Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Cell ; 135(6): 1053-64, 2008 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-19070576

RESUMEN

Vascular development begins when mesodermal cells differentiate into endothelial cells, which then form primitive vessels. It has been hypothesized that endothelial-specific gene expression may be regulated combinatorially, but the transcriptional mechanisms governing specificity in vascular gene expression remain incompletely understood. Here, we identify a 44 bp transcriptional enhancer that is sufficient to direct expression specifically and exclusively to the developing vascular endothelium. This enhancer is regulated by a composite cis-acting element, the FOX:ETS motif, which is bound and synergistically activated by Forkhead and Ets transcription factors. We demonstrate that coexpression of the Forkhead protein FoxC2 and the Ets protein Etv2 induces ectopic expression of vascular genes in Xenopus embryos, and that combinatorial knockdown of the orthologous genes in zebrafish embryos disrupts vascular development. Finally, we show that FOX:ETS motifs are present in many known endothelial-specific enhancers and that this motif is an efficient predictor of endothelial enhancers in the human genome.


Asunto(s)
Elementos de Facilitación Genéticos , Factores de Transcripción Forkhead/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteínas Proto-Oncogénicas c-ets/metabolismo , Animales , Vasos Sanguíneos/embriología , Embrión de Mamíferos/citología , Embrión no Mamífero/metabolismo , Endotelio/embriología , Fibroblastos/metabolismo , Humanos , Ratones , Xenopus , Pez Cebra
2.
Circ Res ; 113(1): 22-31, 2013 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-23603510

RESUMEN

RATIONALE: The peptide ligand apelin and its receptor APJ constitute a signaling pathway with numerous effects on the cardiovascular system, including cardiovascular development in model organisms such as xenopus and zebrafish. OBJECTIVE: This study aimed to characterize the embryonic lethal phenotype of the Apj-/- mice and to define the involved downstream signaling targets. METHODS AND RESULTS: We report the first characterization of the embryonic lethality of the Apj-/- mice. More than half of the expected Apj-/- embryos died in utero because of cardiovascular developmental defects. Those succumbing to early embryonic death had markedly deformed vasculature of the yolk sac and the embryo, as well as poorly looped hearts with aberrantly formed right ventricles and defective atrioventricular cushion formation. Apj-/- embryos surviving to later stages demonstrated incomplete vascular maturation because of a deficiency of vascular smooth muscle cells and impaired myocardial trabeculation and ventricular wall development. The molecular mechanism implicates a novel, noncanonical signaling pathway downstream of apelin-APJ involving Gα13, which induces histone deacetylase (HDAC) 4 and HDAC5 phosphorylation and cytoplasmic translocation, resulting in activation of myocyte enhancer factor 2. Apj-/- mice have greater endocardial Hdac4 and Hdac5 nuclear localization and reduced expression of the myocyte enhancer factor 2 (MEF2) transcriptional target Krüppel-like factor 2. We identify a number of commonly shared transcriptional targets among apelin-APJ, Gα13, and MEF2 in endothelial cells, which are significantly decreased in the Apj-/- embryos and endothelial cells. CONCLUSIONS: Our results demonstrate a novel role for apelin-APJ signaling as a potent regulator of endothelial MEF2 function in the developing cardiovascular system.


Asunto(s)
Anomalías Cardiovasculares/embriología , Sistema Cardiovascular/embriología , Péptidos y Proteínas de Señalización Intercelular/fisiología , Factores Reguladores Miogénicos/fisiología , Receptores Acoplados a Proteínas G/fisiología , Transporte Activo de Núcleo Celular , Adipoquinas , Animales , Apelina , Receptores de Apelina , Anomalías Cardiovasculares/genética , Endocardio/embriología , Endocardio/metabolismo , Endotelio Vascular/metabolismo , Femenino , Corazón Fetal/anomalías , Subunidades alfa de la Proteína de Unión al GTP G12-G13/fisiología , Regulación del Desarrollo de la Expresión Génica , Genes Letales , Histona Desacetilasas/metabolismo , Factores de Transcripción de Tipo Kruppel/biosíntesis , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción MEF2 , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fosforilación , Procesamiento Proteico-Postraduccional , Receptores Acoplados a Proteínas G/deficiencia , Receptores Acoplados a Proteínas G/genética , Transducción de Señal , Transcripción Genética
3.
Development ; 138(12): 2555-65, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21610032

RESUMEN

Waardenburg syndromes are characterized by pigmentation and autosensory hearing defects, and mutations in genes encoding transcription factors that control neural crest specification and differentiation are often associated with Waardenburg and related disorders. For example, mutations in SOX10 result in a severe form of Waardenburg syndrome, Type IV, also known as Waardenburg-Hirschsprung disease, characterized by pigmentation and other neural crest defects, including defective innervation of the gut. SOX10 controls neural crest development through interactions with other transcription factors. The MADS box transcription factor MEF2C is an important regulator of brain, skeleton, lymphocyte and cardiovascular development and is required in the neural crest for craniofacial development. Here, we establish a novel role for MEF2C in melanocyte development. Inactivation of Mef2c in the neural crest of mice results in reduced expression of melanocyte genes during development and a significant loss of pigmentation at birth due to defective differentiation and reduced abundance of melanocytes. We identify a transcriptional enhancer of Mef2c that directs expression to the neural crest and its derivatives, including melanocytes, in transgenic mouse embryos. This novel Mef2c neural crest enhancer contains three functional SOX binding sites and a single essential MEF2 site. We demonstrate that Mef2c is a direct transcriptional target of SOX10 and MEF2 via this evolutionarily conserved enhancer. Furthermore, we show that SOX10 and MEF2C physically interact and function cooperatively to activate the Mef2c gene in a feed-forward transcriptional circuit, suggesting that MEF2C might serve as a potentiator of the transcriptional pathways affected in Waardenburg syndromes.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Melanocitos/citología , Factores Reguladores Miogénicos/fisiología , Factores de Transcripción SOXE/fisiología , Transcripción Genética , Animales , Embrión de Mamíferos , Enfermedad de Hirschsprung , Factores de Transcripción MEF2 , Ratones , Ratones Transgénicos , Cresta Neural/crecimiento & desarrollo , Síndrome de Waardenburg/genética
4.
J Clin Invest ; 118(10): 3343-54, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18769630

RESUMEN

Apelin and its cognate G protein-coupled receptor APJ constitute a signaling pathway with a positive inotropic effect on cardiac function and a vasodepressor function in the systemic circulation. The apelin-APJ pathway appears to have opposing physiological roles to the renin-angiotensin system. Here we investigated whether the apelin-APJ pathway can directly antagonize vascular disease-related Ang II actions. In ApoE-KO mice, exogenous Ang II induced atherosclerosis and abdominal aortic aneurysm formation; we found that coinfusion of apelin abrogated these effects. Similarly, apelin treatment rescued Ang II-mediated increases in neointimal formation and vascular remodeling in a vein graft model. NO has previously been implicated in the vasodepressor function of apelin; we found that apelin treatment increased NO bioavailability in ApoE-KO mice. Furthermore, infusion of an NO synthase inhibitor blocked the apelin-mediated decrease in atherosclerosis and aneurysm formation. In rat primary aortic smooth muscle cells, apelin inhibited Ang II-mediated transcriptional regulation of multiple targets as measured by reporter assays. In addition, we demonstrated by coimmunoprecipitation and fluorescence resonance energy transfer analysis that the Ang II and apelin receptors interacted physically. Taken together, these findings indicate that apelin signaling can block Ang II actions in vascular disease by increasing NO production and inhibiting Ang II cellular signaling.


Asunto(s)
Angiotensina II/antagonistas & inhibidores , Aterosclerosis/fisiopatología , Proteínas Portadoras/metabolismo , Modelos Animales de Enfermedad , Transducción de Señal , Vasoconstrictores/antagonistas & inhibidores , Adipoquinas , Angiotensina II/farmacología , Antagonistas de Receptores de Angiotensina , Animales , Aneurisma de la Aorta Abdominal/mortalidad , Aneurisma de la Aorta Abdominal/fisiopatología , Apelina , Receptores de Apelina , Aterosclerosis/inducido químicamente , Aterosclerosis/metabolismo , Vasos Sanguíneos/metabolismo , Núcleo Celular/metabolismo , Dieta , Péptidos y Proteínas de Señalización Intercelular , Masculino , Ratones , Ratones Noqueados , Óxido Nítrico/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Receptores de Angiotensina/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Vasoconstrictores/farmacología
5.
Mol Cell Biol ; 24(9): 3757-68, 2004 May.
Artículo en Inglés | MEDLINE | ID: mdl-15082771

RESUMEN

The HRC gene encodes the histidine-rich calcium-binding protein, which is found in the lumen of the junctional sarcoplasmic reticulum (SR) of cardiac and skeletal muscle and within calciosomes of arterial smooth muscle. The expression of HRC in cardiac, skeletal, and smooth muscle raises the possibility of a common transcriptional mechanism governing its expression in all three muscle cell types. In this study, we identified a transcriptional enhancer from the HRC gene that is sufficient to direct the expression of lacZ in the expression pattern of endogenous HRC in transgenic mice. The HRC enhancer contains a small, highly conserved sequence that is required for expression in all three muscle lineages. Within this conserved region is a consensus site for myocyte enhancer factor 2 (MEF2) proteins that we show is bound efficiently by MEF2 and is required for transgene expression in all three muscle lineages in vivo. Furthermore, the entire HRC enhancer sequence lacks any discernible CArG motifs, the binding site for serum response factor (SRF), and we show that the enhancer is not activated by SRF. Thus, these studies identify the HRC enhancer as the first MEF2-dependent, CArG-independent transcriptional target in smooth muscle and represent the first analysis of the transcriptional regulation of an SR gene in vivo.


Asunto(s)
Proteínas de Unión al Calcio/genética , Proteínas de Unión al ADN/metabolismo , Elementos de Facilitación Genéticos , Regulación del Desarrollo de la Expresión Génica , Corazón/embriología , Músculo Esquelético/embriología , Músculo Liso Vascular/embriología , Factores de Transcripción/metabolismo , Secuencias de Aminoácidos , Animales , Secuencia de Bases , Proteínas de Unión al Calcio/metabolismo , Proteínas de Unión al ADN/genética , Embrión de Mamíferos/anatomía & histología , Embrión de Mamíferos/fisiología , Genes Reporteros , Corazón/fisiología , Humanos , Factores de Transcripción MEF2 , Ratones , Ratones Transgénicos , Datos de Secuencia Molecular , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Músculo Esquelético/citología , Músculo Esquelético/fisiología , Músculo Liso Vascular/fisiología , Factores Reguladores Miogénicos , Regiones Promotoras Genéticas , Alineación de Secuencia , Factores de Transcripción/genética , Transcripción Genética
6.
Development ; 131(16): 3931-42, 2004 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-15253934

RESUMEN

The vertebrate heart forms initially as a linear tube derived from a primary heart field in the lateral mesoderm. Recent studies in mouse and chick have demonstrated that the outflow tract and right ventricle originate from a separate source of mesoderm that is anterior to the primary heart field. The discovery of this anterior, or secondary, heart field has led to a greater understanding of the morphogenetic events involved in heart formation; however, many of the underlying molecular events controlling these processes remain to be determined. The MADS domain transcription factor MEF2C is required for proper formation of the cardiac outflow tract and right ventricle, suggesting a key role in anterior heart field development. Therefore, as a first step toward identifying the transcriptional pathways upstream of MEF2C, we introduced a lacZ reporter gene into a bacterial artificial chromosome (BAC) encompassing the murine Mef2c locus and used this recombinant to generate transgenic mice. This BAC transgene was sufficient to recapitulate endogenous Mef2c expression, and comparative sequence analyses revealed multiple regions of significant conservation in the noncoding regions of the BAC. We show that one of these conserved noncoding regions represents a transcriptional enhancer that is sufficient to direct expression of lacZ exclusively to the anterior heart field throughout embryonic development. This conserved enhancer contains two consensus GATA binding sites that are efficiently bound by the zinc finger transcription factor GATA4 and are completely required for enhancer function in vivo. This enhancer also contains two perfect consensus sites for the LIM-homeodomain protein ISL1. We show that these elements are specifically bound by ISL1 and are essential for enhancer function in transgenic embryos. Thus, these findings establish Mef2c as the first direct transcriptional target of ISL1 in the anterior heart field and support a model in which GATA factors and ISL1 serve as the earliest transcriptional regulators controlling outflow tract and right ventricle development.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Regulación del Desarrollo de la Expresión Génica/fisiología , Corazón/embriología , Proteínas de Homeodominio/metabolismo , Factores Reguladores Miogénicos/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Factores de Transcripción/metabolismo , Animales , Secuencia de Bases , Cromosomas Artificiales Bacterianos , Elementos de Facilitación Genéticos , Factor de Transcripción GATA4 , Genes Reporteros , Intrones , Proteínas con Homeodominio LIM , Factores de Transcripción MEF2 , Ratones , Datos de Secuencia Molecular , Factores Reguladores Miogénicos/genética , Alineación de Secuencia
7.
Dev Biol ; 275(2): 424-34, 2004 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-15501228

RESUMEN

Members of the Myocyte Enhancer Factor 2 (MEF2) family of transcription factors play key roles in the development and differentiation of numerous cell types during mammalian development, including the vascular endothelium. Mef2c is expressed very early in the development of the endothelium, and genetic studies in mice have demonstrated that mef2c is required for vascular development. However, the transcriptional pathways involving MEF2C during endothelial cell development have not been defined. As a first step towards identifying the transcriptional factors upstream of MEF2C in the vascular endothelium, we screened for transcriptional enhancers from the mouse mef2c gene that regulate vascular expression in vivo. In this study, we identified a transcriptional enhancer from the mouse mef2c gene sufficient to direct expression to the vascular endothelium in transgenic embryos. This enhancer is active in endothelial cells within the developing vascular system from very early stages in vasculogenesis, and the enhancer remains robustly active in the vascular endothelium during embryogenesis and in adulthood. This mef2c endothelial cell enhancer contains four perfect consensus Ets transcription factor binding sites that are efficiently bound by Ets-1 protein in vitro and are required for enhancer function in transgenic embryos. Thus, these studies identify mef2c as a direct transcriptional target of Ets factors via an evolutionarily conserved transcriptional enhancer and establish a direct link between these two early regulators of vascular gene expression during endothelial cell development in vivo.


Asunto(s)
Endotelio Vascular/embriología , Elementos de Facilitación Genéticos/fisiología , Regulación del Desarrollo de la Expresión Génica , Factores Reguladores Miogénicos/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Factores de Transcripción/metabolismo , Activación Transcripcional/fisiología , Animales , Secuencia de Bases , Evolución Biológica , Clonación Molecular , Cartilla de ADN , Ensayo de Cambio de Movilidad Electroforética , Elementos de Facilitación Genéticos/genética , Componentes del Gen , Inmunohistoquímica , Factores de Transcripción MEF2 , Ratones , Ratones Transgénicos , Datos de Secuencia Molecular , Mutagénesis Insercional , Factores Reguladores Miogénicos/genética , Factores Reguladores Miogénicos/fisiología , Plásmidos/genética , Proteína Proto-Oncogénica c-ets-1 , Proteínas Proto-Oncogénicas/fisiología , Proteínas Proto-Oncogénicas c-ets , Alineación de Secuencia , Análisis de Secuencia de ADN , Factores de Transcripción/fisiología
8.
Dev Biol ; 249(1): 174-90, 2002 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-12217327

RESUMEN

Members of the basic helix-loop-helix (bHLH) transcription factor family play an essential role in multiple developmental processes. During neurogenesis, positive and negative regulation by bHLH proteins is essential for proper development. Here we report the identification and initial characterization of the bHLH gene, Neuronal twist (N-twist), named for its neural expression pattern and high sequence homology and physical linkage to the mesodermal inhibitor, M-twist. N-twist is expressed in the developing mouse central nervous system in the midbrain, hindbrain, and neural tube. This neural expression is conserved in invertebrates, as expression of the Drosophila ortholog of N-twist is also restricted to the central nervous system. Like other bHLH family members, N-Twist heterodimerizes with E protein and binds DNA at a consensus bHLH-binding site, the E box. We show that N-Twist inhibits MASH1-dependent transcriptional activation by sequestering E protein in a dominant negative fashion. Thus, these studies support the notion that N-Twist represents a novel negative regulator of neurogenesis.


Asunto(s)
Sistema Nervioso Central/embriología , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Factores Reguladores Miogénicos , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Sistema Nervioso Central/crecimiento & desarrollo , Clonación Molecular , Secuencia Conservada , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Dimerización , Drosophila/genética , Evolución Molecular , Femenino , Regulación del Desarrollo de la Expresión Génica , Secuencias Hélice-Asa-Hélice , Humanos , Ratones , Datos de Secuencia Molecular , Proteínas del Tejido Nervioso , Proteínas Nucleares/genética , Proteínas Represoras , Factores de Transcripción TCF , Proteína 1 Similar al Factor de Transcripción 7 , Transcripción Genética , Proteína 1 Relacionada con Twist
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA