from low and high molecular weight (LMW and HMW, respectively) chitosan using an ionic gelation method. Prepared NPs were characterized, and their antibacterial activity against gram-positive Staphylococcus aureus and Bacillus subtilis was evaluated using the agar diffusion and broth dilution methods. The particle size, polydispersity index (PDI), and encapsulation efficiency of the formulated DIC.CNPs increased with increasing MW of chitosan. The prepared NPs showed a narrow size distribution with low PDI values (0.18 and 0.24) and encapsulation efficiency (29.3% and 31.1%) for LMW.DIC.CNPs and HMW.DIC.CNPs, respectively. The in vitro release profile of DIC from the DIC.CNPs was biphasic with a burst release followed by slow release and was influenced by the MW of chitosan. DIC.CNPs exhibited significantly higher antibacterial activity against S. aureus (minimum inhibitory concentration [MIC90] LMW.DIC.CNPs = 35 µg/mL and MIC90 HMW.DIC.CNPs = 18 µg/mL) and B. subtilis (MIC90 LMW.DIC.CNPs = 17.5 µg/mL and MIC90 HMW.DIC.CNPs = 9 µg/mL) than DIC alone did (MIC90 DIC = 250 and 50 µg/mL against S. aureus and B. subtilis, respectively). The antibacterial activity was influenced by pH and the MW of chitosan. Collectively, these results may suggest the potential usefulness of DIC.CNPs as non-antibiotic antibacterial agent necessitating further future studies to asses the stability of DIC.CNPs prepared.

15.
Saudi Pharm J ; 27(2): 264-273, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30766439

RESUMEN

Apigenin (APG) is a poorly soluble bioactive compound/nutraceutical which shows poor bioavailability upon oral administration. Hence, the objective of this research work was to develop APG solid dispersions (SDs) using different techniques with the expectation to obtain improvement in its in vitro dissolution rate and in vivo bioavailability upon oral administration. Different SDs of APG were prepared by microwave, melted and kneaded technology using pluronic-F127 (PL) as a carrier. Prepared SDs were characterized using "thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), Fourier transform infra-red (FTIR) spectrometer, powder X-ray diffraction (PXRD) and scanning electron microscopy (SEM)". After characterization, prepared SDs of APG were studied for in vitro drug release/dissolution profile and in vivo pharmacokinetic studies. The results of TGA, DSC, FTIR, PXRD and SEM indicated successful formation of APG SDs. In vitro dissolution experiments suggested significant release of APG from all SDs (67.39-84.13%) in comparison with control (32.74%). Optimized SD of APG from each technology was subjected to in vivo pharmacokinetic study in rats. The results indicated significant improvement in oral absorption of APG from SD prepared using microwave and melted technology in comparison with pure drug and commercial capsule. The enhancement in oral bioavailability of APG from microwave SD (319.19%) was 3.19 fold as compared with marketed capsule (100.00%). Significant enhancement in the dissolution rate and oral absorption of APG from SD suggested that developed SD systems can be successfully used for oral drug delivery system of APG.

16.
Saudi Pharm J ; 26(1): 79-83, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29379337

RESUMEN

OBJECTIVE: The purpose of this study was to study the antimicrobial activity of chitosan nanoparticles (CSNPs) on Pseudomonas aeruginosa with special emphasis on their sensitivity to pH and the effect of pH on their activity. METHODOLOGY: Antimicrobial activity of CSNPs against Pseudomonas aeruginosa at different pH was tested using broth dilution method. Further assessment of antivirulence activity and sensitization of CSNPs on Pseudomonas aeruginosa were examined. RESULTS: Significant antimicrobial effects of CSNPs against Pseudomonas aeruginosa were detected at slightly acidic pH 5, whereas the activity was abolished at a pH of greater than 7. The antivirulence activity of CSNPs was then investigated and treatment with CSNPs (1000 ppm) resulted in a significant reduction or even complete inhibition of pyocyanin production by P. aeruginosa compared with untreated P. aeruginosa indicating the antivirulence activity of CSNPs. CSNPs also sensitized P. aeruginosa to the lytic effects of sodium dodecyl sulfate (SDS); such sensitization was not blocked by washing chitosan-treated cells prior to SDS exposure revealing that CSNPs disturb the outer membrane leading to irreversible sensitivity to detergent even at low concentration (100 ppm). CONCLUSIONS: These findings highlight CSNPs as potentially useful as indirect antimicrobial agents for a variety of applications.

17.
Pharm Dev Technol ; 21(2): 131-9, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25318634

RESUMEN

The aim of present investigation was to develop surface-adsorbed reverse-micelle-loaded solid self-nanoemulsifying drug delivery system (SNEDDS) of talinolol in order to enhance its in vitro dissolution rate, which in turn enhance the bioavailability. SNEDDS were prepared using aqueous phase titration method. Thermodynamically stable formulations were characterized in terms of droplet size, viscosity, % transmittance, drug content and surface morphology. Low cost acid-treated coffee husk was used as an effective biosorbent for preparation of solid SNEDDS. Developed SNEDDS were subjected to in vitro drug release/dissolution studies. In vitro drug release studies showed 99.6% release of talinolol from optimized solid SNEDDS TS3 after 120 min of study. The results of solubility studies showed 4849.5-folds enhancement in solubility of talinolol from optimized SNEDDS as compared to its aqueous solubility.


Asunto(s)
Emulsiones/química , Nanopartículas/química , Propanolaminas/química , Adsorción , Disponibilidad Biológica , Química Farmacéutica/métodos , Portadores de Fármacos/química , Sistemas de Liberación de Medicamentos/métodos , Liberación de Fármacos , Excipientes/química , Micelas , Tamaño de la Partícula , Solubilidad , Tensoactivos/química , Viscosidad
18.
Pharm Dev Technol ; 20(3): 266-70, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-24266739

RESUMEN

It has been reported that cholesterol-rich nanoemulsions (LDE) can bind to low density lipoprotein (LDL) receptors which can concentrate anticancer drugs in the tissues via LDL receptor overexpression and reduced the adverse effects of the treatment. Therefore, in this study, LDE nanoemulsions of cholesteryl-maleoyl-5-fluorouracil (5-FU conjugate) were developed and evaluated in vitro. LDE nanoemulsions were prepared by high-energy emulsification technique. Developed formulations were characterized in terms of droplet size, polydispersity index, zeta potential, viscosity and refractive index. Optimized formulation (L5) was also evaluated for surface morphology using transmission electron microscopy (TEM). Developed formulations were subjected to in vitro drug release studies through dialysis membrane. The droplet size (50 nm), polydispersity index (0.109) and viscosity (32.16 cp) were found to be lowest for optimized formulation L5. The results of zeta potential indicated the stable formation of developed LDE nanoemulsions. TEM images of optimized formulation indicated non-spherical shape of droplets. About 97% of conjugate was found to be released from L5 after 24 h of study. Overall, these results indicated that developed LDE nanoemulsions could be successfully used for oral delivery of 5-FU conjugate.


Asunto(s)
Antimetabolitos Antineoplásicos/administración & dosificación , Colesterol/química , Sistemas de Liberación de Medicamentos , Fluorouracilo/administración & dosificación , Antimetabolitos Antineoplásicos/química , Química Farmacéutica/métodos , Liberación de Fármacos , Emulsiones , Fluorouracilo/química , Lípidos/química , Microscopía Electrónica de Transmisión , Nanopartículas , Tamaño de la Partícula , Factores de Tiempo , Viscosidad
19.
Drug Dev Ind Pharm ; 40(9): 1240-5, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23837521

RESUMEN

Abstract For the development of an effective self-nanoemulsifying drug delivery system (SNEDDS) of poorly soluble drugs, the knowledge of the solubility in its oil phase and SNEDDS are one of the most important factors to avoid possibility of drug to get phase separated or precipitated upon dilution with gastrointestinal fluids. With this background, this study was undertaken to determine the equilibrium saturated solubility as well as mole fraction solubility of indomethacin in prepared SNEDDS and its individual components at the temperature range of 295.15 to 320.15 K. The equilibrium solubilities of indomethacin in each sample matrices were determined by an isothermal mechanical shaking method and the resulting data was analyzed by regression analysis. The experimental mole fraction solubility data of indomethacin at various temperatures was well correlated with the modified Apelblat model. The equilibrium saturated solubility as well as mole fraction solubility of indomethacin was found to be increased with increase in temperature in SNEDDS as well as in its individual components. The mole fraction solubility of indomethacin was found to be significantly higher in Tween-80 than SNEDDS, Labrafil-M1944CS and Transcutol-HP. These preliminary studies on solubility could be a useful tool for the development of an efficient and thermodynamically stable SNEDDS formulation of various poorly soluble drugs to enhance their solubility/dissolution and oral bioavailability.


Asunto(s)
Emulsiones/química , Indometacina/química , Nanopartículas/química , Disponibilidad Biológica , Química Farmacéutica/métodos , Sistemas de Liberación de Medicamentos/métodos , Glicoles de Etileno/química , Glicéridos/química , Tamaño de la Partícula , Polietilenglicoles/química , Polisorbatos/química , Solubilidad , Temperatura , Termodinámica
20.
Pharm Dev Technol ; 19(7): 799-805, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23964928

RESUMEN

The present study was undertaken to evaluate the impact of various combinations of nonionic surfactants on self-nanoemulsifying performance of two grades of Lauroglycol (Lauroglycol-90 and Lauroglycol-FCC) in glibenclamide (GBN) nanoemulsion. Formulations (L1-L30) were prepared by spontaneous emulsification method. Prepared formulations were subjected to thermodynamic stability and self-nanoemulsification test. Results of thermodynamic stability and self-nanoemulsification tests were confirmed by further characterization of these formulations in terms of droplet size, viscosity, refractive index and % transmittance. Formulations prepared with Labrasol, HCO-60 and Gelucire-44/14 were found to be suitable for self-emulsifying drug delivery system only whereas those prepared with Tween-80 and Cremophor-EL were found to be suitable for self-nanoemulsifying or self-microemulsifying drug delivery system of GBN with respect to Lauroglycol-90 or Lauroglycol-FCC. Formulation L24 (Lauroglycol-FCC/Tween-80/ethanol/water) was optimized as best formulation for self-nanoemulsifying drug delivery system of GBN. These results indicated that Tween-80 could be the best surfactant in terms of self-nanoemulsification.


Asunto(s)
Emulsionantes/química , Emulsiones/química , Gliburida/química , Hipoglucemiantes/química , Lauratos/química , Glicoles de Propileno/química , Tensoactivos/química , Solubilidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA