Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Orthop Res ; 42(5): 915-922, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38366965

RESUMEN

Biplane radiography has emerged as the gold standard for accurately measuring in vivo skeletal kinematics during physiological loading. The purpose of this scoping review was to map the extent, range, and nature of biplane radiography research on humans from 2004 through 2022. A literature search was performed using the terms biplane radiography, dual fluoroscopy, dynamic stereo X-ray, and biplane videoradiography. All articles referenced in included publications were also assessed for inclusion. A secondary search was then performed using the names of the most frequently appearing principal investigators among included papers. A total of 379 manuscripts were identified and included. The first studies published in 2004 focused on the native knee, followed by studies of the ankle joint complex in 2006, the shoulder in 2007, and the spine in 2008. Nearly half (180, 47.5%) of all manuscripts investigated knee kinematics. The average number of publications increased from 21.6 per year from 2012 to 2017 to 34.6 per year from 2017 to 2022. The average number of participants per study was 16, with a range from 1 to 101. A total of 90.2% of studies featured cohorts of 30 or less. The most prolific research groups for each joint were: Mass General Hospital (lumbar spine and knee), Henry Ford Hospital (shoulder), the University of Utah (ankle and hip), The University of Pittsburgh (cervical spine), and Brown University (hand/wrist/elbow). Future advancements in biplane radiography research are dependent upon increased availability of these imaging systems, standardization of data collection protocols, and the development of automated approaches to expedite data processing.


Asunto(s)
Articulación de la Rodilla , Humanos , Fenómenos Biomecánicos , Radiografía , Fluoroscopía , Articulación de la Rodilla/diagnóstico por imagen , Articulación de la Rodilla/fisiología , Rayos X
2.
Med Eng Phys ; 126: 104151, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38621840

RESUMEN

This study aimed to characterize ankle and hindfoot kinematics of healthy men and women during overground running using biplane radiography, and to compare these data to those previously obtained in the same cohort during overground walking. Participants ran across an elevated platform at a self-selected pace while synchronized biplane radiographs of their ankle and hindfoot were acquired. Motion of the tibia, talus, and calcaneus was tracked using a validated volumetric model-based tracking process. Tibiotalar and subtalar 6DOF kinematics were obtained. Absolute side-to-side differences in ROM and kinematics waveforms were calculated. Side-to-side and sex-specific differences were evaluated at 10 % increments of stance phase with mixed model analysis. Pearson correlation coefficients were used to assess the relationship between stance-phase running and walking kinematics. 20 participants comprised the study cohort (10 men, mean age 30.8 ± 6.3 years, mean BMI 24.1 ± 3.1). Average absolute side-to-side differences in running kinematics waveforms were 5.6°/2.0 mm or less at the tibiotalar joint and 5.2°/3.2 mm or less at the subtalar joint. No differences in running kinematics waveforms between sides or between men and women were detected. Correlations were stronger at the tibiotalar joint (42/66 [64 %] of correlations were p < 0.05), than at the tibiotalar joint (38/66 [58 %] of correlations were p < 0.05). These results provide a normative reference for evaluating native ankle and hindfoot kinematics which may be informative in surgical or rehabilitation contexts. Sex-specific differences in ankle kinematics during overground running are likely not clinically or etiologically significant. Associations seen between walking and running kinematics suggest one could be used to predict the other.


Asunto(s)
Tobillo , Carrera , Masculino , Adulto , Humanos , Femenino , Adulto Joven , Tobillo/diagnóstico por imagen , Pie/diagnóstico por imagen , Articulación del Tobillo/diagnóstico por imagen , Caminata , Radiografía , Fenómenos Biomecánicos , Rango del Movimiento Articular
3.
Foot Ankle Int ; 45(6): 632-640, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38491768

RESUMEN

BACKGROUND: Cadaver biomechanical testing suggests that the morphology of articulating bones contributes to the stability of the joints and determines their kinematics; however, there are no studies examining the correlation between bone morphology and kinematics of the subtalar joint. The purpose of this study was to investigate the influence of talar and calcaneal morphology on subtalar kinematics during walking in healthy individuals. METHODS: Forty ankles (20 healthy subjects, 10 women/10 men) were included. Participants walked at a self-selected pace while synchronized biplane radiographs of the hindfoot were acquired at 100 images per second during stance. Motion of the talus and calcaneus was tracked using a validated volumetric model-based tracking process, and subtalar kinematics were calculated. Talar and calcaneal morphology were evaluated using statistical shape modeling. Pearson correlation coefficients were used to assess the relationship between subtalar kinematics and the morphology features of the talus and calcaneus. RESULTS: This study found that a shallower posterior facet of the talus was correlated with the subtalar joint being in more dorsiflexion, more inversion, and more internal rotation, and higher curvature in the posterior facet was correlated with more inversion and eversion range of motion during stance. In the calcaneus, a gentler slope of the middle facet was correlated with greater subtalar inversion. CONCLUSION: The morphology of the posterior facet of the talus was found to a primary factor driving multiplanar subtalar joint kinematics during the stance phase of gait. CLINICAL RELEVANCE: This new knowledge relating form and function in the hindfoot may assist in identifying individuals susceptible to subtalar instability and in improving implant design to achieve desired kinematics after surgery.


Asunto(s)
Calcáneo , Articulación Talocalcánea , Astrágalo , Caminata , Humanos , Calcáneo/fisiología , Calcáneo/diagnóstico por imagen , Calcáneo/anatomía & histología , Articulación Talocalcánea/fisiología , Articulación Talocalcánea/diagnóstico por imagen , Articulación Talocalcánea/anatomía & histología , Fenómenos Biomecánicos , Astrágalo/fisiología , Astrágalo/anatomía & histología , Astrágalo/diagnóstico por imagen , Caminata/fisiología , Masculino , Femenino , Adulto , Rango del Movimiento Articular/fisiología , Adulto Joven
4.
J Orthop Res ; 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38956422

RESUMEN

Total knee arthroplasty (TKA) and unicompartmental knee arthroplasty (UKA) are effective surgeries to treat end-stage knee osteoarthritis. Clinicians assume that TKA alters knee kinematics while UKA preserves native knee kinematics; however, few studies of in vivo kinematics have evaluated this assumption. This study used biplane radiography to compare side-to-side tibiofemoral kinematics during chair rise, stair ascent, and walking in 16 patients who received either TKA or UKA. We hypothesized that TKA knees would have significant kinematic changes and increased asymmetry with the contralateral knee, while UKA knee kinematics would not change after surgery and preoperative knee symmetry would be maintained. Native bone and implant motion were tracked using a volumetric model-based tracking technique. Six degrees of freedom kinematics were calculated throughout each motion. Kinematics were compared between the operated and contralateral knees pre- and post-surgery using a linear mixed-effects model. TKA knees became less varus with the tibia more medial, posterior, and distal relative to the femur. UKA knees became less varus with the tibia less lateral on average. Postoperative TKA knees were in less varus than UKA knees on average and at low flexion angles, with an internally rotated tibia during chair rise and stair ascent. At high flexion angles, the tibia was more medial and posterior after TKA than UKA. Side-to-side kinematic symmetry worsened after TKA but was maintained or improved after UKA. Greater understanding of kinematic differences between operated and contralateral knees after surgery may help surgeons understand why some patients remain unsatisfied with their new knees.

5.
Clin Biomech (Bristol, Avon) ; 112: 106184, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38244237

RESUMEN

BACKGROUND: Reaching behind the back is painful for individuals with rotator cuff tears. The objectives of the study were to determine changes in glenohumeral kinematics when reaching behind the back, passive range of motion (RoM), patient reported outcomes and the relationships between kinematics and patient reported outcomes following exercise therapy. METHODS: Eighty-four individuals with symptomatic isolated supraspinatus tears were recruited for this prospective observational study. Glenohumeral kinematics were measured using biplane radiography during a reaching behind the back movement. Passive glenohumeral internal rotation and patient reported outcome measures were collected. Depending on data normality, appropriate tests were utilized to determine changes in variables. Spearman's correlations were utilized for associations, and Stuart-Maxwell tests for changes in distributions. FINDINGS: Maximum active glenohumeral internal rotation increased by 3.2° (P = 0.001), contact path length decreased by 5.5% glenoid size (P = 0.022), passive glenohumeral internal rotation RoM increased by 4.9° (P = 0.001), and Western Ontario Rotator Cuff Index and American Shoulder and Elbow Surgeons scores increased by 29.8 and 21.1 (P = 0.001), respectively. Changes in Western Ontario Rotator Cuff Index scores positively associated with changes in maximum active glenohumeral internal rotation and negatively associated with changes in contact path lengths (P = 0.008 and P = 0.006, respectively). INTERPRETATION: The reaching behind the back movement was useful in elucidating in-vivo mechanistic changes associated with patient reported outcomes. Glenohumeral joint function and patient reported outcomes improved, where changes in Western Ontario Rotator Cuff Index scores were associated with kinematics. These findings inform clinicians of functional changes following exercise therapy and new targetable treatment factors.


Asunto(s)
Lesiones del Manguito de los Rotadores , Articulación del Hombro , Humanos , Lesiones del Manguito de los Rotadores/terapia , Manguito de los Rotadores , Hombro , Terapia por Ejercicio , Rango del Movimiento Articular , Fenómenos Biomecánicos , Medición de Resultados Informados por el Paciente
6.
Sci Rep ; 14(1): 9542, 2024 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-38664550

RESUMEN

The introduction of women into U.S. military ground close combat roles requires research into sex-specific effects of military training and operational activities. Knee osteoarthritis is prevalent among military service members; its progression has been linked to occupational tasks such as load carriage. Analyzing tibiofemoral arthrokinematics during load carriage is important to understand potentially injurious motion and osteoarthritis progression. The study purpose was to identify effects of load carriage on knee arthrokinematics during walking and running in recruit-aged women. Twelve healthy recruit-aged women walked and ran while unloaded (bodyweight [BW]) and carrying additional + 25%BW and + 45%BW. Using dynamic biplane radiography and subject-specific bone models, tibiofemoral arthrokinematics, subchondral joint space and center of closest contact location between subchondral bone surfaces were analyzed over 0-30% stance (separate one-way repeated measures analysis of variance, load by locomotion). While walking, medial compartment contact location was 5% (~ 1.6 mm) more medial for BW than + 45%BW at foot strike (p = 0.03). While running, medial compartment contact location was 4% (~ 1.3 mm) more lateral during BW than + 25%BW at 30% stance (p = 0.04). Internal rotation was greater at + 45%BW compared to + 25%BW (p < 0.01) at 30% stance. Carried load affects tibiofemoral arthrokinematics in recruit-aged women. Prolonged load carriage could increase the risk of degenerative joint injury in physically active women.


Asunto(s)
Articulación de la Rodilla , Caminata , Soporte de Peso , Humanos , Femenino , Soporte de Peso/fisiología , Caminata/fisiología , Articulación de la Rodilla/fisiología , Adulto , Carrera/fisiología , Personal Militar , Fenómenos Biomecánicos , Fémur/fisiología , Fémur/diagnóstico por imagen , Osteoartritis de la Rodilla/fisiopatología , Osteoartritis de la Rodilla/etiología , Tibia/fisiología , Tibia/diagnóstico por imagen , Adulto Joven
7.
J Biomech ; 173: 112236, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39084063

RESUMEN

Normal biomechanics of the upper cervical spine, particularly at the atlantooccipital joint, remain poorly characterized. The purpose of this study was to determine the intervertebral kinematics of the atlantooccipital joint (occiput-C1) during three-dimensional in vivo physiologic movements. Twenty healthy young adults performed dynamic flexion/extension, axial rotation, and lateral bending while biplane radiographs were collected at 30 images per second. Motion at occiput-C1 was tracked using a validated volumetric model-based tracking process that matched subject-specific CT-based bone models to the radiographs. The occiput-C1 total range of motion (ROM) and helical axis of motion (HAM) was calculated for each movement. During flexion/extension, the occiput-C1 moved almost exclusively in-plane (ROM: 17.9 ± 6.9°) with high variability in kinematic waveforms (6.3°) compared to the in-plane variability during axial rotation (1.4°) and lateral bending (0.9°) movements. During axial rotation, there was small in-plane motion (ROM: 4.2 ± 2.5°) compared to out-of-plane flexion/extension (ROM: 12.7 ± 5.4°). During lateral bending, motion occurred in-plane (ROM: 9.0 ± 3.1°) and in the plane of flexion/extension (ROM: 7.3 ± 2.7°). The average occiput-C1 axis of rotation intersected the sagittal and coronal planes 7 mm to 18 mm superior to the occipital condyles. The occiput-C1 axis of rotation pointed 60° from the sagittal plane during axial rotation but only 10° from the sagittal plane during head lateral bending. These novel results are foundational for future work on upper cervical spine kinematics.


Asunto(s)
Articulación Atlantooccipital , Rango del Movimiento Articular , Humanos , Rango del Movimiento Articular/fisiología , Masculino , Articulación Atlantooccipital/fisiología , Articulación Atlantooccipital/diagnóstico por imagen , Fenómenos Biomecánicos , Femenino , Adulto , Movimiento/fisiología , Rotación , Adulto Joven , Imagenología Tridimensional , Vértebras Cervicales/fisiología , Vértebras Cervicales/diagnóstico por imagen , Tomografía Computarizada por Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA