Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nature ; 556(7700): 255-258, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29618817

RESUMEN

Cross-species transmission of viruses from wildlife animal reservoirs poses a marked threat to human and animal health 1 . Bats have been recognized as one of the most important reservoirs for emerging viruses and the transmission of a coronavirus that originated in bats to humans via intermediate hosts was responsible for the high-impact emerging zoonosis, severe acute respiratory syndrome (SARS) 2-10 . Here we provide virological, epidemiological, evolutionary and experimental evidence that a novel HKU2-related bat coronavirus, swine acute diarrhoea syndrome coronavirus (SADS-CoV), is the aetiological agent that was responsible for a large-scale outbreak of fatal disease in pigs in China that has caused the death of 24,693 piglets across four farms. Notably, the outbreak began in Guangdong province in the vicinity of the origin of the SARS pandemic. Furthermore, we identified SADS-related CoVs with 96-98% sequence identity in 9.8% (58 out of 591) of anal swabs collected from bats in Guangdong province during 2013-2016, predominantly in horseshoe bats (Rhinolophus spp.) that are known reservoirs of SARS-related CoVs. We found that there were striking similarities between the SADS and SARS outbreaks in geographical, temporal, ecological and aetiological settings. This study highlights the importance of identifying coronavirus diversity and distribution in bats to mitigate future outbreaks that could threaten livestock, public health and economic growth.


Asunto(s)
Alphacoronavirus/aislamiento & purificación , Alphacoronavirus/patogenicidad , Enfermedades de los Animales/epidemiología , Enfermedades de los Animales/virología , Quirópteros/virología , Infecciones por Coronavirus/veterinaria , Diarrea/veterinaria , Porcinos/virología , Alphacoronavirus/clasificación , Alphacoronavirus/genética , Enfermedades de los Animales/transmisión , Animales , Biodiversidad , China/epidemiología , Infecciones por Coronavirus/epidemiología , Infecciones por Coronavirus/transmisión , Diarrea/patología , Diarrea/virología , Reservorios de Enfermedades/veterinaria , Reservorios de Enfermedades/virología , Genoma Viral/genética , Humanos , Yeyuno/patología , Yeyuno/virología , Filogenia , Síndrome Respiratorio Agudo Grave/epidemiología , Síndrome Respiratorio Agudo Grave/veterinaria , Síndrome Respiratorio Agudo Grave/virología , Análisis Espacio-Temporal , Zoonosis/epidemiología , Zoonosis/transmisión , Zoonosis/virología
2.
Nature ; 524(7563): 93-6, 2015 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-25970247

RESUMEN

A novel Ebola virus (EBOV) first identified in March 2014 has infected more than 25,000 people in West Africa, resulting in more than 10,000 deaths. Preliminary analyses of genome sequences of 81 EBOV collected from March to June 2014 from Guinea and Sierra Leone suggest that the 2014 EBOV originated from an independent transmission event from its natural reservoir followed by sustained human-to-human infections. It has been reported that the EBOV genome variation might have an effect on the efficacy of sequence-based virus detection and candidate therapeutics. However, only limited viral information has been available since July 2014, when the outbreak entered a rapid growth phase. Here we describe 175 full-length EBOV genome sequences from five severely stricken districts in Sierra Leone from 28 September to 11 November 2014. We found that the 2014 EBOV has become more phylogenetically and genetically diverse from July to November 2014, characterized by the emergence of multiple novel lineages. The substitution rate for the 2014 EBOV was estimated to be 1.23 × 10(-3) substitutions per site per year (95% highest posterior density interval, 1.04 × 10(-3) to 1.41 × 10(-3) substitutions per site per year), approximating to that observed between previous EBOV outbreaks. The sharp increase in genetic diversity of the 2014 EBOV warrants extensive EBOV surveillance in Sierra Leone, Guinea and Liberia to better understand the viral evolution and transmission dynamics of the ongoing outbreak. These data will facilitate the international efforts to develop vaccines and therapeutics.


Asunto(s)
Ebolavirus/genética , Evolución Molecular , Variación Genética/genética , Fiebre Hemorrágica Ebola/epidemiología , Fiebre Hemorrágica Ebola/virología , Secuencia de Bases , Brotes de Enfermedades/estadística & datos numéricos , Ebolavirus/aislamiento & purificación , Monitoreo Epidemiológico , Genoma Viral/genética , Fiebre Hemorrágica Ebola/transmisión , Humanos , Epidemiología Molecular , Tasa de Mutación , Filogenia , Filogeografía , Sierra Leona/epidemiología
3.
J Virol ; 91(21)2017 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-28814522

RESUMEN

Zika virus (ZIKV) has caused significant outbreaks and epidemics in the Americas recently, raising global concern due to its ability to cause microcephaly and other neurological complications. A stable and efficient infectious clone of ZIKV is urgently needed. However, the instability and toxicity of flavivirus cDNA clones in Escherichia coli hosts has hindered the development of ZIKV infectious clones. Here, using a novel self-splicing ribozyme-based strategy, we generated a stable infectious cDNA clone of a contemporary ZIKV strain imported from Venezuela to China in 2016. The constructed clone contained a modified version of the group II self-splicing intron P.li.LSUI2 near the junction between the E and NS1 genes, which were removed from the RNA transcripts by an easy-to-establish in vitro splicing reaction. Transfection of the spliced RNAs into BHK-21 cells led to the production of infectious progeny virus that resembled the parental virus. Finally, potential cis-acting RNA elements in ZIKV genomic RNA were identified based on this novel reverse genetics system, and the critical role of 5'-SLA promoter and 5'-3' cyclization sequences were characterized by a combination of different assays. Our results provide another stable and reliable reverse genetics system for ZIKV that will help study ZIKV infection and pathogenesis, and the novel self-splicing intron-based strategy could be further expanded for the construction of infectious clones from other emerging and reemerging flaviviruses.IMPORTANCE The ongoing Zika virus (ZIKV) outbreaks have drawn global concern due to the unexpected causal link to fetus microcephaly and other severe neurological complications. The infectious cDNA clones of ZIKV are critical for the research community to study the virus, understand the disease, and inform vaccine design and antiviral screening. A panel of existing technologies have been utilized to develop ZIKV infectious clones. Here, we successfully generated a stable infectious clone of a 2016 ZIKV strain using a novel self-splicing ribozyme-based technology that abolished the potential toxicity of ZIKV cDNA clones to the E. coli host. Moreover, two crucial cis-acting replication elements (5'-SLA and 5'-CS) of ZIKV were first identified using this novel reverse genetics system. This novel self-splicing ribozyme-based reverse genetics platform will be widely utilized in future ZIKV studies and provide insight for the development of infectious clones of other emerging viruses.


Asunto(s)
Empalme del ARN , ARN Catalítico/metabolismo , Secuencias Reguladoras de Ácido Ribonucleico/genética , Infección por el Virus Zika/virología , Virus Zika/genética , Animales , Células Cultivadas , Clonación Molecular , Cricetinae , ADN Complementario , Regulación Viral de la Expresión Génica , Riñón/metabolismo , Riñón/virología , Ratones Endogámicos BALB C , ARN Catalítico/genética , Genética Inversa , Carga Viral , Replicación Viral
4.
J Infect Dis ; 215(7): 1107-1110, 2017 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-28498995

RESUMEN

We performed Ebola virus disease diagnosis and viral load estimation for Ebola cases in Sierra Leone during the late stage of the 2014-2015 outbreak (January-March 2015) and analyzed antibody and cytokine levels and the viral genome sequences. Ebola virus disease was confirmed in 86 of 1001 (9.7%) patients, with an overall case fatality rate of 46.8%. Fatal cases exhibited significantly higher levels of viral loads, cytokines, and chemokines at late stages of infection versus early stage compared with survivors. The viruses converged in a new clade within sublineage 3.2.4, which had a significantly lower case fatality rate.


Asunto(s)
Ebolavirus/genética , Fiebre Hemorrágica Ebola/epidemiología , Fiebre Hemorrágica Ebola/inmunología , Carga Viral , Anticuerpos Antivirales/sangre , Citocinas/sangre , Brotes de Enfermedades , Genoma Viral , Humanos , Sierra Leona/epidemiología , Sobrevivientes
6.
J Virol ; 88(22): 13344-51, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25210174

RESUMEN

UNLABELLED: Over the course of two waves of infection, H7N9 avian influenza A virus has caused 436 human infections and claimed 170 lives in China as of July 2014. To investigate the prevalence and genetic diversity of H7N9, we surveyed avian influenza viruses in poultry in Jiangsu province within the outbreak epicenter. We found frequent occurrence of H7N9/H9N2 coinfection in chickens. Molecular clock phylogenetic analysis confirms coinfection by H7N9/H9N2 viruses and also reveals that the identity of the H7N9 outbreak lineage is confounded by ongoing reassortment between outbreak viruses and diverse H9N2 viruses in domestic birds. Experimental inoculation of a coinfected sample in cell culture yielded two reassortant H7N9 strains with polymerase segments from the original H9N2 strain. Ongoing reassortment between the H7N9 outbreak lineage and diverse H9N2 viruses may generate new strains with the potential to infect humans, highlighting the need for continued viral surveillance in poultry and humans. IMPORTANCE: We found frequent occurrence of H7N9/H9N2 coinfection in chickens. The H7N9 outbreak lineage is confounded by ongoing reassortment between H7N9 and H9N2 viruses. The importance of H9N2 viruses as the source of novel avian influenza virus infections in humans requires continuous attention.


Asunto(s)
Coinfección/veterinaria , Subtipo H7N9 del Virus de la Influenza A/aislamiento & purificación , Subtipo H9N2 del Virus de la Influenza A/aislamiento & purificación , Gripe Aviar/virología , Virus Reordenados/aislamiento & purificación , Animales , China/epidemiología , Coinfección/epidemiología , Coinfección/virología , Evolución Molecular , Subtipo H7N9 del Virus de la Influenza A/genética , Subtipo H9N2 del Virus de la Influenza A/genética , Gripe Aviar/epidemiología , Epidemiología Molecular , Aves de Corral , Virus Reordenados/genética
7.
Zhonghua Gan Zang Bing Za Zhi ; 18(6): 437-9, 2010 Jun.
Artículo en Zh | MEDLINE | ID: mdl-20587314

RESUMEN

OBJECTIVES: To construct a stable HCV-producing cell model for anti-HCV drug research. METHODS: The HCV-ribozyme recombinant plasmid pJFH1-Rbz was constructed to generate the exact 5' and 3' ends of HCV genomic RNA by placing two self-cleaving ribozymes at both ends of the HCV JFH-1 cDNA. The plasmid was then transfected into HepG2 cells and the resultant clones were screened with G418. Subsequently, immunofluorescence and Western blot were performed to detect the expression of HCV core protein, HCV RNA level was quantitated by TaqMan real-time PCR method and HCV particles was detected by electron microscopy. RESULTS: HCV core protein was detected in the screened cell clone, and the level of HCV RNA was up to 1000,0000 copies/ml in the culture medium. Electron microscopy showed the viral particles in the culture suspension were approximately 55 nm in diameter. IFN-treating experiment demonstrated that the HCV RNA level decreased with the increasing concentration of IFN alpha. CONCLUSION: We constructed a stable HCV-producing cell model which can be used for anti-HCV drug research.


Asunto(s)
Hepacivirus/genética , ARN Catalítico/genética , Proteínas del Núcleo Viral/genética , ADN Complementario , Genoma Viral , Células Hep G2 , Humanos , Plásmidos , Transfección , Virión , Replicación Viral
8.
Chemosphere ; 247: 125923, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-31972495

RESUMEN

Copper as developmental toxicants have been reported extensively in freshwater fish, however, the sublethal and chronic toxic effects of Cu to the early life stages of marine fish are not clear. Embryo (3-5 hpf) and newly hatched larvae of marine medaka (Oryzias melastigma) were exposed to 0.01-1.28 mg L-1 waterborne Cu to investigate the developmental toxic effects. The results showed that Cu accumulation in the whole embryos presented a dose- and time-response increase while it decreased dramatically once hatching. Most of Cu accumulated in the chorion suggests that chorion is an effective barrier to Cu absorption. However, Cu that penetrated chorion and entered embryo still caused significant lethal and sublethal effects. Cu concentrations at ≥0.16 mg L-1 led to low hatchability, delayed hatching, high mortality, morphological abnormalities and increased egg size in the embryos. Heart beats and the total body length of the newly hatched larvae were significantly increased when exposed to ≥0.02 mg L-1. Cu exposure accelerated early development and promoted or delayed hatching of embryo. High Cu concentration (≥0.16 mg L-1) exposure induced morphological abnormalities of embryo and larvae, particularly skeletal and vascular system abnormalities and reduction of pigmentation. The 30 d-LC50 for embryo development was 0.138 mg L-1 and 7d LC50 for larvae survival was 10.15 mg L-1, demonstrating that embryos were more sensitive to Cu than larvae. In summary, O. melastigma embryos development is highly sensitive to Cu exposure, and the sublethal effects occurred at low Cu concentration might be as potential biomarkers in marine fish.


Asunto(s)
Cobre/toxicidad , Oryzias/fisiología , Contaminantes Químicos del Agua/toxicidad , Animales , Embrión no Mamífero/efectos de los fármacos , Desarrollo Embrionario/efectos de los fármacos , Agua Dulce , Larva/efectos de los fármacos , Oryzias/embriología , Oryzias/crecimiento & desarrollo
9.
Chin Med J (Engl) ; 133(9): 1051-1056, 2020 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-32149769

RESUMEN

BACKGROUND: Medicines for the treatment of 2019-novel coronavirus (2019-nCoV) infections are urgently needed. However, drug screening using live 2019-nCoV requires high-level biosafety facilities, which imposes an obstacle for those institutions without such facilities or 2019-nCoV. This study aims to repurpose the clinically approved drugs for the treatment of coronavirus disease 2019 (COVID-19) in a 2019-nCoV-related coronavirus model. METHODS: A 2019-nCoV-related pangolin coronavirus GX_P2V/pangolin/2017/Guangxi was described. Whether GX_P2V uses angiotensin-converting enzyme 2 (ACE2) as the cell receptor was investigated by using small interfering RNA (siRNA)-mediated silencing of ACE2. The pangolin coronavirus model was used to identify drug candidates for treating 2019-nCoV infection. Two libraries of 2406 clinically approved drugs were screened for their ability to inhibit cytopathic effects on Vero E6 cells by GX_P2V infection. The anti-viral activities and anti-viral mechanisms of potential drugs were further investigated. Viral yields of RNAs and infectious particles were quantified by quantitative real-time polymerase chain reaction (qRT-PCR) and plaque assay, respectively. RESULTS: The spike protein of coronavirus GX_P2V shares 92.2% amino acid identity with that of 2019-nCoV isolate Wuhan-hu-1, and uses ACE2 as the receptor for infection just like 2019-nCoV. Three drugs, including cepharanthine (CEP), selamectin, and mefloquine hydrochloride, exhibited complete inhibition of cytopathic effects in cell culture at 10 µmol/L. CEP demonstrated the most potent inhibition of GX_P2V infection, with a concentration for 50% of maximal effect [EC50] of 0.98 µmol/L. The viral RNA yield in cells treated with 10 µmol/L CEP was 15,393-fold lower than in cells without CEP treatment ([6.48 ±â€Š0.02] × 10vs. 1.00 ±â€Š0.12, t = 150.38, P < 0.001) at 72 h post-infection (p.i.). Plaque assays found no production of live viruses in media containing 10 µmol/L CEP at 48 h p.i. Furthermore, we found CEP had potent anti-viral activities against both viral entry (0.46 ±â€Š0.12, vs.1.00 ±â€Š0.37, t = 2.42, P < 0.05) and viral replication ([6.18 ±â€Š0.95] × 10vs. 1.00 ±â€Š0.43, t = 3.98, P < 0.05). CONCLUSIONS: Our pangolin coronavirus GX_P2V is a workable model for 2019-nCoV research. CEP, selamectin, and mefloquine hydrochloride are potential drugs for treating 2019-nCoV infection. Our results strongly suggest that CEP is a wide-spectrum inhibitor of pan-betacoronavirus, and further study of CEP for treatment of 2019-nCoV infection is warranted.


Asunto(s)
Betacoronavirus/efectos de los fármacos , Infecciones por Coronavirus/tratamiento farmacológico , Neumonía Viral/tratamiento farmacológico , Betacoronavirus/genética , COVID-19 , Prueba de COVID-19 , Línea Celular , Técnicas de Laboratorio Clínico , Infecciones por Coronavirus/diagnóstico , Aprobación de Drogas , Humanos , Pandemias , Neumonía Viral/diagnóstico , ARN Interferente Pequeño/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , SARS-CoV-2 , Carga Viral , Tratamiento Farmacológico de COVID-19
10.
EBioMedicine ; 12: 170-177, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27693104

RESUMEN

Animal models are critical to understand disease and to develop countermeasures for the ongoing epidemics of Zika virus (ZIKV). Here we report a non-human primate model using a 2016 contemporary clinical isolate of ZIKV. Upon subcutaneous inoculation, rhesus macaques developed fever and viremia, with robust excretion of ZIKV RNA in urine, saliva, and lacrimal fluid. Necropsy of two infected animals revealed that systematic infections involving central nervous system and visceral organs were established at the acute phrase. ZIKV initially targeted the intestinal tracts, spleen, and parotid glands, and retained in spleen and lymph nodes till 10days post infection. ZIKV-specific immune responses were readily induced in all inoculated animals. The non-human primate model described here provides a valuable platform to study ZIKV pathogenesis and to evaluate vaccine and therapeutics.


Asunto(s)
Infección por el Virus Zika/virología , Virus Zika/fisiología , Animales , Línea Celular , Modelos Animales de Enfermedad , Fiebre , Humanos , Inmunidad Celular , Inmunidad Humoral , Inmunohistoquímica , Macaca mulatta , Reacción en Cadena de la Polimerasa , Primates , ARN Viral , Tropismo Viral , Viremia/virología , Virus Zika/aislamiento & purificación , Infección por el Virus Zika/diagnóstico , Infección por el Virus Zika/inmunología
11.
Infect Genet Evol ; 32: 148-55, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25757905

RESUMEN

Tuberculosis (TB) outbreak occurred in a boarding middle school of China. We explored its probable sources and quantified the transmissibility and pathogenicity of TB. Clinical evaluation, tuberculin skin testing and chest radiography were conducted to identify TB cases. Mycobacterium tuberculosis isolates underwent genotyping analysis to identify the outbreak source. A chain-binomial transmission model was used to evaluate transmissibility and pathogenicity of TB. A total of 46 active cases were ascertained among 258 students and 15 teachers/staff, an attack rate of 16.8%. Genetic analyses revealed two groups of M. tuberculosis cocirculating during the outbreak and possible importation from local communities. Secondary attack rates among students were 4.1% (2.9%, 5.3%) within grade and 7.9% (4.9%, 11%) within class. An active TB case was estimated to infect 8.4 (7.2, 9.6) susceptible people on average. The smear-positive cases were 28 (8, 101) times as infective as smear-negative cases. Previous BCG vaccination could reduce the probability of developing symptoms after infection by 70% (1.4%, 91%). The integration of clinical evaluation, genetic sequencing, and statistical modeling greatly enhanced our understanding of TB transmission dynamics. Timely diagnosis of smear-positive cases, especially in the early phase of the outbreak, is the key to preventing further spread among close contacts.


Asunto(s)
Brotes de Enfermedades/estadística & datos numéricos , Mycobacterium tuberculosis/genética , Servicios de Salud Escolar/estadística & datos numéricos , Tuberculosis Pulmonar/transmisión , Adolescente , Adulto , Vacuna BCG/uso terapéutico , China/epidemiología , Femenino , Humanos , Masculino , Repeticiones de Minisatélite/genética , Modelos Estadísticos , Mycobacterium tuberculosis/patogenicidad , Filogenia , Polimorfismo de Nucleótido Simple/genética , Factores de Riesgo , Prueba de Tuberculina , Tuberculosis Pulmonar/epidemiología , Tuberculosis Pulmonar/microbiología , Tuberculosis Pulmonar/prevención & control , Adulto Joven
12.
Microb Drug Resist ; 20(2): 162-9, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24224497

RESUMEN

Fluoroquinolones are frequently used to treat infectious disease that is caused by Escherichia coli in dairy cattle. However, fluoroquinolone resistance occurs and is due either to chromosomal mutations in the bacterial topoisomerase genes and/or to plasmid-mediated resistance genes. The purpose of this study was to determine the prevalence and molecular characteristics of fluoroquinolone resistance determinants in E. coli strains (n=148) isolated from dairy cattle with bovine endometritis in Inner Mongolia (China). Analysis of the mutations in the quinolone resistance-determining regions of resistant E. coli isolates confirmed previously reported substitutions in the GyrA and ParE. However, we identified additional substitutions in the ParC and GyrB that have not been reported earlier. No plasmid-mediated quinolone resistance genes in any of the isolates were found. The number of point mutations found per isolate correlated with an increase in the minimum inhibitory concentration of ciprofloxacin. Overall, 45.5% of the isolates were positive for the class I integrase gene along with four gene cassettes that were responsible for resistance to trimethoprim (dfr1 and dfrA17) and aminoglycosides (aadA1 and aadA5), respectively. The prevalence of extended-spectrum ß-lactamases (ESBLs) was 100%, and the blaTEM gene was predominant in all of the isolates. In conclusion, our results identify the mechanism of quinolone resistance for the first time and reveal the prevalence of integron and ESBLs in E. coli isolates from dairy cattle with bovine endometritis in China after 20 years of quinolone usage in cattle.


Asunto(s)
Enfermedades de los Bovinos/epidemiología , Farmacorresistencia Bacteriana Múltiple/genética , Endometritis/veterinaria , Infecciones por Escherichia coli/veterinaria , Escherichia coli/genética , Aminoglicósidos/farmacología , Animales , Antibacterianos/farmacología , Bovinos , Enfermedades de los Bovinos/tratamiento farmacológico , Enfermedades de los Bovinos/microbiología , China/epidemiología , Ciprofloxacina/farmacología , Girasa de ADN/genética , Topoisomerasa de ADN IV/genética , Industria Lechera , Endometritis/tratamiento farmacológico , Endometritis/epidemiología , Endometritis/microbiología , Escherichia coli/efectos de los fármacos , Escherichia coli/aislamiento & purificación , Infecciones por Escherichia coli/tratamiento farmacológico , Infecciones por Escherichia coli/epidemiología , Infecciones por Escherichia coli/microbiología , Femenino , Prevalencia , Trimetoprim/farmacología , beta-Lactamasas/genética
13.
Bing Du Xue Bao ; 29(1): 39-43, 2013 Jan.
Artículo en Zh | MEDLINE | ID: mdl-23547378

RESUMEN

To confirm the hypothesis that the high frequency sequences of high throughput sequencing are the terminal sequences of the bacteriophage genome. An adaptor of specific sequence was linked to the end of the bacteriophage T3 genomic DNA, which was then subject to high throughput sequencing; as a control, the same T3 genomic DNA without adaptor was also analyzed by high throughput sequencing. The sequencing results were examined with bioinformatics software. Similar high throughput sequencing technique was applied to analyze the genomic sequence of N4-like bacteriophage IME11. Bioinformatics study showed that the sequences tagged with adaptors were consistent with the high frequency sequences without adaptor labeling. Our analysis also indicated that the end of the T4-like phage genome had specific sequences instead of random sequences, disagreeing with the previous assertion. Evidences were provided that N4-like bacteriophage had a particular terminal sequence: the left end of the genome was unique while the right end was permuted. The high throughput sequencing technique was convenient and practical to be used to simultaneously detect the terminal sequence and the complete sequence of bacteriophage genome.


Asunto(s)
Caudovirales/genética , Genoma Viral , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Biología Computacional
14.
Res Vet Sci ; 91(3): 412-4, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21277606

RESUMEN

To assess the prevalence of antimicrobial resistance and three classes of integrons in Escherichia coli (E. coli) strains (n=57) isolated from bovine endometritis in Inner Mongolia of China, antimicrobial susceptibility and the presence of three types of integrons were characterized. Most isolates were susceptible to ceftiofur, furazolidone, ciprofloxacin and enrofloxacin, while 57 isolates were all resistant to sulfamethoxydiazine and trimethoprim. High resistant incidence rates were exhibited to sulfadiazine, tetracycline, oxytetracycline, cefazolin, chloramphenicol. Forty-six of 57 E. coli strains were resistant to above 10 antibiotics (80.70%). The integrase gene and gene cassettes of integrons were amplified by PCR. DNA sequencing and analysis were used to identify the genetic content of the integron-variable regions. Neither class II nor class III integron was detected, while 36.8% (n=21) of the isolates were positive for the presence of intI1 gene. Analysis of gene cassettes revealed that six gene cassettes were found, which encoded resistance to trimethoprim (dhfr, dhfrI, dfrA17) and aminoglycosides (aadA1, aadA2, aadA5). Among them, the gene cassette array dfrA17-aadA5 was found most prevalent (66.7%). The resistance profile of positive-integron isolates was relatively broad and they were resistant to more than eight antimicrobials (n ≥ 8). The correlation analysis revealed the incidence of integrons among the isolates were related to the multiple antibiotic resistance profile, indicating integrons play an important role in the dissemination and spread of the antimicrobial resistant strains.


Asunto(s)
Antibacterianos/farmacología , Enfermedades de los Bovinos/microbiología , Farmacorresistencia Bacteriana Múltiple , Endometritis/veterinaria , Escherichia coli/efectos de los fármacos , Integrones/genética , Animales , Bovinos , Endometritis/microbiología , Escherichia coli/genética , Femenino
15.
Virol Sin ; 26(1): 54-60, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21331891

RESUMEN

Although previous publications suggest the 2009 pandemic influenza A (H1N1) virus was reassorted from swine viruses of North America and Eurasia, the immediate ancestry still remains elusive due to the big evolutionary distance between the 2009 H1N1 virus and the previously isolated strains. Since the unveiling of the 2009 H1N1 influenza, great deal of interest has been drawn to influenza, consequently a large number of influenza virus sequences have been deposited into the public sequence databases. Blast analysis demonstrated that the recently submitted 2007 South Dakota avian influenza virus strains and other North American avian strains contained genetic segments very closely related to the 2009 H1N1 virus, which suggests these avian influenza viruses are very close relatives of the 2009 H1N1 virus. Phylogenetic analyses also indicate that the 2009 H1N1 viruses are associated with both avian and swine influenza viruses circulating in North America. Since the migrating wild birds are preferable to pigs as the carrier to spread the influenza viruses across vast distances, it is very likely that birds played an important role in the inter-continental evolution of the 2009 H1N1 virus. It is essential to understand the evolutionary route of the emerging influenza virus in order to find a way to prevent further emerging cases. This study suggests the close relationship between 2009 pandemic virus and the North America avian viruses and underscores enhanced surveillance of influenza in birds for understanding the evolution of the 2009 pandemic influenza.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A/genética , Virus de la Influenza A/genética , Animales , Aves/virología , Humanos , Subtipo H1N1 del Virus de la Influenza A/clasificación , Virus de la Influenza A/clasificación , Gripe Aviar/virología , Filogenia , South Dakota , Porcinos/virología
16.
J Zhejiang Univ Sci B ; 10(6): 479-82, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19489114

RESUMEN

Site-directed mutagenesis (SDM) has been a very important method to probe the function-structure relationship of proteins. In this study, we introduced an easy-to-use, polymerase chain reaction (PCR)-based SDM method for double-stranded plasmid DNA, with a designed restriction site to ensure simple and efficient mutant screening. The DNA sequence to be mutated was first translated into amino acid sequence and then the amino acid sequence was reversely translated into DNA sequence with degenerate codons, resulting in a large number of sequences with silent mutations, which contained various restriction endonuclease (RE) sites. Certain mutated sequence with an appropriate RE site was selected as the target DNA sequence for designing a pair of mutation primers to amplify the full-length plasmid via inverse PCR. The amplified product was 5'-phosphorylated, circularized, and transformed into an Escherichia coli host. The transformants were screened by digesting with the designed RE. This protocol uses only one pair of primers and only one PCR is conducted, without the need for hybridization with hazardous isotope for mutant screening or subcloning step.


Asunto(s)
Proteínas de Escherichia coli/genética , Escherichia coli/genética , Pruebas Genéticas/métodos , Mutagénesis Sitio-Dirigida/métodos , Mutación/genética , Reacción en Cadena de la Polimerasa/métodos
17.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 21(3): 312-5, 318, 2005 May.
Artículo en Zh | MEDLINE | ID: mdl-15862148

RESUMEN

AIM: To obtain CHO/dhfr(-) cells line with integrated FRT sequence in the chromosome transcription active site and to express human-mouse chimeric antibody directed against Chikungunya Virus by using the cell line. METHODS: The fusion gene of FRT and HBsAg was constructed by PCR and cloned into the MCS of pCI-neo to construct pCI-FRT-HBsAg. The pCI-FRT-HBsAg was transfected into CHO/dhfr(-) cells and cell clones with high expression of HBsAg were screened by detecting the amount of HBsAg with ELISA. A CHO cell clone with the highest expression was chosen and named as CHO/dhfr(-) FRT(+). pAFRT HFLF, a expression plasmid of chimeric antibody with RFT sequence was transfected into CHO/dhfr(-) FRT(+) cells and cell clones with high expression of the chimeric antibody were screened by increasing concentration of MTX. A CHO cell clone with high expression of the chimeric antibody was cultured in large scale and supernatant was collected from which the chimeric antibody was purified. The purified chimeric antibody was analyzed by SDS-PAGE, Western blot and IFA. RESULTS: A CHO/dhfr(-) cells line with integrated FRT sequence in the chromosome transcription active site was obtained successfully. A cell clone with yield of 5 mg/L of chimeric antibody was obtained, as compared with routine CHO cell expression system with a yield of 2 mg/L. CONCLUSION: A cell line with integrated FRT sequence in the chromosome transcription active site was obtained and with it human-mouse chimeric antibody directed against Chikungunya virus was expressed. This system lays a solid foundation which can be used for expressing antibodies and other proteins.


Asunto(s)
Anticuerpos/genética , Anticuerpos/inmunología , Especificidad de Anticuerpos , Virus Chikungunya/inmunología , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/inmunología , Recombinación Genética/genética , Secuencia de Aminoácidos , Animales , Anticuerpos/análisis , Anticuerpos/aislamiento & purificación , Secuencia de Bases , Sitios de Unión de Anticuerpos , Línea Celular , Clonación Molecular , Técnica del Anticuerpo Fluorescente , Expresión Génica , Antígenos de Superficie de la Hepatitis B/química , Antígenos de Superficie de la Hepatitis B/genética , Humanos , Ratones , Datos de Secuencia Molecular , Proteínas Recombinantes de Fusión/análisis , Transfección
18.
Sheng Wu Gong Cheng Xue Bao ; 20(5): 694-8, 2004 Sep.
Artículo en Zh | MEDLINE | ID: mdl-15973992

RESUMEN

Prostate stem cell antigen (PSCA), a homologue of the Ly-6/Thy-1 family of cell surface antigen, is expressed by a majority of human prostate cancers and is a promising target for prostate cancer immunotherapy. To obtain the specific peptide binding with PSCA for targeted immunotherapy, PSCA gene was obtained by RT-PCR from human prostate cancer cell line DU145 and the transcated PSCA (tPSCA) gene was cloned into vector pQE30 for soluble expression in E. coli. The identity of recombinant tPSCA was confirmed through ELISA and western blot by use of anti-PSCA monoclonal antibody. Then the 12-peptide phage display library was screened with the purified tPSCA protein for its specific binding peptide through 3 rounds panning. For identifying the peptide's specificity, the peptide was coupled with EGFP (enhanced green fluorecent protein) by recombinant DNA technology and the recombinant coupled protein was termed 11-EGFP. The binding specificity with tPSCA of 11-EGFP was further confirmed by ELISA and competitive inhibition experiment. Flow cytometry demonstrated its binding specificity with cell line DU145. In conclusion, a 12-amino-acid peptide which could bind with PSCA specifically was found and it may be a potential tool for targeted immunotherapy of prostate carcinoma.


Asunto(s)
Glicoproteínas de Membrana/genética , Proteínas de Neoplasias/genética , Péptidos/inmunología , Anticuerpos Monoclonales/inmunología , Antígenos de Neoplasias , Línea Celular Tumoral , Clonación Molecular , Escherichia coli/genética , Citometría de Flujo , Proteínas Ligadas a GPI , Humanos , Inmunoterapia , Masculino , Glicoproteínas de Membrana/inmunología , Proteínas de Neoplasias/inmunología , Biblioteca de Péptidos , Neoplasias de la Próstata/terapia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA