Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Brain ; 146(8): 3444-3454, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37143309

RESUMEN

Brain oedema is a life-threatening complication of various neurological conditions. Understanding molecular mechanisms of brain volume regulation is critical for therapy development. Unique insight comes from monogenic diseases characterized by chronic brain oedema, of which megalencephalic leukoencephalopathy with subcortical cysts (MLC) is the prototype. Variants in MLC1 or GLIALCAM, encoding proteins involved in astrocyte volume regulation, are the main causes of MLC. In some patients, the genetic cause remains unknown. We performed genetic studies to identify novel gene variants in MLC patients, diagnosed by clinical and MRI features, without MLC1 or GLIALCAM variants. We determined subcellular localization of the related novel proteins in cells and in human brain tissue. We investigated functional consequences of the newly identified variants on volume regulation pathways using cell volume measurements, biochemical analysis and electrophysiology. We identified a novel homozygous variant in AQP4, encoding the water channel aquaporin-4, in two siblings, and two de novo heterozygous variants in GPRC5B, encoding the orphan G protein-coupled receptor GPRC5B, in three unrelated patients. The AQP4 variant disrupts membrane localization and thereby channel function. GPRC5B, like MLC1, GlialCAM and aquaporin-4, is expressed in astrocyte endfeet in human brain. Cell volume regulation is disrupted in GPRC5B patient-derived lymphoblasts. GPRC5B functionally interacts with ion channels involved in astrocyte volume regulation. In conclusion, we identify aquaporin-4 and GPRC5B as old and new players in genetic brain oedema. Our findings shed light on the protein complex involved in astrocyte volume regulation and identify GPRC5B as novel potentially druggable target for treating brain oedema.


Asunto(s)
Edema Encefálico , Enfermedades Desmielinizantes del Sistema Nervioso Central Hereditarias , Humanos , Proteínas de la Membrana/genética , Edema Encefálico/genética , Edema Encefálico/metabolismo , Mutación/genética , Enfermedades Desmielinizantes del Sistema Nervioso Central Hereditarias/genética , Encéfalo/metabolismo , Astrocitos/metabolismo , Acuaporina 4/genética , Acuaporina 4/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo
2.
Int J Mol Sci ; 23(1)2021 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-35008700

RESUMEN

Astrocytes are very versatile cells, endowed with multitasking capacities to ensure brain homeostasis maintenance from brain development to adult life. It has become increasingly evident that astrocytes play a central role in many central nervous system pathologies, not only as regulators of defensive responses against brain insults but also as primary culprits of the disease onset and progression. This is particularly evident in some rare leukodystrophies (LDs) where white matter/myelin deterioration is due to primary astrocyte dysfunctions. Understanding the molecular defects causing these LDs may help clarify astrocyte contribution to myelin formation/maintenance and favor the identification of possible therapeutic targets for LDs and other CNS demyelinating diseases. To date, the pathogenic mechanisms of these LDs are poorly known due to the rarity of the pathological tissue and the failure of the animal models to fully recapitulate the human diseases. Thus, the development of human induced pluripotent stem cells (hiPSC) from patient fibroblasts and their differentiation into astrocytes is a promising approach to overcome these issues. In this review, we discuss the primary role of astrocytes in LD pathogenesis, the experimental models currently available and the advantages, future evolutions, perspectives, and limitations of hiPSC to study pathologies implying astrocyte dysfunctions.


Asunto(s)
Astrocitos/patología , Células Madre Pluripotentes Inducidas/citología , Leucoencefalopatías/patología , Diferenciación Celular , Humanos , Modelos Biológicos , Vaina de Mielina/patología
3.
Health Info Libr J ; 38(3): 237-241, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34272922

RESUMEN

In 2015, the Italian Ministry of Education in Italy launched innovative upper school educational programmes envisaging school-work initiatives. In this framework, the National Institute of Health (Istituto Superiore di Sanità, ISS) was among the first scientific institutions to develop educational programmes with school. Involving school students in health research activities allowed health literacy improvement, acquisition of scientific communication skills and fostered student interest in science careers. This article focuses on how health literacy and health promotion can be taught to school students through taking part in this programme. It is a multi-disciplinary collaboration among different stakeholders-ISS tutors (researchers, information and communication experts), teachers and students. This collaborative initiative is a good example of 'teaching and learning' in action since all stakeholders could benefit from cross-fertilisation in an informal educational context.


Asunto(s)
Promoción de la Salud , Aprendizaje , Humanos , Servicios de Información , Italia , Instituciones Académicas
4.
Neurobiol Dis ; 119: 88-99, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30076890

RESUMEN

Megalencephalic leukoencephalopathy with subcortical cysts (MLC) is a rare type of leukodystrophy caused by mutations in either MLC1 or GLIALCAM genes. Previous work indicated that chloride currents mediated by the volume-regulated anion channel (VRAC) and ClC-2 channels were affected in astrocytes deficient in either Mlc1 or Glialcam. ClC-2 forms a ternary complex with GlialCAM and MLC1. LRRC8 proteins have been identified recently as the molecular components of VRAC, but the relationship between MLC and LRRC8 proteins is unknown. Here, we first demonstrate that LRRC8 and MLC1 are functionally linked, as MLC1 cannot potentiate VRAC currents when LRRC8A, the main subunit of VRAC, is knocked down. We determine that LRRC8A and MLC1 do not co-localize or interact and, in Xenopus oocytes, MLC1 does not potentiate LRRC8-mediated VRAC currents, indicating that VRAC modulation in astrocytes by MLC1 may be indirect. Investigating the mechanism of modulation, we find that a lack of MLC1 does not influence either mRNA or total and plasma membrane protein levels of LRRC8A; and neither does it affect LRRC8A subcellular localization. In agreement with recent results that indicated that overexpression of MLC1 decreases the phosphorylation of extracellular signal-regulated kinases (ERK), we find that astrocytes lacking MLC1 show an increase in ERK phosphorylation. In astrocytes with reduced or increased levels of MLC1 we observe changes in the phosphorylation state of the VRAC subunit LRRC8C. Our results thus reinforce previous suggestions that indicated that GlialCAM/MLC1 might modify signal transduction pathways that influence the activity of different proteins, such as VRAC.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Astrocitos/metabolismo , Quistes/metabolismo , Enfermedades Desmielinizantes del Sistema Nervioso Central Hereditarias/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/análisis , Proteínas Adaptadoras Transductoras de Señales/genética , Secuencia de Aminoácidos , Animales , Astrocitos/química , Astrocitos/patología , Proteínas de Ciclo Celular , Células Cultivadas , Quistes/patología , Células HeLa , Enfermedades Desmielinizantes del Sistema Nervioso Central Hereditarias/patología , Humanos , Proteínas de la Membrana/análisis , Proteínas de la Membrana/genética , Proteínas/análisis , Proteínas/genética , Ratas , Xenopus
5.
Hum Mol Genet ; 25(8): 1543-58, 2016 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-26908604

RESUMEN

Mutations in the MLC1 gene, which encodes a protein expressed in brain astrocytes, are the leading cause of MLC, a rare leukodystrophy characterized by macrocephaly, brain edema, subcortical cysts, myelin and astrocyte vacuolation. Although recent studies indicate that MLC1 protein is implicated in the regulation of cell volume changes, the exact role of MLC1 in brain physiology and in the pathogenesis of MLC disease remains to be clarified. In preliminary experiments, we observed that MLC1 was poorly expressed in highly proliferating astrocytoma cells when compared with primary astrocytes, and that modulation of MLC1 expression influenced astrocyte growth. Because volume changes are key events in cell proliferation and during brain development MLC1 expression is inversely correlated to astrocyte progenitor proliferation levels, we investigated the possible role for MLC1 in the control of astrocyte proliferation. We found that overexpression of wild type but not mutant MLC1 in human astrocytoma cells hampered cell growth by favoring epidermal growth factor receptor (EGFR) degradation and by inhibiting EGF-induced Ca(+) entry, ERK1/2 and PLCγ1 activation, and calcium-activated KCa3.1 potassium channel function, all molecular pathways involved in astrocyte proliferation stimulation. Interestingly, MLC1 did not influence AKT, an EGFR-stimulated kinase involved in cell survival. Moreover, EGFR expression was higher in macrophages derived from MLC patients than from healthy individuals. Since reactive astrocytes proliferate and re-express EGFR in response to different pathological stimuli, the present findings provide new information on MLC pathogenesis and unravel an important role for MLC1 in other brain pathological conditions where astrocyte activation occurs.


Asunto(s)
Astrocitos/citología , Quistes/patología , Receptores ErbB/metabolismo , Enfermedades Desmielinizantes del Sistema Nervioso Central Hereditarias/patología , Proteínas de la Membrana/metabolismo , Animales , Astrocitos/metabolismo , Astrocitoma/genética , Astrocitoma/patología , Línea Celular Tumoral , Proliferación Celular , Quistes/genética , Regulación de la Expresión Génica , Enfermedades Desmielinizantes del Sistema Nervioso Central Hereditarias/genética , Humanos , Proteínas de la Membrana/genética , Mutación , Ratas , Transducción de Señal
6.
Hum Mol Genet ; 23(18): 4875-86, 2014 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-24794859

RESUMEN

Short QT3 syndrome (SQT3S) is a cardiac disorder characterized by a high risk of mortality and associated with mutations in Kir2.1 (KCNJ2) channels. The molecular mechanisms leading to channel dysfunction, cardiac rhythm disturbances and neurodevelopmental disorders, potentially associated with SQT3S, remain incompletely understood. Here, we report on monozygotic twins displaying a short QT interval on electrocardiogram recordings and autism-epilepsy phenotype. Genetic screening identified a novel KCNJ2 variant in Kir2.1 that (i) enhanced the channel's surface expression and stability at the plasma membrane, (ii) reduced protein ubiquitylation and degradation, (iii) altered protein compartmentalization in lipid rafts by targeting more channels to cholesterol-poor domains and (iv) reduced interactions with caveolin 2. Importantly, our study reveals novel physiological mechanisms concerning wild-type Kir2.1 channel processing by the cell, such as binding to both caveolin 1 and 2, protein degradation through the ubiquitin-proteasome pathway; in addition, it uncovers a potential multifunctional site that controls Kir2.1 surface expression, protein half-life and partitioning to lipid rafts. The reported mechanisms emerge as crucial also for proper astrocyte function, suggesting the need for a neuropsychiatric evaluation in patients with SQT3S and offering new opportunities for disease management.


Asunto(s)
Arritmias Cardíacas/genética , Arritmias Cardíacas/patología , Trastorno Autístico/genética , Epilepsia/genética , Sistema de Conducción Cardíaco/anomalías , Cardiopatías Congénitas/genética , Cardiopatías Congénitas/patología , Canales de Potasio de Rectificación Interna/genética , Animales , Astrocitoma/metabolismo , Trastorno Autístico/patología , Caveolina 1/metabolismo , Caveolina 2/metabolismo , Línea Celular , Niño , Epilepsia/patología , Estudios de Asociación Genética , Células HEK293 , Sistema de Conducción Cardíaco/patología , Humanos , Masculino , Mutación , Fenotipo , Canales de Potasio de Rectificación Interna/metabolismo , Gemelos Monocigóticos , Xenopus laevis/embriología
7.
Neurobiol Dis ; 66: 1-18, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24561067

RESUMEN

Megalencephalic leukoencephalopathy with subcortical cysts (MLC) is a rare leukodystrophy caused by mutations in the gene encoding MLC1, a membrane protein mainly expressed in astrocytes in the central nervous system. Although MLC1 function is unknown, evidence is emerging that it may regulate ion fluxes. Using biochemical and proteomic approaches to identify MLC1 interactors and elucidate MLC1 function we found that MLC1 interacts with the vacuolar ATPase (V-ATPase), the proton pump that regulates endosomal acidity. Because we previously showed that in intracellular organelles MLC1 directly binds Na, K-ATPase, which controls endosomal pH, we studied MLC1 endosomal localization and trafficking and MLC1 effects on endosomal acidity and function using human astrocytoma cells overexpressing wild-type (WT) MLC1 or MLC1 carrying pathological mutations. We found that WT MLC1 is abundantly expressed in early (EEA1(+), Rab5(+)) and recycling (Rab11(+)) endosomes and uses the latter compartment to traffic to the plasma membrane during hyposmotic stress. We also showed that WT MLC1 limits early endosomal acidification and influences protein trafficking in astrocytoma cells by stimulating protein recycling, as revealed by FITC-dextran measurement of endosomal pH and transferrin protein recycling assay, respectively. WT MLC1 also favors recycling to the plasma-membrane of the TRPV4 cation channel which cooperates with MLC1 to activate calcium influx in astrocytes during hyposmotic stress. Although MLC disease-causing mutations differentially affect MLC1 localization and trafficking, all the mutated proteins fail to influence endosomal pH and protein recycling. This study demonstrates that MLC1 modulates endosomal pH and protein trafficking suggesting that alteration of these processes contributes to MLC pathogenesis.


Asunto(s)
Astrocitos/metabolismo , Endosomas/metabolismo , Proteínas de la Membrana/metabolismo , Transporte de Proteínas , Animales , Encéfalo/metabolismo , Calcio/metabolismo , Línea Celular Tumoral , Membrana Celular/metabolismo , Endosomas/efectos de los fármacos , Células HEK293 , Humanos , Concentración de Iones de Hidrógeno , Proteínas de la Membrana/genética , Estrés Oxidativo , Transporte de Proteínas/efectos de los fármacos , Ratas , Canales Catiónicos TRPV/metabolismo , Transferrina/metabolismo , ATPasas de Translocación de Protón Vacuolares/antagonistas & inhibidores , ATPasas de Translocación de Protón Vacuolares/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Proteínas de Unión al GTP rab5/metabolismo
8.
Hum Mol Genet ; 21(10): 2166-80, 2012 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-22328087

RESUMEN

Megalencephalic leukoencephalopathy with subcortical cysts (MLC), a rare leukodystrophy characterized by macrocephaly, subcortical fluid cysts and myelin vacuolation, has been linked to mutations in the MLC1 gene. This gene encodes a membrane protein that is highly expressed in astrocytes. Based on MLC pathological features, it was proposed that astrocyte-mediated defects in ion and fluid homeostasis could account for the alterations observed in MLC-affected brains. However, the role of MLC1 and the effects of pathological mutations on astrocyte osmoregulatory functions have still to be demonstrated. Using human astrocytoma cells stably overexpressing wild-type MLC1 or three known MLC-associated pathological mutations, we investigated MLC1 involvement in astrocyte reaction to osmotic changes using biochemical, dynamic video imaging and immunofluorescence techniques. We have found that MLC1 overexpressed in astrocytoma cells is mainly localized in the plasma membrane, is part of the Na,K-ATPase-associated molecular complex that includes the potassium channel Kir4.1, syntrophin and aquaporin-4 and functionally interacts with the calcium permeable channel TRPV4 (transient receptor potential vanilloid-4 cation channel) which mediates swelling-induced cytosolic calcium increase and volume recovery in response to hyposmosis. Pathological MLC mutations cause changes in MLC1 expression and intracellular localization as well as in the astrocyte response to osmotic changes by altering MLC1 molecular interactions with the Na,K-ATPase molecular complex and abolishing the increase in calcium influx induced by hyposmosis and treatment with the TRPV4 agonist 4αPDD. These data demonstrate, for the first time, that MLC1 plays a role in astrocyte osmo-homeostasis and that defects in intracellular calcium dynamics may contribute to MLC pathogenesis.


Asunto(s)
Astrocitos/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Canales Catiónicos TRPV/metabolismo , Calcio/metabolismo , Cationes Bivalentes , Quistes/genética , Quistes/metabolismo , Enfermedades Desmielinizantes del Sistema Nervioso Central Hereditarias/genética , Enfermedades Desmielinizantes del Sistema Nervioso Central Hereditarias/metabolismo , Humanos , Mutación , Ósmosis , Transfección
9.
Mol Cell Neurosci ; 56: 307-21, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23851226

RESUMEN

Megalencephalic leukoencephalopathy with subcortical cysts (MLC) is a rare congenital leukodystrophy characterized by macrocephaly, subcortical cysts and demyelination. The majority of patients harbor mutations in the MLC1 gene encoding for a membrane protein with largely unknown function. Mutations in MLC1 hamper its normal trafficking and distribution in cell membranes, leading to enhanced degradation. MLC1 protein is highly expressed in brain astrocytes and in circulating blood cells, particularly monocytes. We used these easily available cells and monocyte-derived macrophages from healthy donors and MLC1-mutated patients to study MLC1 expression and localization, and to investigate how defective MLC1 mutations may affect macrophage functions. RT-PCR, western blot and immunofluorescence analyses show that MLC1 is expressed in both monocytes and macrophages, and its biosynthesis follows protein trafficking between endoplasmic reticulum and trans-Golgi network and the secretory pathway to the cell surface. MLC1 is transported along the endosomal recycling pathway passing through Rab5+ and Rab11A+vesicles before lysosomal degradation. Alterations in MLC1 trafficking and distribution were observed in macrophages from MLC1-mutated patients, which also showed changes in the expression and localization of several proteins involved in plasma membrane permeability, ion and water homeostasis and ion-regulated exocytosis. As a consequence of these alterations, patient-derived macrophages show abnormal cell morphology and intracellular calcium influx and altered response to hypo-osmotic stress. Our results suggest that blood-derived macrophages may give relevant information on MLC1 function and may be considered as valid biomarkers for MLC diagnosis and for investigating therapeutic strategies aimed to restore MLC1 trafficking in patient cells.


Asunto(s)
Quistes/metabolismo , Enfermedades Desmielinizantes del Sistema Nervioso Central Hereditarias/metabolismo , Macrófagos/metabolismo , Proteínas de la Membrana/metabolismo , Monocitos/metabolismo , Adolescente , Adulto , Biomarcadores/metabolismo , Estudios de Casos y Controles , Membrana Celular/metabolismo , Niño , Quistes/diagnóstico , Quistes/genética , Retículo Endoplásmico/metabolismo , Enfermedades Desmielinizantes del Sistema Nervioso Central Hereditarias/diagnóstico , Enfermedades Desmielinizantes del Sistema Nervioso Central Hereditarias/genética , Humanos , Proteínas de la Membrana/genética , Persona de Mediana Edad , Mutación , Transporte de Proteínas , Vías Secretoras , Red trans-Golgi/metabolismo
10.
Biomolecules ; 14(4)2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38672460

RESUMEN

A considerable effort has been spent in the past decades to develop targeted therapies for the treatment of demyelinating diseases, such as multiple sclerosis (MS). Among drugs with free radical scavenging activity and oligodendrocyte protecting effects, Edaravone (Radicava) has recently received increasing attention because of being able to enhance remyelination in experimental in vitro and in vivo disease models. While its beneficial effects are greatly supported by experimental evidence, there is a current paucity of information regarding its mechanism of action and main molecular targets. By using high-throughput RNA-seq and biochemical experiments in murine oligodendrocyte progenitors and SH-SY5Y neuroblastoma cells combined with molecular docking and molecular dynamics simulation, we here provide evidence that Edaravone triggers the activation of aryl hydrocarbon receptor (AHR) signaling by eliciting AHR nuclear translocation and the transcriptional-mediated induction of key cytoprotective gene expression. We also show that an Edaravone-dependent AHR signaling transduction occurs in the zebrafish experimental model, associated with a downstream upregulation of the NRF2 signaling pathway. We finally demonstrate that its rapid cytoprotective and antioxidant actions boost increased expression of the promyelinating Olig2 protein as well as of an Olig2:GFP transgene in vivo. We therefore shed light on a still undescribed potential mechanism of action for this drug, providing further support to its therapeutic potential in the context of debilitating demyelinating conditions.


Asunto(s)
Antioxidantes , Edaravona , Receptores de Hidrocarburo de Aril , Transducción de Señal , Animales , Humanos , Ratones , Antioxidantes/farmacología , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Línea Celular Tumoral , Edaravona/farmacología , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Factor 2 Relacionado con NF-E2/metabolismo , Receptores de Hidrocarburo de Aril/efectos de los fármacos , Receptores de Hidrocarburo de Aril/metabolismo , Transducción de Señal/efectos de los fármacos , Pez Cebra/metabolismo
11.
Hum Mol Genet ; 20(1): 90-103, 2011 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-20926452

RESUMEN

Megalencephalic leucoencephalopathy with subcortical cysts (MLC) is a rare congenital leucodystrophy caused by mutations in MLC1, a membrane protein of unknown function. MLC1 expression in astrocyte end-feet contacting blood vessels and meninges, along with brain swelling, fluid cysts and myelin vacuolation observed in MLC patients, suggests a possible role for MLC1 in the regulation of fluid and ion homeostasis and cellular volume changes. To identify MLC1 direct interactors and dissect the molecular pathways in which MLC1 is involved, we used NH2-MLC1 domain as a bait to screen a human brain library in a yeast two-hybrid assay. We identified the ß1 subunit of the Na,K-ATPase pump as one of the interacting clones and confirmed it by pull-downs, co-fractionation assays and immunofluorescence stainings in human and rat astrocytes in vitro and in brain tissue. By performing ouabain-affinity chromatography on astrocyte and brain extracts, we isolated MLC1 and the whole Na,K-ATPase enzyme in a multiprotein complex that included Kir4.1, syntrophin and dystrobrevin. Because Na,K-ATPase is involved in intracellular osmotic control and volume regulation, we investigated the effect of hypo-osmotic stress on MLC1/Na,K-ATPase relationship in astrocytes. We found that hypo-osmotic conditions increased MLC1 membrane expression and favoured MLC1/Na,K-ATPase-ß1 association. Moreover, hypo-osmosis induced astrocyte swelling and the reversible formation of endosome-derived vacuoles, where the two proteins co-localized. These data suggest that through its interaction with Na,K-ATPase, MLC1 is involved in the control of intracellular osmotic conditions and volume regulation in astrocytes, opening new perspectives for understanding the pathological mechanisms of MLC disease.


Asunto(s)
Astrocitos/metabolismo , Encéfalo/metabolismo , Proteínas de la Membrana/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Animales , Células Cultivadas , Quistes/genética , Quistes/metabolismo , Enfermedades Desmielinizantes del Sistema Nervioso Central Hereditarias/genética , Enfermedades Desmielinizantes del Sistema Nervioso Central Hereditarias/metabolismo , Humanos , Proteínas de la Membrana/genética , Esclerosis Múltiple/metabolismo , Esclerosis Múltiple/patología , Complejos Multiproteicos/metabolismo , Ratas , Ratas Wistar , ATPasa Intercambiadora de Sodio-Potasio/genética
12.
Cells ; 11(17)2022 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-36078064

RESUMEN

Astrocytes, the main glial cells of the central nervous system, play a key role in brain volume control due to their intimate contacts with cerebral blood vessels and the expression of a distinctive equipment of proteins involved in solute/water transport. Among these is MLC1, a protein highly expressed in perivascular astrocytes and whose mutations cause megalencephalic leukoencephalopathy with subcortical cysts (MLC), an incurable leukodystrophy characterized by macrocephaly, chronic brain edema, cysts, myelin vacuolation, and astrocyte swelling. Although, in astrocytes, MLC1 mutations are known to affect the swelling-activated chloride currents (ICl,swell) mediated by the volume-regulated anion channel (VRAC), and the regulatory volume decrease, MLC1's proper function is still unknown. By combining molecular, biochemical, proteomic, electrophysiological, and imaging techniques, we here show that MLC1 is a Ca2+/Calmodulin-dependent protein kinase II (CaMKII) target protein, whose phosphorylation, occurring in response to intracellular Ca2+ release, potentiates VRAC-mediated ICl,swell. Overall, these findings reveal that MLC1 is a Ca2+-regulated protein, linking volume regulation to Ca2+ signaling in astrocytes. This knowledge provides new insight into the MLC1 protein function and into the mechanisms controlling ion/water exchanges in the brain, which may help identify possible molecular targets for the treatment of MLC and other pathological conditions caused by astrocyte swelling and brain edema.


Asunto(s)
Edema Encefálico , Quistes , Astrocitos/metabolismo , Edema Encefálico/patología , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Cloruros/metabolismo , Quistes/metabolismo , Enfermedades Desmielinizantes del Sistema Nervioso Central Hereditarias , Humanos , Proteínas de la Membrana/metabolismo , Proteómica , Canales Aniónicos Dependientes del Voltaje/metabolismo , Agua/metabolismo
13.
Neurobiol Dis ; 37(3): 581-95, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19931615

RESUMEN

Megalencephalic leukoencephalopathy with subcortical cysts (MLC) is a rare congenital leukodystrophy caused by mutations in the MLC1 gene that encodes a membrane protein of unknown function. In the brain MLC1 protein is mainly expressed in astrocyte end-feet, localizes in lipid rafts and associates with the dystrophin glycoprotein complex (DGC). Using pull-down and co-fractionation assays in cultured human and rat astrocytes, we show here that MLC1 intracellular domains pull-down the DGC proteins syntrophin, dystrobrevin, Kir4.1 and caveolin-1, the structural protein of caveolae, thereby supporting a role for DGC and caveolar structures in MLC1 function. By immunostaining and subcellular fractionation of cultured rat or human astrocytes treated with agents modulating caveolin-mediated trafficking, we demonstrate that MLC1 is also expressed in intracellular vesicles and endoplasmic reticulum and undergoes caveolae/raft-mediated endocytosis. Inhibition of endocytosis, cholesterol lowering and protein kinases A- and C-mediated MLC1 phosphorylation favour the expression of membrane-associated MLC1. Because pathological mutations prevent MLC1 membrane expression, the identification of substances regulating MLC1 intracellular trafficking is potentially relevant for the therapy of MLC.


Asunto(s)
Astrocitos/metabolismo , Encéfalo/metabolismo , Caveolas/metabolismo , Caveolina 1/metabolismo , Leucoencefalopatías/metabolismo , Proteínas de la Membrana/metabolismo , Animales , Animales Recién Nacidos , Encéfalo/patología , Encéfalo/fisiopatología , Caveolas/ultraestructura , Línea Celular Tumoral , Membrana Celular/metabolismo , Membrana Celular/ultraestructura , Células Cultivadas , Colesterol/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Vesículas Citoplasmáticas/metabolismo , Vesículas Citoplasmáticas/ultraestructura , Complejo de Proteínas Asociado a la Distrofina/metabolismo , Endocitosis/fisiología , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/ultraestructura , Humanos , Leucoencefalopatías/genética , Leucoencefalopatías/fisiopatología , Microdominios de Membrana/metabolismo , Microdominios de Membrana/ultraestructura , Fosforilación , Proteína Quinasa C/metabolismo , Transporte de Proteínas/fisiología , Ratas
14.
Cells ; 9(6)2020 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-32521795

RESUMEN

Astrocytes, the most numerous cells of the central nervous system, exert critical functions for brain homeostasis. To this purpose, astrocytes generate a highly interconnected intercellular network allowing rapid exchange of ions and metabolites through gap junctions, adjoined channels composed of hexamers of connexin (Cx) proteins, mainly Cx43. Functional alterations of Cxs and gap junctions have been observed in several neuroinflammatory/neurodegenerative diseases. In the rare leukodystrophy megalencephalic leukoencephalopathy with subcortical cysts (MLC), astrocytes show defective control of ion/fluid exchanges causing brain edema, fluid cysts, and astrocyte/myelin vacuolation. MLC is caused by mutations in MLC1, an astrocyte-specific protein of elusive function, and in GlialCAM, a MLC1 chaperon. Both proteins are highly expressed at perivascular astrocyte end-feet and astrocyte-astrocyte contacts where they interact with zonula occludens-1 (ZO-1) and Cx43 junctional proteins. To investigate the possible role of Cx43 in MLC pathogenesis, we studied Cx43 properties in astrocytoma cells overexpressing wild type (WT) MLC1 or MLC1 carrying pathological mutations. Using biochemical and electrophysiological techniques, we found that WT, but not mutated, MLC1 expression favors intercellular communication by inhibiting extracellular-signal-regulated kinase 1/2 (ERK1/2)-mediated Cx43 phosphorylation and increasing Cx43 gap-junction stability. These data indicate MLC1 regulation of Cx43 in astrocytes and Cx43 involvement in MLC pathogenesis, suggesting potential target pathways for therapeutic interventions.


Asunto(s)
Astrocitos/metabolismo , Comunicación Celular , Conexina 43/metabolismo , Quistes/metabolismo , Quistes/patología , Uniones Comunicantes/metabolismo , Enfermedades Desmielinizantes del Sistema Nervioso Central Hereditarias/metabolismo , Enfermedades Desmielinizantes del Sistema Nervioso Central Hereditarias/patología , Proteínas de la Membrana/metabolismo , Línea Celular Tumoral , Citosol/metabolismo , Humanos , Sistema de Señalización de MAP Quinasas , Proteínas de la Membrana/genética , Modelos Biológicos , Mutación/genética , Fosforilación , Estabilidad Proteica , Transporte de Proteínas
15.
Mol Cell Neurosci ; 37(3): 480-93, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18165104

RESUMEN

MLC1 gene mutations have been associated with megalencephalic leukoencephalopathy with subcortical cysts (MLC), a rare neurologic disorder in children. The MLC1 gene encodes a membrane protein (MLC1) with unknown function which is mainly expressed in astrocytes. Using a newly developed anti-human MLC1 polyclonal antibody, we have investigated the biochemical properties and localization of MLC1 in cultured astrocytes and brain tissue and searched for evidence of a relationship between MLC1 and proteins of the dystrophin-glycoprotein complex (DGC). Cultured astrocytes express two MLC1 components showing different solubilisation properties and subcellular distribution. Most importantly, we show that the membrane-associated component of MLC1 (60-64 kDa) localizes in astrocytic lipid rafts together with dystroglycan, syntrophin and caveolin-1, and co-fractionates with the DGC in whole rat brain tissue. In the human brain, MLC1 protein is expressed in astrocyte processes and ependymal cells, where it colocalizes with dystroglycan and syntrophin. These data indicate that the DGC may be involved in the organization and function of the MLC1 protein in astrocyte membranes.


Asunto(s)
Astrocitos/metabolismo , Distroglicanos/metabolismo , Proteínas de Neoplasias/química , Proteínas de Neoplasias/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/química , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Animales , Animales Recién Nacidos , Astrocitos/citología , Astrocitoma/patología , Encéfalo/citología , Células Cultivadas , Proteínas Asociadas a la Distrofina/metabolismo , Humanos , Microdominios de Membrana/metabolismo , Proteína 1 de la Secuencia de Leucemia de Células Mieloides , Proteínas de Neoplasias/genética , Proteínas Proto-Oncogénicas c-bcl-2/genética , ARN Mensajero/metabolismo , Ratas , Fracciones Subcelulares/metabolismo
16.
Mol Neurobiol ; 56(12): 8237-8254, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31209783

RESUMEN

Megalencephalic leukoencephalopathy with subcortical cysts protein-1 (MLC1) is a membrane protein expressed by perivascular astrocytes. MLC1 mutations cause MLC, an incurable leukodystrophy characterized by macrocephaly, brain edema, cysts, myelin vacuolation, and astrocytosis, leading to cognitive/motor impairment and epilepsy. Although its function is unknown, MLC1 favors regulatory volume decrease after astrocyte osmotic swelling and down-regulates intracellular signaling pathways controlling astrocyte activation and proliferation. By combining analysis of human brain tissues with in vitro experiments, here we investigated MLC1 role in astrocyte activation during neuroinflammation, a pathological condition exacerbating patient symptoms. MLC1 upregulation was observed in brain tissues from multiple sclerosis, Alzheimer's, and Creutzfeld-Jacob disease, all pathologies characterized by strong astrocytosis and release of inflammatory cytokines, particularly IL-1ß. Using astrocytoma lines overexpressing wild-type (WT) or mutated MLC1 and astrocytes from control and Mlc1 knock-out (KO) mice, we found that IL-1ß stimulated WT-MLC1 plasma membrane expression in astrocytoma cells and control primary astrocytes. In astrocytoma, WT-MLC1 inhibited the activation of IL-1ß-induced inflammatory signals (pERK, pNF-kB) that, conversely, were constitutively activated in mutant expressing cells or abnormally upregulated in KO astrocytes. WT-MLC1+ cells also expressed reduced levels of the astrogliosis marker pSTAT3. We then monitored MLC1 expression timing in a demyelinating/remyelinating murine cerebellar organotypic culture model where, after the demyelination and release of inflammatory cytokines, recovery processes occur, revealing MLC1 upregulation in these latter phases. Altogether, these findings suggest that by modulating specific pathways, MLC1 contributes to restore astrocyte homeostasis after inflammation, providing the opportunity to identify drug target molecules to slow down disease progression.


Asunto(s)
Astrocitos/patología , Inflamación/patología , Proteínas de la Membrana/metabolismo , Transducción de Señal , Adulto , Anciano , Enfermedad de Alzheimer/patología , Animales , Astrocitos/metabolismo , Membrana Celular/metabolismo , Enfermedades Desmielinizantes/patología , Modelos Animales de Enfermedad , Receptores ErbB/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Femenino , Humanos , Interleucina-1beta/metabolismo , Masculino , Proteínas de la Membrana/deficiencia , Ratones Noqueados , Persona de Mediana Edad , Modelos Biológicos , Mutación/genética , FN-kappa B/metabolismo , Fosforilación , Ratas , Regulación hacia Arriba
17.
J Neuroimmunol ; 198(1-2): 106-12, 2008 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-18539341

RESUMEN

Lymphoid chemokines play an essential role in the establishment and maintenance of lymphoid tissue microarchitecture and have been implicated in the formation of tertiary (or ectopic) lymphoid tissue in chronic inflammatory conditions. Here, we review recent advances in lymphoid chemokine research in central nervous system inflammation, focusing on multiple sclerosis and the animal model experimental autoimmune encephalomyelitis. We also highlight how the study of lymphoid chemokines, particularly CXCL13, has led to the identification of intrameningeal B-cell follicles in the multiple sclerosis brain paving the way to the discovery that these abnormal structures are highly enriched in Epstein-Barr virus-infected B cells and plasma cells.


Asunto(s)
Sistema Nervioso Central/inmunología , Quimiocinas/metabolismo , Encefalomielitis Autoinmune Experimental/patología , Linfocitos/inmunología , Animales , Quimiocina CXCL13/metabolismo , Modelos Animales de Enfermedad , Humanos
18.
Sci Rep ; 6: 34325, 2016 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-27677466

RESUMEN

Dysfunction of the inwardly-rectifying potassium channels Kir4.1 (KCNJ10) represents a pathogenic mechanism contributing to Autism-Epilepsy comorbidity. To define the role of Kir4.1 variants in the disorder, we sequenced KCNJ10 in a sample of affected individuals, and performed genotype-phenotype correlations. The effects of mutations on channel activity, protein trafficking, and astrocyte function were investigated in Xenopus laevis oocytes, and in human astrocytoma cell lines. An in vivo model of the disorder was also explored through generation of kcnj10a morphant zebrafish overexpressing the mutated human KCNJ10. We detected germline heterozygous KCNJ10 variants in 19/175 affected children. Epileptic spasms with dysregulated sensory processing represented the main disease phenotype. When investigated on astrocyte-like cells, the p.R18Q mutation exerted a gain-of-function effect by enhancing Kir4.1 membrane expression and current density. Similarly, the p.R348H variant led to gain of channel function through hindrance of pH-dependent current inhibition. The frequent polymorphism p.R271C seemed, instead, to have no obvious functional effects. Our results confirm that variants in KCNJ10 deserve attention in autism-epilepsy, and provide insight into the molecular mechanisms of autism and seizures. Similar to neurons, astrocyte dysfunction may result in abnormal synaptic transmission and electrical discharge, and should be regarded as a possible pharmacological target in autism-epilepsy.

19.
J Neuropathol Exp Neurol ; 64(8): 706-15, 2005 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16106219

RESUMEN

As a result of their close association with the blood-brain barrier, astrocytes play an important role in regulating the homing of different leukocyte subsets to the inflamed central nervous system (CNS). In this study, we investigated whether human astrocytes produce chemokines that promote the migration of myeloid dendritic cells (DCs). By reverse transcriptase-polymerase chain reaction and enzyme-linked immunosorbent assay, we show that cultured human astrocytes stimulated with interleukin-1beta and tumor necrosis factor produce CCL2, CCL3, CCL4, CCL5, CCL20, and CXCL12 that act on immature DCs, but not CCL19 and CCL21, 2 chemokines specific for mature DCs. Compared with controls, supernatants of cytokine-stimulated astrocytes are more effective in promoting the migration of immature monocyte-derived DCs (iMDDCs). Desensitization of CXCR4 (receptor for CXCL12), CCR1-3-5 (shared receptors for CCL3-4-5), and CCR6 (receptor for CCL20) on iMDDC reduces cell migration toward astrocyte supernatants, indicating that astrocytes release biologically relevant amounts of iMDDC-attracting chemokines. By immunohistochemistry, we show that CXCL12 and, to a lesser extent, CCL20 are expressed by reactive astrocytes in multiple sclerosis lesions. These data lend support to the idea that astrocyte-derived chemokines may contribute to immature DC recruitment to the inflamed CNS.


Asunto(s)
Astrocitos/metabolismo , Quimiocinas CC/metabolismo , Células Dendríticas/fisiología , Esclerosis Múltiple/metabolismo , Esclerosis Múltiple/patología , Antígenos CD/metabolismo , Antígenos de Diferenciación Mielomonocítica/metabolismo , Astrocitos/efectos de los fármacos , Northern Blotting/métodos , Encéfalo/metabolismo , Encéfalo/patología , Células Cultivadas , Quimiocinas CC/clasificación , Quimiocinas CC/genética , Quimiotaxis/fisiología , Células Dendríticas/efectos de los fármacos , Interacciones Farmacológicas , Ensayo de Cambio de Movilidad Electroforética/métodos , Ensayo de Inmunoadsorción Enzimática/métodos , Feto , Citometría de Flujo/métodos , Proteína Ácida Fibrilar de la Glía/metabolismo , Humanos , Inmunohistoquímica/métodos , Interleucina-1/farmacología , ARN Mensajero/biosíntesis , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Factor de Necrosis Tumoral alfa/farmacología
20.
Front Cell Neurosci ; 9: 66, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25883547

RESUMEN

Megalencephalic leukoencephalopathy with subcortical cysts (MLCs) disease is a rare inherited, autosomal recessive form of childhood-onset spongiform leukodystrophy characterized by macrocephaly, deterioration of motor functions, epileptic seizures and mental decline. Brain edema, subcortical fluid cysts, myelin and astrocyte vacuolation are the histopathological hallmarks of MLC. Mutations in either the MLC1 gene (>75% of patients) or the GlialCAM gene (<20% of patients) are responsible for the disease. Recently, the GlialCAM adhesion protein was found essential for the membrane expression and function of the chloride channel ClC-2 indicating MLC disease caused by mutation in GlialCAM as the first channelopathy among leukodystrophies. On the contrary, the function of MLC1 protein, which binds GlialCAM, its functional relationship with ClC-2 and the molecular mechanisms underlying MLC1 mutation-induced functional defects are not fully understood yet. The human MLC1 gene encodes a 377-amino acid membrane protein with eight predicted transmembrane domains which shows very low homology with voltage-dependent potassium (K(+)) channel subunits. The high expression of MLC1 in brain astrocytes contacting blood vessels and meninges and brain alterations observed in MLC patients have led to hypothesize a role for MLC1 in the regulation of ion and water homeostasis. Recent studies have shown that MLC1 establishes structural and/or functional interactions with several ion/water channels and transporters and ion channel accessory proteins, and that these interactions are affected by MLC1 mutations causing MLC. Here, we review data on MLC1 functional properties obtained in in vitro and in vivo models and discuss evidence linking the effects of MLC1 mutations to brain channelopathies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA