Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Hum Mol Genet ; 32(12): 1946-1958, 2023 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-36752565

RESUMEN

Recent data suggest that only a small fraction of severe malaria heritability is explained by the totality of genetic markers discovered so far. The extensive genetic diversity within African populations means that significant associations are likely to be found in Africa. In their series of multi-site genome-wide association studies (GWAS) across sub-Saharan Africa, the Malaria Genomic Epidemiology Network (MalariaGEN) observed specific limitations and encouraged country-specific analyses. Here, we present findings of a GWAS of Cameroonian participants that contributed to MalariaGEN projects (n = 1103). We identified protective associations at polymorphisms within the enhancer region of CHST15 [Benjamin-Hochberg false discovery rate (FDR) < 0.02] that are specific to populations of African ancestry, and that tag strong eQTLs of CHST15 in hepatic cells. In-silico functional analysis revealed a signature of epigenetic regulation of CHST15 that is preserved in populations in historically malaria endemic regions, with haplotype analysis revealing a haplotype that is specific to these populations. Association analysis by ethnolinguistic group identified protective associations within SOD2 (FDR < 0.04), a gene previously shown to be significantly induced in pre-asymptomatic malaria patients from Cameroon. Haplotype analysis revealed substantial heterogeneity within the beta-like globin (HBB) gene cluster amongst the major ethnic groups in Cameroon confirming differential malaria pressure and underscoring age-old fine-scale genetic structure within the country. Our findings revealed novel insights in the evolutionary genetics of populations living in Cameroon under malaria pressure with new significant protective loci (CHST15 and SOD2) and emphasized the significant attenuation of genetic association signals by fine-scale genetic structure.


Asunto(s)
Estudio de Asociación del Genoma Completo , Malaria , Humanos , Camerún/epidemiología , Epigénesis Genética , Polimorfismo de Nucleótido Simple/genética , Malaria/epidemiología , Malaria/genética
2.
Malar J ; 22(1): 171, 2023 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-37270589

RESUMEN

BACKGROUND: Pfcrt gene has been associated with chloroquine resistance and the pfmdr1 gene can alter malaria parasite susceptibility to lumefantrine, mefloquine, and chloroquine. In the absence of chloroquine (CQ) and extensive use of artemether-lumefantrine (AL) from 2004 to 2020 to treat uncomplicated falciparum malaria, pfcrt haplotype, and pfmdr1 single nucleotide polymorphisms (SNPs) were determined in two sites of West Ethiopia with a gradient of malaria transmission. METHODS: 230 microscopically confirmed P. falciparum isolates were collected from Assosa (high transmission area) and Gida Ayana (low transmission area) sites, of which 225 of them tested positive by PCR. High-Resolution Melting Assay (HRM) was used to determine the prevalence of pfcrt haplotypes and pfmdr1 SNPs. Furthermore, the pfmdr1 gene copy number (CNV) was determined using real-time PCR. A P-value of less or equal to 0.05 was considered significant. RESULTS: Of the 225 samples, 95.5%, 94.4%, 86.7%, 91.1%, and 94.2% were successfully genotyped with HRM for pfcrt haplotype, pfmdr1-86, pfmdr1-184, pfmdr1-1042 and pfmdr1-1246, respectively. The mutant pfcrt haplotypes were detected among 33.5% (52/155) and 80% (48/60) of isolates collected from the Assosa and Gida Ayana sites, respectively. Plasmodium falciparum with chloroquine-resistant haplotypes was more prevalent in the Gida Ayana area compared with the Assosa area (COR = 8.4, P = 0.00). Pfmdr1-N86Y wild type and 184F mutations were found in 79.8% (166/208) and 73.4% (146/199) samples, respectively. No single mutation was observed at the pfmdr1-1042 locus; however, 89.6% (190/212) of parasites in West Ethiopia carry the wild-type D1246Y variants. Eight pfmdr1 haplotypes at codons N86Y-Y184F-D1246Y were identified with the dominant NFD 61% (122/200). There was no difference in the distribution of pfmdr1 SNPs, haplotypes, and CNV between the two study sites (P > 0.05). CONCLUSION: Plasmodium falciparum with the pfcrt wild-type haplotype was prevalent in high malaria transmission site than in low transmission area. The NFD haplotype was the predominant haplotype of the N86Y-Y184F-D1246Y. A continuous investigation is needed to closely monitor the changes in the pfmdr1 SNPs, which are associated with the selection of parasite populations by ACT.


Asunto(s)
Antimaláricos , Malaria Falciparum , Malaria , Humanos , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Etiopía/epidemiología , Combinación Arteméter y Lumefantrina/uso terapéutico , Arteméter/uso terapéutico , Malaria Falciparum/parasitología , Cloroquina/farmacología , Cloroquina/uso terapéutico , Malaria/tratamiento farmacológico , Lumefantrina/uso terapéutico , Plasmodium falciparum , Polimorfismo de Nucleótido Simple , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Proteínas Protozoarias/genética , Proteínas Protozoarias/uso terapéutico , Resistencia a Medicamentos/genética
3.
Malar J ; 22(1): 89, 2023 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-36899431

RESUMEN

BACKGROUND: Thioester-containing protein 1 (TEP1) is a highly polymorphic gene playing an important role in mosquito immunity to parasite development and associated with Anopheles gambiae vectorial competence. Allelic variations in TEP1 could render mosquito either susceptible or resistant to parasite infection. Despite reports of TEP1 genetic variations in An. gambiae, the correlation between TEP1 allelic variants and transmission patterns in malaria endemic settings remains unclear. METHODS: TEP1 allelic variants were characterized by PCR from archived genomic DNA of > 1000 An. gambiae mosquitoes collected at 3 time points between 2009 and 2019 from eastern Gambia, where malaria transmission remains moderately high, and western regions with low transmission. RESULTS: Eight common TEP1 allelic variants were identified at varying frequencies in An. gambiae from both transmission settings. These comprised the wild type TEP1, homozygous susceptible genotype, TEP1s; homozygous resistance genotypes: TEP1rA and TEP1rB, and the heterozygous resistance genotypes: TEP1srA, TEP1srB, TEP1rArB and TEP1srArB. There was no significant disproportionate distribution of the TEP1 alleles by transmission setting and the temporal distribution of alleles was also consistent across the transmission settings. TEP1s was the most common in all vector species in both settings (allele frequencies: East = 21.4-68.4%. West = 23.5-67.2%). In Anopheles arabiensis, the frequency of wild type TEP1 and susceptible TEP1s was significantly higher in low transmission setting than in high transmission setting (TEP1: Z = - 4.831, P < 0.0001; TEP1s: Z = - 2.073, P = 0.038). CONCLUSIONS: The distribution of TEP1 allele variants does not distinctly correlate with malaria endemicity pattern in The Gambia. Further studies are needed to understand the link between genetic variations in vector population and transmission pattern in the study settings. Future studies on the implication for targeting TEP1 gene for vector control strategy such as gene drive systems in this settings is also recommended.


Asunto(s)
Anopheles , Malaria , Animales , Alelos , Anopheles/parasitología , Gambia , Mosquitos Vectores/genética , Malaria/parasitología
4.
Malar J ; 22(1): 82, 2023 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-36882754

RESUMEN

BACKGROUND: Carriers of persistent asymptomatic Plasmodium falciparum infections constitute an infectious reservoir that maintains malaria transmission. Understanding the extent of carriage and characteristics of carriers specific to endemic areas could guide use of interventions to reduce infectious reservoir. METHODS: In eastern Gambia, an all-age cohort from four villages was followed up from 2012 to 2016. Each year, cross-sectional surveys were conducted at the end of the malaria transmission season (January) and just before the start of the next one (June) to determine asymptomatic P. falciparum carriage. Passive case detection was conducted during each transmission season (August to January) to determine incidence of clinical malaria. Association between carriage at the end of the season and at start of the next one and the risk factors for this were assessed. Effect of carriage before start of the season on risk of clinical malaria during the season was also examined. RESULTS: A total of 1403 individuals-1154 from a semi-urban village and 249 from three rural villages were enrolled; median age was 12 years (interquartile range [IQR] 6, 30) and 12 years (IQR 7, 27) respectively. In adjusted analysis, asymptomatic P. falciparum carriage at the end of a transmission season and carriage just before start of the next one were strongly associated (adjusted odds ratio [aOR] = 19.99; 95% CI 12.57-31.77, p < 0.001). The odds of persistent carriage (i.e. infected both in January and in June) were higher in rural villages (aOR = 13.0; 95% CI 6.33-26.88, p < 0.001) and in children aged 5-15 years (aOR = 5.03; 95% CI 2.47-10.23, p = < 0.001). In the rural villages, carriage before start of the season was associated with a lower risk of clinical malaria during the season (incidence risk ratio [IRR] 0.48, 95% CI 0.27-0.81, p = 0.007). CONCLUSIONS: Asymptomatic P. falciparum carriage at the end of a transmission season strongly predicted carriage just before start of the next one. Interventions that clear persistent asymptomatic infections when targeted at the subpopulation with high risk of carriage may reduce the infectious reservoir responsible for launching seasonal transmission.


Asunto(s)
Reservorios de Enfermedades , Plasmodium falciparum , Niño , Humanos , Estudios Transversales , Gambia/epidemiología , Estudios Longitudinales
5.
Malar J ; 22(1): 257, 2023 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-37670357

RESUMEN

BACKGROUND: Thanks to the scale up of malaria control interventions, the malaria burden in Senegal has decreased substantially to the point that the National Malaria Control Programme plans to achieve malaria elimination by 2030. To guide such efforts, measuring and monitoring parasite population evolution and anti-malarial drugs resistance is extremely important. Information on the prevalence of parasite mutations related to drug resistance can provide a first signal of emergence, introduction and selection that can help with refining drug interventions. The aim of this study was to analyse the prevalence of anti-malarial drug resistance-associated markers before and after the implementation of artemisinin-based combination therapy (ACT) from 2005 to 2014 in Dielmo, a model site for malaria intervention studies in Senegal. METHODS: Samples from both malaria patients and Plasmodium falciparum asymptomatic carriers were analysed with high resolution melting (HRM) technique to genotype P. falciparum chloroquine resistance transporter (Pfcrt) gene haplotypes and multidrug-resistant protein 1 (Pfmdr1) gene at codons N86 and Y184. RESULTS: Among the 539 samples analysed, 474, 486, and 511 were successfully genotyped for Pfmdr1 N86, Y184, and Pfcrt, respectively. The prevalence of drug resistance markers was high, particularly during the malaria upsurges. Following the scale-up in bed net distribution, only the mutant (86F-like) variant of Pfmdr1 86 was present while during the malaria upsurges the predominance of two types 86Y-86N (43%) and 86F-like (56%) were observed. Most infections (87%) carried the wild type Y-allele at Pfmdr1 184 during the period of nets scale-up while during the malaria upsurges only 16% of infections had wild type and 79% of infections had mixed (mutant/wild) type. The frequency of the mixed genotypes SVMNT-like_CVMNK and SVMNT-like_CVIET within Pfcrt gene was particularly low during bednet scale up. Their frequency increased significantly (P < 0.001) during the malaria upsurges. CONCLUSION: This data demonstrated the effect of multiple interventions on the dynamics of drug resistance-associated mutations in the main malaria parasite P. falciparum in an endemic village in Senegal. Monitoring drug resistance markers should be conducted periodically to detect threats of emergence or resurgence that could compromise the efficacy of anti-malarial drugs.


Asunto(s)
Antimaláricos , Malaria Falciparum , Malaria , Humanos , Senegal , Prevalencia , África Occidental , Cloroquina , Proteínas de Transporte de Membrana
6.
Malar J ; 22(1): 253, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37658450

RESUMEN

BACKGROUND: Malaria remains a major public health concern in The Gambia. The study assessed the trend of malaria admissions and outcome of adult patients admitted after the start of the COVID-19 pandemic in a tertiary hospital in The Gambia. METHODS: This was a retrospective hospital-based study and data was collected from the 18th October 2020 to 28th February 2023. Demographic data, clinical features, investigations, treatment, and outcomes were recorded. RESULTS: A total of 499 malaria cases were admitted to the hospital over the 29 months of the study period. Data from 320 (67.2% of the total cases) adult patients admitted into the internal medicine department were analysed. The median age was 22 years, range (15-90) and 189 (59.1%) cases were youth with a youth (15-24 years) to older adult (> 24 years) ratio of 1.4:1. The majority of the patients were male 199 (62.2) with a male to female ratio of 1.6:1. The total number of malaria cases admitted into the internal medicine department increased from 103 cases in 2021 to 182 cases in 2022and admission peaked in November in both years. The total number of admitted malaria cases during the peak of the malaria season also increased from 92 patients between September 2021 and December 2021 to 132 patients from September 2022 to December 2022.There was also an increase in both severe and uncomplicated malaria during the same period. The total mortality was 31 (9.7%) and the rate was similar in 2021 9 (8.7%) and 2022 15 (8.4%). Patients with impaired consciousness were more likely to die when compared to those without impaired consciousness [19 (23.6%) vs 12 (5%), p ≤ 0.001]. Patients with acute kidney injury were also more likely to die when compared with those without acute kidney injury [10 (20.4%) vs 15 (7.7%), p = 0.009]. CONCLUSION: The findings show an emerging and consistent trend of malaria admissions and the outcome in the youth and older adult population after the start of the COVID-19 pandemic in The Gambia. This, therefore, suggests the need for the implementation of targeted malaria prevention interventions in this population to further prevent the spread of the disease to the more vulnerable population.


Asunto(s)
Lesión Renal Aguda , COVID-19 , Malaria , Adolescente , Humanos , Femenino , Masculino , Anciano , Adulto Joven , Adulto , Persona de Mediana Edad , Anciano de 80 o más Años , Centros de Atención Terciaria , COVID-19/epidemiología , Gambia/epidemiología , Pandemias , Estudios Retrospectivos , Malaria/epidemiología , Demografía
7.
BMC Infect Dis ; 23(1): 546, 2023 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-37605140

RESUMEN

BACKGROUND: The aim of this study was to determine the prevalence of invasive bacterial infections and their antimicrobial resistance patterns in sickle cell disease (SCD) patients admitted at the Medical Research Council the Gambia (MRCG) Ward in the era of PCV and Hib vaccination in the Gambia. METHODS AND RESULTS: This study was conducted in the clinical laboratory department of MRCG. We retrospectively generated haematological, and blood culture data from our electronic medical records from 2015 to 2022 of SCD patients admitted to MRCG Ward. Of 380 SCD patients, blood culture was requested only for 159. Of the 159 admitted SCD, 11 patients had qualified positive blood cultures. Five different types of bacterial pathogens were isolated from these positive blood cultures: 4 Staphylococcus aureus, 3 Streptococcus pneumoniae, 2 Salmonella species, 1 Enterococcus species, and 1 Shigella boydii. No episode of bacteremia caused by Haemophilus influenzae type b was identified. The molecular serotyping of the Streptococcus pneumoniae isolates revealed non-vaccine serotypes 10 A, 12 F and 12 F. Penicillin resistance was recorded in two of the three Streptococcus pneumoniae. The Staphylococcus aureus isolates were penicillin resistant but cefoxitin sensitive, hence no methicillin (oxacillin) resistant Staphylococcus aureus was reported. Generally, the isolated pathogens were all sensitive to chloramphenicol, and vancomycin. The haematological indices were not significantly varied between SCD patients with and without microbiologically confirmed bacterial infection. CONCLUSION: Streptococcus pneumoniae and Staphylococcus aureus were the most common cause of bacteremia in these admitted SCD patients. The presence of non-typhoidal Salmonella and Shigella infection coupled with penicillin resistance should be considered during penicillin prophylaxis and empirical treatment regimens for SCD patients and future SCD management policies in the Gambia. The haematological parameters may not be reliable biomarkers in differentiating bacterial from non-bacterial infections in SCD patients.


Asunto(s)
Anemia de Células Falciformes , Antiinfecciosos , Bacteriemia , Staphylococcus aureus Resistente a Meticilina , Infecciones Estafilocócicas , Humanos , Prevalencia , Gambia/epidemiología , Estudios Retrospectivos , Anemia de Células Falciformes/complicaciones , Penicilinas
8.
Antimicrob Agents Chemother ; 66(9): e0000222, 2022 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-35993723

RESUMEN

The emergence of artemisinin-resistant parasites in Africa has had a devastating impact, causing most malaria cases and related deaths reported on the continent. In Ethiopia, artemether-lumefantrine (AL) is the first-line drug for the treatment of uncomplicated falciparum malaria. This study is one of the earliest evaluations of artemether-lumefantrine (AL) efficacy in western Ethiopia, 17 years after the introduction of this drug in the study area. This study aimed at assessing PCR- corrected clinical and parasitological responses at 28 days following AL treatment. Sixty uncomplicated falciparum malaria patients were enrolled, treated with standard doses of AL, and monitored for 28 days with clinical and parasitological assessments from September 15 to December 15, 2020. Microscopy was used for patient recruitment and molecular diagnosis of P. falciparum was performed by Var gene acidic terminal sequence (varATS) real-time PCR on dried blood spots collected from each patient from day 0 and on follow-up days 1, 2, 3, 7, 14, 21, and 28. MspI and msp2 genotyping was done to confirm occurrence of recrudescence. Data entry and analysis were done by using the WHO-designed Excel spreadsheet and SPSS version 20 for Windows. A P value of less or equal to 0.05 was considered significant. From a total of 60 patients enrolled in this efficacy study, 10 were lost to follow-up; the results were analyzed for 50 patients. All the patients were fever-free on day 3. The asexual parasite positivity rate on day 3 was zero. However; 60% of the patients were PCR positive on day 3. PCR positivity on day 3 was more common among patients <15 years old as compared with those ≥15 years old (AOR = 6.44, P = 0.027). Only two patients met the case definition of treatment failure. These patients were classified as a late clinical failure as they showed symptoms of malaria and asexual stages of the parasite detected by microscopy on day 14 of their follow-ups. Hence, the Kaplan-Meier analysis of PCR- corrected adequate clinical and parasitological response (ACPR) rate of AL among study participants was 96% (95% CI: 84.9-99). In seven patients, the residual submicroscopic parasitemia persists from day 0 to day 28 of the follow-up. In addition, 16% (8/50) of patients were PCR- and then turned PCR+ after day 7 of the follow-up. AL remains efficacious for the treatment of uncomplicated falciparum malaria in the study area. However, the persistence of PCR-detected residual submicroscopic parasitemia following AL might compromise this treatment and need careful monitoring.


Asunto(s)
Antimaláricos , Artemisininas , Malaria Falciparum , Malaria , Adolescente , Antimaláricos/uso terapéutico , Arteméter/uso terapéutico , Combinación Arteméter y Lumefantrina/uso terapéutico , Artemisininas/uso terapéutico , Progresión de la Enfermedad , Etanolaminas/uso terapéutico , Etiopía , Fluorenos/uso terapéutico , Humanos , Malaria/tratamiento farmacológico , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/parasitología , Parasitemia/tratamiento farmacológico , Plasmodium falciparum/genética , Sudán , Resultado del Tratamiento
9.
J Antimicrob Chemother ; 77(11): 2946-2955, 2022 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-35904009

RESUMEN

BACKGROUND: Artemether/lumefantrine is the most commonly used artemisinin-based combination treatment (ACT) for malaria in sub-Saharan Africa. Drug resistance to ACT components is a major threat to malaria elimination efforts. Therefore, rigorous monitoring of drug efficacy is required for adequate management of malaria and to sustain the effectiveness of ACTs. OBJECTIVES: This study identified and described genomic loci that correlate with differences in ex vivo responses of natural Plasmodium falciparum isolates from The Gambia to antimalarial drugs. METHODS: Natural P. falciparum isolates from The Gambia were assayed for IC50 responses to four antimalarial drugs (artemether, dihydroartemisinin, amodiaquine and lumefantrine). Genome-wide SNPs from 56 of these P. falciparum isolates were applied to mixed-model regression and network analyses to determine linked loci correlating with drug responses. Genomic regions of shared haplotypes and positive selection within and between Gambian and Cambodian P. falciparum isolates were mapped by identity-by-descent (IBD) analysis of 209 genomes. RESULTS: SNPs in 71 genes, mostly involved in stress and drug resistance mechanisms correlated with drug responses. Additionally, erythrocyte invasion and permeability loci, including merozoite surface proteins (Pfdblmsp, Pfsurfin), and high-molecular-weight rhoptry protein 2 (Pfrhops2) were correlated with responses to multiple drugs. Haplotypes of pfdblmsp2 and known drug resistance loci (pfaat1, pfcrt and pfdhfr) from The Gambia showed high IBD with those from Cambodia, indicating co-ancestry, with significant linkage disequilibrium between their alleles. CONCLUSIONS: Multiple linked genic loci correlating with drug response phenotypes suggest a genomic backbone may be under selection by antimalarials. This calls for further analysis of molecular pathways to drug resistance in African P. falciparum.


Asunto(s)
Antimaláricos , Malaria Falciparum , Malaria , Animales , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Plasmodium falciparum/genética , Merozoítos , Gambia , Ligandos , Arteméter/uso terapéutico , Combinación Arteméter y Lumefantrina/uso terapéutico , Malaria Falciparum/tratamiento farmacológico , Lumefantrina/uso terapéutico , Resistencia a Medicamentos/genética , Malaria/tratamiento farmacológico , Proteínas Protozoarias/genética
10.
Malar J ; 21(1): 383, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36522733

RESUMEN

BACKGROUND: Genetic diversity of malaria parasites can inform the intensity of transmission and poses a major threat to malaria control and elimination interventions. Characterization of the genetic diversity would provide essential information about the ongoing control efforts. This study aimed to explore allelic polymorphism of merozoite surface protein 1 (msp1) and merozoite surface protein 2 (msp2) to determine the genetic diversity and multiplicity of Plasmodium falciparum infections circulating in high and low transmission sites in western Ethiopia. METHODS: Parasite genomic DNA was extracted from a total of 225 dried blood spots collected from confirmed uncomplicated P. falciparum malaria-infected patients in western Ethiopia. Of these, 72.4% (163/225) and 27.6% (62/225) of the samples were collected in high and low transmission areas, respectively. Polymorphic msp1 and msp2 genes were used to explore the genetic diversity and multiplicity of falciparum malaria infections. Genotyping of msp1 was successful in 86.5% (141/163) and 88.7% (55/62) samples collected from high and low transmission areas, respectively. Genotyping of msp2 was carried out among 85.3% (139/163) and 96.8% (60/62) of the samples collected in high and low transmission sites, respectively. Plasmodium falciparum msp1 and msp2 genes were amplified by nested PCR and the PCR products were analysed by QIAxcel ScreenGel Software. A P-value of less or equal to 0.05 was considered significant. RESULTS: High prevalence of falciparum malaria was identified in children less than 15 years as compared with those ≥ 15 years old (AOR = 2.438, P = 0.005). The three allelic families of msp1 (K1, MAD20, and RO33) and the two allelic families of msp2 (FC27 and 3D7), were observed in samples collected in high and low transmission areas. However, MAD 20 and FC 27 alleles were the predominant allelic families in both settings. Plasmodium falciparum isolates circulating in western Ethiopia had low genetic diversity and mean MOI. No difference in mean MOI between high transmission sites (mean MOI 1.104) compared with low transmission area (mean MOI 1.08) (p > 0.05). The expected heterozygosity of msp1 was slightly higher in isolates collected from high transmission sites (He = 0.17) than in those isolates from low transmission (He = 0.12). However, the heterozygosity of msp2 was not different in both settings (Pfmsp2: 0.04 in high transmission; pfmsp2: 0.03 in low transmission). CONCLUSION: Plasmodium falciparum from clinical malaria cases in western Ethiopia has low genetic diversity and multiplicity of infection irrespective of the intensity of transmission at the site of sampling. These may be signaling the effectiveness of malaria control strategies in Ethiopia; although further studies are required to determine how specific intervention strategies and other parameters that drive the pattern.


Asunto(s)
Malaria Falciparum , Proteína 1 de Superficie de Merozoito , Niño , Masculino , Humanos , Adolescente , Proteína 1 de Superficie de Merozoito/genética , Plasmodium falciparum/genética , Antígenos de Protozoos/genética , Etiopía/epidemiología , Proteínas Protozoarias/genética , Variación Genética , Malaria Falciparum/epidemiología , Malaria Falciparum/parasitología , Proteínas de la Membrana/genética , Genotipo
11.
Malar J ; 21(1): 160, 2022 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-35659662

RESUMEN

BACKGROUND: The development of resistance by Plasmodium falciparum to anti-malarial drugs impedes any benefits of the drug. In addition, absence or delayed availability of current anti-malarial drugs in remote areas has the potential to results to parasite escape and continuous transmission. CASE PRESENTATION: The case of a 29-year old pregnant woman from Biase Local Government Area in Cross River State Nigeria presenting with febrile illness and high body temperature of 38.7 °C was reported. She looked pale and vomited twice on arrival at the health facility. Her blood smear on the first day of hospitalization was positive for P. falciparum by RDT, microscopy (21,960 parasite/µl) and real-time PCR, with a PCV of 18%. She was treated with 600 mg intravenous quinine in 500 ml of 5% Dextrose/0.9% Saline 8-hourly for 24 h. On the second day of hospitalization, she complained of weakness, persistent high-grade fever and vaginal bleeding. A bulging amnion from an extended cervix was observed. Following venous blood collection for laboratory investigations, 600 µg of misoprostol was inserted into the posterior fornix of her vagina as part of her obstetric care. Parenteral quinine was discontinued, and she was given full therapeutic regimen of artemether-lumefantrine 80/480 mg tablets to be taken for 3 days beginning from the second day. Her blood samples on the second and third day of hospitalization remained positive for P. falciparum by all three diagnostic methods. Single nucleotide polymorphism (SNP) assay on all three P. falciparum isolates revealed the presence of variants associated with multiple drug resistant markers. DISCUSSION: Infecting P. falciparum isolates may have been resistant to initial quinine treatment resulting from parasite cross-resistance with other quinoline associated resistant markers such as 86Y and 184 F. CONCLUSIONS: Therefore, the likely transmission of similarly resistant parasites in the study area calls for reinforcement of interventions and adherence to current World Health Organization guidelines in administering only approved drugs to individuals in order to mitigate parasite escape and eventual transmission to other susceptible individuals.


Asunto(s)
Aborto Espontáneo , Antimaláricos , Malaria Falciparum , Malaria , Adulto , África Occidental , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Arteméter/uso terapéutico , Combinación Arteméter y Lumefantrina/uso terapéutico , Resistencia a Medicamentos , Resistencia a Múltiples Medicamentos , Femenino , Humanos , Malaria/parasitología , Malaria Falciparum/parasitología , Nigeria , Plasmodium falciparum , Embarazo , Mujeres Embarazadas , Quinina/farmacología , Quinina/uso terapéutico
12.
Malar J ; 21(1): 270, 2022 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-36131306

RESUMEN

BACKGROUND: Malaria is a major public health concern in The Gambia. There is limited data on the clinical manifestation and outcome of severe malaria in adult patients in The Gambia. The study therefore assessed the clinical manifestations and outcome of severe malaria in adult patients admitted at the Edward Francis Small Teaching Hospital. METHODS: The study retrospectively reviewed the records of all malaria patients admitted from 18th October 2020 to 2nd February 2022. Demographic data, clinical features, investigations, treatment, and outcomes were recorded. RESULTS: A total of 131 confirmed malaria patients were recruited into the study. The median age was 21 yrs, range (15-90) and most of them were within the youth age group (15-24yrs) 85 (64.9%). The majority of the patients were also male 88 (67.2%) with a male to female ratio of 2:1. The most common symptom at presentation was fever 119 (90.8%) and the most common sign was pallor 48 (36.6%). Seventy-six patients (58.1%) and 55 (41.9%) patients met the criteria for severe malaria and uncomplicated malaria diagnosis, respectively. The most common clinical feature amongst patients with severe malaria were impaired consciousness 34 (44.7%), severe anaemia 26 (34.2%) and acute kidney injury 20 (26.3%). Patients with severe malaria were younger with mean age of 22.9 vs. 29 yrs (p = 0.004), more likely to be referred from a lower-level health facility 62 (81.6%) vs. 34 (61.8%) (p = 0.012), to have a longer duration of admission (p = 0.024) and to die 13 (17.1%) vs. 0 (0%) (p = 0.001) as compared to patients with uncomplicated malaria. The total mortality was 13 (9.9%) and all the patients who died had severe malaria. Mortality was higher in patients with impaired consciousness 9 (26.5%) and there was a significant relationship between death and impaired consciousness 9 (69.3%) vs. 25 (21.4%) p = 0.001. CONCLUSION: Severe malaria still affects young adults in an endemic area with significant mortality. This suggests the need for targeted malaria prevention, surveillance, case management and control strategies in this population group in The Gambia to help reduce morbidity and mortality of malaria.


Asunto(s)
Anemia , Malaria Falciparum , Malaria , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Anemia/epidemiología , Femenino , Gambia/epidemiología , Humanos , Malaria/complicaciones , Malaria/diagnóstico , Malaria/epidemiología , Malaria Falciparum/complicaciones , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/epidemiología , Masculino , Persona de Mediana Edad , Estudios Retrospectivos , Centros de Atención Terciaria , Adulto Joven
13.
Crit Rev Microbiol ; 47(1): 44-56, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33507842

RESUMEN

Plasmodium malariae is often reported as a benign malaria parasite. There are limited data on its biology and disease burden in sub-Saharan Africa (sSA) possibly due to the unavailability of specific and affordable tools for routine diagnosis and large epidemiology studies. In addition, P. malariae occurs at low parasite densities and in co-infections with other species, predominately P. falciparum. The paucity of data on P. malariae infections limits the capacity to accurately determine its contribution to malaria and the effect of control interventions against P. falciparum on its prevalence. Here, we summarise the current knowledge on P. malariae epidemiology in sSA - overall prevalence ranging from 0-32%, as detected by different diagnostic methods; seroprevalence ranging from 0-56% in three countries (Mozambique, Benin and Zimbabwe), and explore the future application of next-generation sequencing technologies as a tool for enriching P. malariae genomic epidemiology. This will provide insights into important adaptive mechanisms of this neglected non-falciparum species, including antimalarial drug resistance, local and regional parasite transmission patterns and genomic signatures of selection. Improved diagnosis and genomic surveillance of non-falciparum malaria parasites in Africa would be helpful in evaluating progress towards elimination of all human Plasmodium species.


Asunto(s)
Malaria/parasitología , Enfermedades Desatendidas/parasitología , Plasmodium malariae/fisiología , África/epidemiología , Animales , Anticuerpos Antiprotozoarios/sangre , Investigación Biomédica , Humanos , Malaria/sangre , Malaria/epidemiología , Enfermedades Desatendidas/sangre , Enfermedades Desatendidas/epidemiología , Plasmodium malariae/genética
14.
Malar J ; 20(1): 312, 2021 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-34246262

RESUMEN

BACKGROUND: Red blood cell invasion by the Plasmodium vivax merozoite requires interaction between the Duffy antigen receptor for chemokines (DARC) and the P. vivax Duffy-binding protein II (PvDBPII). Given that the disruption of this interaction prevents P. vivax blood-stage infection, a PvDBP-based vaccine development has been well recognized. However, the polymorphic nature of PvDBPII prevents a strain transcending immune response and complicates attempts to design a vaccine. METHODS: Twenty-three P. vivax clinical isolates collected from three areas of Ethiopia were sequenced at the pvdbpII locus. A total of 392 global pvdbpII sequences from seven P. vivax endemic countries were also retrieved from the NCBI archive for comparative analysis of genetic diversity, departure from neutrality, linkage disequilibrium, genetic differentiation, PvDBP polymorphisms, recombination and population structure of the parasite population. To establish a haplotype relationship a network was constructed using the median joining algorithm. RESULTS: A total of 110 variable sites were found, of which 44 were parsimony informative. For Ethiopian isolates there were 12 variable sites of which 10 were parsimony informative. These parsimony informative variants resulted in 10 nonsynonymous mutations. The overall haplotype diversity for global isolates was 0.9596; however, the haplotype diversity was 0.874 for Ethiopia. Fst values for genetic revealed Ethiopian isolates were closest to Indian isolates as well as to Sri Lankan and Sudanese isolates but further away from Mexican, Papua New Guinean and South Korean isolates. There was a total of 136 haplotypes from the 415 global isolates included for this study. Haplotype prevalence ranged from 36.76% to 0.7%, from this 74.2% were represented by single parasite isolates. None of the Ethiopian isolates grouped with the Sal I reference haplotype. From the total observed nonsynonymous mutations 13 mapped to experimentally verified epitope sequences. Including 10 non-synonymous mutations from Ethiopia. However, all the polymorphic regions in Ethiopian isolates were located away from DARC, responsible for junction formation. CONCLUSION: The results of this study are concurrent with the multivalent vaccine approach to design an effective treatment. However, the presence of novel haplotypes in Ethiopian isolates that were not shared by other global sequences warrant further investigation.


Asunto(s)
Antígenos de Protozoos , Haplotipos , Malaria/epidemiología , Plasmodium vivax/genética , Proteínas Protozoarias , Receptores de Superficie Celular , Etiopía/epidemiología , Humanos , Malaria/parasitología , Malaria/prevención & control
15.
Malar J ; 20(1): 38, 2021 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-33436004

RESUMEN

BACKGROUND: Characterizing the genetic diversity of malaria parasite populations in different endemic settings (from low to high) could be helpful in determining the effectiveness of malaria interventions. This study compared Plasmodium falciparum parasite population diversity from two sites with low (pre-elimination) and high transmission in Senegal and Nigeria, respectively. METHODS: Parasite genomic DNA was extracted from 187 dried blood spot collected from confirmed uncomplicated P. falciparum malaria infected patients in Senegal (94) and Nigeria (93). Allelic polymorphism at merozoite surface protein 1 (msp1) and merozoite surface protein- 2 (msp2) genes were assessed by nested PCR. RESULTS: The most frequent msp1 and msp2 allelic families are the K1 and IC3D7 allelotypes in both Senegal and Nigeria. Multiplicity of infection (MOI) of greater that 1 and thus complex infections was common in both study sites in Senegal (Thies:1.51/2.53; Kedougou:2.2/2.0 for msp1/2) than in Nigeria (Gbagada: 1.39/1.96; Oredo: 1.35/1.75]). The heterozygosity of msp1 gene was higher in P. falciparum isolates from Senegal (Thies: 0.62; Kedougou: 0.53) than isolates from Nigeria (Gbagada: 0.55; Oredo: 0.50). In Senegal, K1 alleles was associated with heavy than with moderate parasite density. Meanwhile, equal proportions of K1 were observed in both heavy and moderate infection types in Nigeria. The IC3D7 subtype allele of the msp2 family was the most frequent in heavily parasitaemic individuals from both countries than in the moderately infected participants. CONCLUSION: The unexpectedly low genetic diversity of infections high endemic Nigerian setting compared to the low endemic settings in Senegal is suggestive of possible epidemic outbreak in Nigeria.


Asunto(s)
Antígenos de Protozoos/genética , Variación Genética , Malaria Falciparum/parasitología , Proteína 1 de Superficie de Merozoito/genética , Plasmodium falciparum/genética , Proteínas Protozoarias/genética , Adolescente , Adulto , Anciano , Niño , Preescolar , Femenino , Humanos , Lactante , Malaria Falciparum/epidemiología , Masculino , Persona de Mediana Edad , Nigeria/epidemiología , Senegal/epidemiología , Adulto Joven
16.
Artículo en Inglés | MEDLINE | ID: mdl-33020162

RESUMEN

Monitoring of Plasmodium falciparum sensitivity to antimalarial drugs in Africa is vital for malaria elimination. However, the commonly used ex vivo/in vitro 50% inhibitory concentration (IC50) test gives inconsistent results for several antimalarials, while the alternative ring-stage survival assay (RSA) for artemisinin derivatives has not been widely adopted. Here, we applied an alternative two-color flow cytometry-based parasite survival rate assay (PSRA) to detect ex vivo antimalarial tolerance in P. falciparum isolates from The Gambia. The PSRA infers parasite viability by quantifying reinvasion of uninfected cells following 3 consecutive days of drug exposure (10-fold the IC50 of drug for field isolates). The drug survival rate is obtained for each isolate from the slope of the growth/death curve. We obtained parasite survival rates of 41 isolates for dihydroartemisinin (DHA) and lumefantrine (LUM) out of 51 infections tested by ring-stage survival assay (RSA) against DHA. We also determined the genotypes for known drug resistance genetic loci in the P. falciparum genes Pfdhfr, Pfdhps, Pfmdr, Pfcrt, and Pfk13 The PSRA results determined for 41 Gambian isolates showed faster killing and lower variance after treatment with DHA than after treatment with LUM, despite a strong correlation between the two drugs. Four and three isolates were tolerant to DHA and LUM, respectively, with continuous growth during drug exposure. Isolates with the PfMDR1-Y184F mutant variant showed increased LUM survival, though the results were not statistically significant. Sulfadoxine/pyrimethamine (SP) resistance markers were fixed, while all other antimalarial variants were prevalent in more than 50% of the population. The PSRA detected ex vivo antimalarial tolerance in Gambian P. falciparum This calls for its wider application and for increased vigilance against resistance to artemisinin combination therapies (ACTs) in this population.


Asunto(s)
Antimaláricos , Artemisininas , Malaria Falciparum , Parásitos , África , Animales , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Artemisininas/farmacología , Artemisininas/uso terapéutico , Resistencia a Medicamentos , Gambia , Lumefantrina/uso terapéutico , Malaria Falciparum/tratamiento farmacológico , Plasmodium falciparum/genética , Proteínas Protozoarias/uso terapéutico , Tasa de Supervivencia
17.
Malar J ; 19(1): 299, 2020 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-32831093

RESUMEN

Plasmodium vivax has been largely neglected over the past century, despite a widespread recognition of its burden across region where it is endemic. The parasite invades reticulocytes, employing the interaction between Plasmodium vivax Duffy binding protein (PvDBP) and human Duffy antigen receptor for chemokines (DARC). However, P. vivax has now been observed in Duffy-negative individuals, presenting a potentially serious public health problem as the majority of African populations are Duffy-negative. Invasion of Duffy-negative reticulocytes is suggested to be through duplication of the PvDBP and a novel protein encoded by P. vivax erythrocyte binding protein (EBP) genes. The emergence and spread of specific P. vivax strains with ability to invade Duffy-negative reticulocytes has, therefore, drawn substantial attention and further complicated the epidemiology and public health implication of vivax malaria. Given the right environment and vectorial capacity for transmission coupled with the parasite's ability to invade Duffy-negative individuals, P. vivax could increase its epidemiological significance in Africa. In this review, authors present accruing knowledge on the paradigm shift in P. vivax invasion of Duffy-negative reticulocytes against the established mechanism of invading only Duffy-positive individuals and offer a perspective on the epidemiological diagnostic and public health implication in Africa.


Asunto(s)
Antígenos de Protozoos/metabolismo , Sistema del Grupo Sanguíneo Duffy/metabolismo , Malaria Vivax/epidemiología , Plasmodium vivax/fisiología , Proteínas Protozoarias/metabolismo , Salud Pública , Receptores de Superficie Celular/metabolismo , Reticulocitos/parasitología , Humanos , Malaria Vivax/parasitología
18.
Malar J ; 19(1): 314, 2020 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-32867769

RESUMEN

BACKGROUND: Selection pressure from continued exposure to insecticides drives development of insecticide resistance and changes in resting behaviour of malaria vectors. There is need to understand how resistance drives changes in resting behaviour within vector species. The association between insecticide resistance and resting behaviour of Anopheles gambiae sensu lato (s.l.) in Northern Ghana was examined. METHODS: F1 progenies from adult mosquitoes collected indoors and outdoors were exposed to DDT, deltamethrin, malathion and bendiocarb using WHO insecticide susceptibility tests. Insecticide resistance markers including voltage-gated sodium channel (Vgsc)-1014F, Vgsc-1014S, Vgsc-1575Y, glutathione-S-transferase epsilon 2 (GSTe2)-114T and acetylcholinesterase (Ace1)-119S, as well as blood meal sources were investigated using PCR methods. Activities of metabolic enzymes, acetylcholine esterase (AChE), non-specific ß-esterases, glutathione-S-transferase (GST) and monooxygenases were measured from unexposed F1 progenies using microplate assays. RESULTS: Susceptibility of Anopheles coluzzii to deltamethrin 24 h post-exposure was significantly higher in indoor (mortality = 5%) than outdoor (mortality = 2.5%) populations (P = 0.02). Mosquitoes were fully susceptible to malathion (mortality: indoor = 98%, outdoor = 100%). Susceptibility to DDT was significantly higher in outdoor (mortality = 9%) than indoor (mortality = 0%) mosquitoes (P = 0.006). Mosquitoes were also found with suspected resistance to bendiocarb but mortality was not statistically different (mortality: indoor = 90%, outdoor = 95%. P = 0.30). Frequencies of all resistance alleles were higher in F1 outdoor (0.11-0.85) than indoor (0.04-0.65) mosquito populations, while Vgsc-1014F in F0 An. gambiae sensu stricto (s.s) was significantly associated with outdoor-resting behaviour (P = 0.01). Activities of non-specific ß-esterase enzymes were significantly higher in outdoor than indoor mosquitoes (Mean enzyme activity: Outdoor = : 1.70/mg protein; Indoor = 1.35/mg protein. P < 0.0001). AChE activity was also more elevated in outdoor (0.62/mg protein) than indoor (0.57/mg protein) mosquitoes but this was not significant (P = 0.08). Human blood index (HBI) was predominantly detected in indoor (18%) than outdoor mosquito populations (3%). CONCLUSIONS: The overall results did not establish that there was a significant preference of resistant malaria vectors to solely rest indoors or outdoors, but varied depending on the resistant alleles present. Phenotypic resistance was higher in indoor than outdoor-resting mosquitoes, but genotypic and metabolic resistance levels were higher in outdoor than the indoor populations. Continued monitoring of changes in resting behaviour within An. gambiae s.l. populations is recommended.


Asunto(s)
Anopheles/genética , Resistencia a los Insecticidas/genética , Insecticidas/farmacología , Animales , Anopheles/efectos de los fármacos , Ecosistema , Femenino , Marcadores Genéticos/genética , Ghana
19.
Malar J ; 19(1): 437, 2020 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-33246470

RESUMEN

BACKGROUND: Extensive genetic diversity in the Plasmodium falciparum circumsporozoite protein (PfCSP) is a major contributing factor to the moderate efficacy of the RTS,S/AS01 vaccine. The transmission intensity and rates of recombination within and between populations influence the extent of its genetic diversity. Understanding the extent and dynamics of PfCSP genetic diversity in different transmission settings will help to interpret the results of current RTS,S efficacy and Phase IV implementation trials conducted within and between populations in malaria-endemic areas such as Ghana. METHODS: Pfcsp sequences were retrieved from the Illumina-generated paired-end short-read sequences of 101 and 131 malaria samples from children aged 6-59 months presenting with clinical malaria at health facilities in Cape Coast (in the coastal belt) and Navrongo (Guinea savannah region), respectively, in Ghana. The sequences were mapped onto the 3D7 reference strain genome to yield high-quality genome-wide coding sequence data. Following data filtering and quality checks to remove missing data, 220 sequences were retained and analysed for the allele frequency spectrum, genetic diversity both within the host and between populations and signatures of selection. Population genetics tools were used to determine the extent and dynamics of Pfcsp diversity in P. falciparum from the two geographically distinct locations in Ghana. RESULTS: Pfcsp showed extensive diversity at the two sites, with the higher transmission site, Navrongo, exhibiting higher within-host and population-level diversity. The vaccine strain C-terminal epitope of Pfcsp was found in only 5.9% and 45.7% of the Navrongo and Cape Coast sequences, respectively. Between 1 and 6 amino acid variations were observed in the TH2R and TH3R epitope regions of PfCSP. Tajima's D was negatively skewed, especially for the population from Cape Coast, given the expected historical population expansion. In contrast, a positive Tajima's D was observed for the Navrongo P. falciparum population, consistent with balancing selection acting on the immuno-dominant TH2R and TH3R vaccine epitopes. CONCLUSION: The low frequencies of the Pfcsp vaccine haplotype in the analysed populations indicate a need for additional molecular and immuno-epidemiological studies with broader temporal and geographic sampling in endemic populations targeted for RTS,S application. These results have implications for the efficacy of the vaccine in Ghana and will inform the choice of alleles to be included in future multivalent or chimeric vaccines.


Asunto(s)
Variación Genética , Plasmodium falciparum/genética , Proteínas Protozoarias/genética , Preescolar , Ambiente , Ghana , Humanos , Lactante
20.
Malar J ; 19(1): 6, 2020 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-31906953

RESUMEN

BACKGROUND: Vaccines are the most reliable alternative to elicit sterile immunity against malaria but their development has been hindered by polymorphisms and strain-specificity in previously studied antigens. New vaccine candidates are therefore urgently needed. Highly conserved Plasmodium falciparum reticulocyte-binding protein homologue-5 (PfRH5) has been identified as a potential candidate for anti-disease vaccine development. PfRH5 is essential for erythrocyte invasion by merozoites and crucial for parasite survival. However, there is paucity of data on the extent of genetic variations on PfRH5 in field isolates of Plasmodium falciparum. This study described genetic polymorphisms at the high affinity binding polypeptides (HABPs) 36718, 36727, 36728 of PfRH5 in Nigerian isolates of P. falciparum. This study tested the hypothesis that only specific conserved B and T cell epitopes on PfRH5 HABPs are crucial for vaccine development. METHODS: One hundred and ninety-five microscopically confirmed P. falciparum samples collected in a prospective cross-sectional study of three different populations in Lagos, Nigeria. Genetic diversity and haplotype construct of Pfrh5 gene were determined using bi-directional sequencing approach. Tajima's D and the ratio of nonsynonymous vs synonymous mutations were utilized to estimate the extent of balancing and directional selection in the pfrh5 gene. RESULTS: Sequence analysis revealed three haplotypes of PfRH5 with negative Tajima's D and dN/dS value of - 1.717 and 0.011 ± 0.020, respectively. A single nucleotide polymorphism, SNP (G → A) at position 608 was observed, which resulted in a change of the amino acid cysteine at position 203 to tyrosine. Haplotype and nucleotide diversities were 0.318 ± 0.016 and 0.0046 ± 0.0001 while inter-population genetic differentiation ranged from 0.007 to 0.037. Five polypeptide variants were identified, the most frequent being KTKYH with a frequency of 51.3%. One B-cell epitope, 151 major histocompatibility complex (MHC) class II T-cell epitopes, four intrinsically unstructured regions (IURs) and six MHC class I T-cell epitopes were observed in the study. Phylogenetic analysis of the sequences showed clustering and evidence of evolutionary relationship with 3D7, PAS-2 and FCB-2 RH5 sequences. CONCLUSIONS: This study has revealed low level of genetic polymorphisms in PfRH5 antigen with B- and T-cell epitopes in intrinsically unstructured regions along the PfRH5 gene in Lagos, Nigeria. A broader investigation is however required in other parts of the country to support the possible inclusion of PfRH5 in a cross-protective multi-component vaccine.


Asunto(s)
Proteínas Portadoras/genética , Proteínas Portadoras/inmunología , Vacunas contra la Malaria/genética , Vacunas contra la Malaria/inmunología , Polimorfismo de Nucleótido Simple , Anticuerpos Antiprotozoarios/inmunología , Antígenos de Protozoos/genética , Antígenos de Protozoos/inmunología , Estudios Transversales , Epítopos de Linfocito B , Epítopos de Linfocito T , Eritrocitos/parasitología , Flujo Génico , Haplotipos , Histocompatibilidad , Malaria Falciparum/inmunología , Malaria Falciparum/parasitología , Malaria Falciparum/prevención & control , Merozoítos/inmunología , Nigeria , Filogenia , Plasmodium falciparum/genética , Plasmodium falciparum/aislamiento & purificación , Estudios Prospectivos , Análisis de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA