Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 26(2): 946-957, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38088085

RESUMEN

Inspired by the successful transfer of freestanding ultrathin films of SrTiO3 and BiFeO3 onto various substrates without any thickness limitation, in this study, using density functional theory (DFT), we assessed the structural stability of a group of two-dimensional perovskite-type materials which we call perovskenes. Specifically, we analyzed the stability of 2D SrTiO3, SrZrO3, BaTiO3, and BaZrO3 monolayers. Our simulations revealed that the 2D monolayers of SrTiO3, BaTiO3, and BaZrO3 are at least meta-stable, as confirmed by cohesive energy calculations, evaluation of elastic constants, and simulation of phonon dispersion modes. With this information, we proceeded to investigate the electronic, optical, and thermoelectric properties of these perovskenes. To gain insight into their promising applications, we investigated the electronic and optical properties of these 2D materials and found that they are wide bandgap semiconductors with significant absorption and reflection in the ultraviolet (UV) region of the electromagnetic field, suggesting them as promising materials for use in UV shielding applications. In addition, evaluating their thermoelectric factors revealed that these materials become better conductors of electricity and heat as the temperature rises. They can, hence, convert temperature gradients into electrical energy and transport electrical charges, which is beneficial for efficient power generation in thermoelectric devices. This work opens a new window for designing a novel family of 2D perovskite type materials termed perovskenes. The vast variety of different perovskite compounds and their variety of applications suggest deeper studies on the perovskenes materials for use in innovative technologies.

2.
J Mol Graph Model ; 95: 107501, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31787502

RESUMEN

Two dimensional monolayer semiconductors play an important role in designing opto-electronic devices for applications. In this paper, through the properties of the density functional theory, by running a series of first principles computations, the stability and the electronic properties of XI2 (X = Si, Ge, Sn, Pb) monolayer structures is investigated. Our calculations indicate that 2D SiI2, GeI2, SnI2, and PbI2 monolayer materials show good stabilities. Accessing on their electronic properties indicates that they have semiconducting nature with strain tunable indirect band gaps of 2.38, 2.80, 2.72, and 3.23 eV respectively which are obtained by functional (HSE06) level of theory. The obtained electronic properties can be effectively tuned by strain effects suggests the predicted 2D monolayer materials for application in new opto-electronic devices.


Asunto(s)
Plomo , Semiconductores , Teoría Funcional de la Densidad , Electrónica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA