Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Mol Microbiol ; 84(3): 516-29, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22435733

RESUMEN

Burkholderia pseudomallei is a category B pathogen and the causative agent of melioidosis--a serious infectious disease that is typically acquired directly from environmental reservoirs. Nearly all B. pseudomallei strains sequenced to date (> 85 isolates) contain gene clusters that are related to the contact-dependent growth inhibition (CDI) systems of γ-proteobacteria. CDI systems from Escherichia coli and Dickeya dadantii play significant roles in bacterial competition, suggesting these systems may also contribute to the competitive fitness of B. pseudomallei. Here, we identify 10 distinct CDI systems in B. pseudomallei based on polymorphisms within the cdiA-CT/cdiI coding regions, which are predicted to encode CdiA-CT/CdiI toxin/immunity protein pairs. Biochemical analysis of three B. pseudomallei CdiA-CTs revealed that each protein possesses a distinct tRNase activity capable of inhibiting cell growth. These toxin activities are blocked by cognate CdiI immunity proteins, which specifically bind the CdiA-CT and protect cells from growth inhibition. Using Burkholderia thailandensis E264 as a model, we show that a CDI system from B. pseudomallei 1026b mediates CDI and is capable of delivering CdiA-CT toxins derived from other B. pseudomallei strains. These results demonstrate that Burkholderia species contain functional CDI systems, which may confer a competitive advantage to these bacteria.


Asunto(s)
Proteínas Bacterianas/inmunología , Toxinas Bacterianas/inmunología , Burkholderia pseudomallei/crecimiento & desarrollo , Burkholderia pseudomallei/metabolismo , Inhibición de Contacto , Melioidosis/inmunología , Melioidosis/microbiología , Proteínas Bacterianas/genética , Toxinas Bacterianas/genética , Burkholderia pseudomallei/enzimología , Burkholderia pseudomallei/genética , Endorribonucleasas/genética , Endorribonucleasas/metabolismo , Humanos , Familia de Multigenes
2.
Glycobiology ; 15(4): 361-7, 2005 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-15574802

RESUMEN

In the Gram-negative bacterium Campylobacter jejuni there is a pgl (protein glycosylation) locus-dependent general N-glycosylation system of proteins. One of the proteins encoded by pgl locus, PglB, a homolog of the eukaryotic oligosaccharyltransferase component Stt3p, is proposed to function as an oligosaccharyltransferase in this prokaryotic system. The sequence requirements of the acceptor polypeptide for N-glycosylation were analyzed by reverse genetics using the reconstituted glycosylation of the model protein AcrA in Escherichia coli. As in eukaryotes, the N-X-S/T sequon is an essential but not a sufficient determinant for N-linked protein glycosylation. This conclusion was supported by the analysis of a novel C. jejuni glycoprotein, HisJ. Export of the polypeptide to the periplasm was required for glycosylation. Our data support the hypothesis that eukaryotic and bacterial N-linked protein glycosylation are homologous processes.


Asunto(s)
Proteínas Bacterianas/genética , Campylobacter jejuni/genética , Hexosiltransferasas/genética , Proteínas de la Membrana/genética , Procesamiento Proteico-Postraduccional/genética , Secuencias de Aminoácidos/genética , Glicosilación , Transporte de Proteínas/genética
3.
Mol Microbiol ; 55(6): 1695-703, 2005 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-15752194

RESUMEN

We describe in this report the characterization of the recently discovered N-linked glycosylation locus of the human bacterial pathogen Campylobacter jejuni, the first such system found in a species from the domain Bacteria. We exploited the ability of this locus to function in Escherichia coli to demonstrate through mutational and structural analyses that variant glycan structures can be transferred onto protein indicating the relaxed specificity of the putative oligosaccharyltransferase PglB. Structural data derived from these variant glycans allowed us to infer the role of five individual glycosyltransferases in the biosynthesis of the N-linked heptasaccharide. Furthermore, we show that C. jejuni- and E. coli-derived pathways can interact in the biosynthesis of N-linked glycoproteins. In particular, the E. coli encoded WecA protein, a UDP-GlcNAc: undecaprenylphosphate GlcNAc-1-phosphate transferase involved in glycolipid biosynthesis, provides for an alternative N-linked heptasaccharide biosynthetic pathway bypassing the requirement for the C. jejuni-derived glycosyltransferase PglC. This is the first experimental evidence that biosynthesis of the N-linked glycan occurs on a lipid-linked precursor prior to transfer onto protein. These findings provide a framework for understanding the process of N-linked protein glycosylation in Bacteria and for devising strategies to exploit this system for glycoengineering.


Asunto(s)
Proteínas Bacterianas/metabolismo , Campylobacter jejuni/metabolismo , Glicoproteínas/metabolismo , Procesamiento Proteico-Postraduccional , Proteínas Bacterianas/genética , Campylobacter jejuni/enzimología , Campylobacter jejuni/genética , Clonación Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/fisiología , Prueba de Complementación Genética , Glicosilación , Hexosiltransferasas/genética , Hexosiltransferasas/metabolismo , Espectrometría de Masas , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Mutación , Fosfatos de Poliisoprenilo/metabolismo , Polisacáridos/química , Polisacáridos/aislamiento & purificación , Polisacáridos/metabolismo , Especificidad por Sustrato , Transferasas (Grupos de Otros Fosfatos Sustitutos)/genética , Transferasas (Grupos de Otros Fosfatos Sustitutos)/fisiología , Uridina Difosfato N-Acetilglucosamina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA