Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Phylogenet Evol ; 106: 228-240, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27720784

RESUMEN

Speciation by hybridization has long been recognized among plants and includes both homoploid and allopolyploid speciation. The numbers of presumed hybrid species averages close to 11% and tends to be concentrated in a subset of angiosperm families. Recent advances in molecular methods have verified species of hybrid origin that had been presumed on the basis of morphology and have identified species that were not initially considered hybrids. Identifying species of hybrid origin is often a challenge and typically based on intermediate morphology, or discrepancies between molecular datasets. Discrepancies between data partitions may result from several factors including poor support, incomplete lineage sorting, or hybridization. A phylogenetic analysis of species in Columnea (Gesneriaceae) indicated significant incongruencies between the cpDNA and nrDNA datasets. Tests that examined whether one or both of the datasets had the phylogenetic signal to reject the topology of the alternate dataset (Shimodaira and Hasegawa [SH] and approximately unbiased [AU] tests) indicated significant differences between the topologies. Splitstree analyses also showed that there was support for the placement of the discrepant taxa in both datasets and that the combined data placed the putative hybrid species in an intermediate position between the two datasets. The genealogical sorting index (GSI) implied that coalescence in nrDNA had occurred in all species where more than a single individual had been sampled, but the GSI value was lower for the cpDNA of most of the putative hybrids, implying that these regions have not yet coalesced in these lineages despite being haploid. The JML test that evaluates simulated species pairwise distances against observed distances also implies that observed nrDNA data generate shorter distances than simulated data, implying hybridization. It is most likely that C. gigantifolia, C. rubriacuta, and C. sp. nov. represent a lineage from a hybrid ancestor, but C. moorei may be a more recent hybrid and may still be undergoing hybridization with sympatric species.


Asunto(s)
Hibridación Genética , Lamiales/clasificación , Teorema de Bayes , Cloroplastos/genética , ADN de Plantas/química , ADN de Plantas/aislamiento & purificación , ADN de Plantas/metabolismo , Lamiales/genética , Filogenia , Alineación de Secuencia , Análisis de Secuencia de ADN , Simpatría
2.
Insects ; 10(11)2019 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-31752087

RESUMEN

Olfactory learning and floral scents are co-adaptive traits in the plant-pollinator relationship. However, how scent relates to cognition and learning in the diverse group of Neotropical stingless bees is largely unknown. Here we evaluated the ability of Melipona eburnea to be conditioned to scent using the proboscis extension reflex (PER) protocol. Stingless bees did not show PER while harnessed but were able to be PER conditioned to scent when free-to-move in a mini-cage (fmPER). We evaluated the effect of: 1) unconditioned stimulus (US) reward, and 2) previous scent-reward associations on olfactory learning performance. When using unscented-US, PER-responses were low on day 1, but using scented-US reward the olfactory PER-response increased on day 1. On day 2 PER performance greatly increased in bees that previously had experienced the same odor and reward combination, while bees that experienced a different odor on day 2 showed poor olfactory learning. Bees showed higher olfactory PER conditioning to guava than to mango odor. The effect of the unconditioned stimulus reward was not a significant factor in the model on day 2. This indicates that olfactory learning performance can increase via either taste receptors or accumulated experience with the same odor. Our results have application in agriculture and pollination ecology.

3.
PLoS One ; 12(12): e0188408, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29211805

RESUMEN

Plant responses induced by herbivore damage can provide fitness benefits, but can also have important costs due to altered interactions with mutualist pollinators. We examined the effects of plant responses to herbivory in a hummingbird-pollinated distylous shrub, Palicourea angustifolia. Through a series of field experiments we investigated whether damage from foliar herbivores leads to a reduction in fruit set, influences floral visitation, or alters floral traits that may influence pollinator preference or pollinator efficiency. Foliar herbivory by a generalist grasshopper led to reduced fruit set in branches that were directly damaged as well as in adjacent undamaged branches on the same plant. Furthermore, herbivory resulted in reduced floral visitation from two common hummingbird species and two bee species. An investigation into the potential mechanisms behind reduced floral visitation in induced plants showed that foliar herbivore damage resulted in shorter styles and lower nectar volumes. This reduction in style length could reduce pollen deposition between different floral morphs that is required for optimal pollination in a distylous plant. We did not detect any differences in the volatile blends released by damaged and undamaged branches, suggesting that foliar herbivore-induced changes in floral morphology and rewards, and not volatile blends, are the primary mechanism mediating changes in visitation. Our results provide novel mechanisms for how plant responses induced by foliar herbivores can lead to ecological costs.


Asunto(s)
Aves/fisiología , Herbivoria , Insectos/fisiología , Hojas de la Planta/fisiología , Polinización , Animales , Flores/fisiología , Volatilización
4.
Insects ; 5(1): 243-69, 2014 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-26462587

RESUMEN

Learning facilitates behavioral plasticity, leading to higher success rates when foraging. However, memory is of decreasing value with changes brought about by moving to novel resource locations or activity at different times of the day. These premises suggest a foraging model with location- and time-linked memory. Thus, each problem is novel, and selection should favor a maximum likelihood approach to achieve energy maximization results. Alternatively, information is potentially always applicable. This premise suggests a different foraging model, one where initial decisions should be based on previous learning regardless of the foraging site or time. Under this second model, no problem is considered novel, and selection should favor a Bayesian or pseudo-Bayesian approach to achieve energy maximization results. We tested these two models by offering honey bees a learning situation at one location in the morning, where nectar rewards differed between flower colors, and examined their behavior at a second location in the afternoon where rewards did not differ between flower colors. Both blue-yellow and blue-white dimorphic flower patches were used. Information learned in the morning was clearly used in the afternoon at a new foraging site. Memory was not location-time restricted in terms of use when visiting either flower color dimorphism.

5.
Acta biol. colomb ; 14(2): 125-136, ago. 2009. ilus
Artículo en Español | LILACS | ID: lil-634917

RESUMEN

Los polinizadores altamente especializados en su dieta, no hacen escogencias florales, ellos visitan un recurso específico siguiendo el dictado de la información almacenada en sus genes. En contraste, para la abeja social Apis mellifera una escogencia floral implica, la toma de una decisión, usualmente con criterio económico, basada en información aprendida y almacenada en alguna forma de memoria. Aunque existen numerosos estudios y modelos sobre la escogencia floral en abejas, la gran mayoría de éstos, han derivado sus conclusiones a partir de condiciones temporalmente fijas de la interacción. Muy pocos estudios han abordado la dinámica propia del contexto ecológico, en el cual el mercado floral de las abejas cambia con las estaciones del año y con los patrones diarios de antesis floral. Este cambio en la disponibilidad de especies florales enfrenta a los polinizadores, a realizar escogencias secuenciales acerca del alimento a explotar. En este trabajo abordo el tema del forrajeo secuencial en parches florales heterospecíficos, enfocándome en el uso que la abeja melífera hace de la información previamente aprendida en un contexto, cuando se enfrenta a la explotación de alimento en un contexto ecológicamente diferente. He realizado experimentos sobre escogencia floral simulando las condiciones de cambio del paisaje floral, exponiendo abejas individuales de A. mellifera a decidir sobre cuales especies forrajear en cada parche. Los resultados indican que la abeja invierte en procesos de aprendizaje en un muestreo inicial, pero una vez almacenada la información, utiliza una pieza de la información previamente aprendida (color) para explotar parches florales heteroespecíficos siguiendo una imagen de búsqueda de color. En esta revisión discuto situaciones biológicas de la interacción planta-abeja, las cuales apoyan la idea que en la naturaleza el uso de imágenes de búsqueda de color por parte de abejas sociales puede ser más común de lo que hasta ahora se ha pensado. Beneficios y costos se derivan de este comportamiento.


Pollinators highly specialized in their diet do not make food choices by means of cognitive processes; they just follow the dictate writing in their genes. Contrary, for the social bee Apis mellifera a floral choice implies to make a decision, usually following an economic criterion, based on information acquired from the environment and stored in some form of memory. Although there are numerous studies and models about floral choice in bees, most of them have derived their conclusions from 'static' conditions of the interaction. Rarely those studies have considered the dynamics of the ecological context, in which seasonality and daily rhythms in floral anthesis change the floral market for the bees. The change in flower species composition faces the pollinators to make sequential choices about what plant species to exploit in each case. In this paper I enter the subject about sequential foraging on heterospecific floral patches, focusing on the use that the bee A. mellifera makes of the information previously learned in a context, when the same bee face food exploitation in a completely different ecological context. I have done some experiments simulating two different floral patches, and exposing individuals of A. mellifera to decide about what floral resource to forage in each patch. The results indicate that the bee initially samples alternatives and they do invest on cognitive process to learn about the best flower species, but once this information is stored in the bee's memory, the bee takes a piece of the learned information (color), to use it as a search image while exploiting heterospecific floral patches. In this paper I discuss biological situations, which support the idea that in nature the use of a color search images by social bees, can be more common than it was thought initially. Cost and benefits are derived from this behavior.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA