Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Genes Dev ; 32(2): 165-180, 2018 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-29440260

RESUMEN

Multiple congenital disorders often present complex phenotypes, but how the mutation of individual genetic factors can lead to multiple defects remains poorly understood. In the present study, we used human neuroepithelial (NE) cells and CHARGE patient-derived cells as an in vitro model system to identify the function of chromodomain helicase DNA-binding 7 (CHD7) in NE-neural crest bifurcation, thus revealing an etiological link between the central nervous system (CNS) and craniofacial anomalies observed in CHARGE syndrome. We found that CHD7 is required for epigenetic activation of superenhancers and CNS-specific enhancers, which support the maintenance of the NE and CNS lineage identities. Furthermore, we found that BRN2 and SOX21 are downstream effectors of CHD7, which shapes cellular identities by enhancing a CNS-specific cellular program and indirectly repressing non-CNS-specific cellular programs. Based on our results, CHD7, through its interactions with superenhancer elements, acts as a regulatory hub in the orchestration of the spatiotemporal dynamics of transcription factors to regulate NE and CNS lineage identities.


Asunto(s)
ADN Helicasas/fisiología , Proteínas de Unión al ADN/fisiología , Epigénesis Genética , Células-Madre Neurales/metabolismo , Células Neuroepiteliales/metabolismo , Síndrome CHARGE/genética , Línea Celular , Linaje de la Célula/genética , ADN Helicasas/genética , ADN Helicasas/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Elementos de Facilitación Genéticos , Haploinsuficiencia , Humanos , Cresta Neural/metabolismo , Transcripción Genética
2.
Commun Biol ; 6(1): 611, 2023 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-37286713

RESUMEN

Although neural stem/progenitor cells derived from human induced pluripotent stem cells (hiPSC-NS/PCs) are expected to be a cell source for cell-based therapy, tumorigenesis of hiPSC-NS/PCs is a potential problem for clinical applications. Therefore, to understand the mechanisms of tumorigenicity in NS/PCs, we clarified the cell populations of NS/PCs. We established single cell-derived NS/PC clones (scNS/PCs) from hiPSC-NS/PCs that generated undesired grafts. Additionally, we performed bioassays on scNS/PCs, which classified cell types within parental hiPSC-NS/PCs. Interestingly, we found unique subsets of scNS/PCs, which exhibited the transcriptome signature of mesenchymal lineages. Furthermore, these scNS/PCs expressed both neural (PSA-NCAM) and mesenchymal (CD73 and CD105) markers, and had an osteogenic differentiation capacity. Notably, eliminating CD73+ CD105+ cells from among parental hiPSC-NS/PCs ensured the quality of hiPSC-NS/PCs. Taken together, the existence of unexpected cell populations among NS/PCs may explain their tumorigenicity leading to potential safety issues of hiPSC-NS/PCs for future regenerative medicine.


Asunto(s)
Células Madre Pluripotentes Inducidas , Células-Madre Neurales , Humanos , Osteogénesis , Células-Madre Neurales/metabolismo , Transformación Celular Neoplásica/metabolismo , Carcinogénesis/metabolismo
3.
Sci Rep ; 12(1): 22648, 2022 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-36587182

RESUMEN

A mutation in the chromatin remodeler chromodomain helicase DNA-binding 7 (CHD7) gene causes the multiple congenital anomaly CHARGE syndrome. The craniofacial anomalies observed in CHARGE syndrome are caused by dysfunctions of neural crest cells (NCCs), which originate from the neural tube. However, the mechanism by which CHD7 regulates the function of human NCCs (hNCCs) remains unclear. We aimed to characterize the cis-regulatory elements governed by CHD7 in hNCCs by analyzing genome-wide ChIP-Seq data and identifying hNCC-specific CHD7-binding profiles. We compared CHD7-binding regions among cell types, including human induced pluripotent stem cells and human neuroepithelial cells, to determine the comprehensive properties of CHD7-binding in hNCCs. Importantly, analysis of the hNCC-specific CHD7-bound region revealed transcription factor AP-2α as a potential co-factor facilitating the cell type-specific transcriptional program in hNCCs. CHD7 was strongly associated with active enhancer regions, permitting the expression of hNCC-specific genes to sustain the function of hNCCs. Our findings reveal the regulatory mechanisms of CHD7 in hNCCs, thus providing additional information regarding the transcriptional programs in hNCCs.


Asunto(s)
Síndrome CHARGE , Células Madre Pluripotentes Inducidas , Humanos , Proteínas de Unión al ADN/metabolismo , Síndrome CHARGE/genética , Cresta Neural/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Cromatina/genética , Cromatina/metabolismo , Expresión Génica , ADN Helicasas/genética , ADN Helicasas/metabolismo
4.
Cell Rep ; 35(7): 109124, 2021 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-34010654

RESUMEN

Rett syndrome (RTT) is a severe neurological disorder, with impaired brain development caused by mutations in MECP2; however, the underlying mechanism remains elusive. We know from previous work that MeCP2 facilitates the processing of a specific microRNA, miR-199a, by associating with the Drosha complex to regulate neuronal functions. Here, we show that the MeCP2/miR-199a axis regulates neural stem/precursor cell (NS/PC) differentiation. A shift occurs from neuronal to astrocytic differentiation of MeCP2- and miR-199a-deficient NS/PCs due to the upregulation of a miR-199a target, Smad1, a downstream transcription factor of bone morphogenetic protein (BMP) signaling. Moreover, miR-199a expression and treatment with BMP inhibitors rectify the differentiation of RTT patient-derived NS/PCs and development of brain organoids, respectively, suggesting that facilitation of BMP signaling accounts for the impaired RTT brain development. Our study illuminates the molecular pathology of RTT and reveals the MeCP2/miR-199a/Smad1 axis as a potential therapeutic target for RTT.


Asunto(s)
Receptores de Proteínas Morfogenéticas Óseas/metabolismo , Proteína 2 de Unión a Metil-CpG/metabolismo , Células-Madre Neurales/metabolismo , Síndrome de Rett/genética , Animales , Diferenciación Celular , Modelos Animales de Enfermedad , Humanos , Ratones , Transducción de Señal
5.
Stem Cell Reports ; 11(5): 1171-1184, 2018 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-30344006

RESUMEN

Parkinson disease (PD) is a progressive neurological disease caused by selective degeneration of dopaminergic (DA) neurons in the substantia nigra. Although most cases of PD are sporadic cases, familial PD provides a versatile research model for basic mechanistic insights into the pathogenesis of PD. In this study, we generated DA neurons from PARK2 patient-specific, isogenic PARK2 null and PARK6 patient-specific induced pluripotent stem cells and found that these neurons exhibited more apoptosis and greater susceptibility to rotenone-induced mitochondrial stress. From phenotypic screening with an FDA-approved drug library, one voltage-gated calcium channel antagonist, benidipine, was found to suppress rotenone-induced apoptosis. Furthermore, we demonstrated the dysregulation of calcium homeostasis and increased susceptibility to rotenone-induced stress in PD, which is prevented by T-type calcium channel knockdown or antagonists. These findings suggest that calcium homeostasis in DA neurons might be a useful target for developing new drugs for PD patients.


Asunto(s)
Canales de Calcio Tipo T/metabolismo , Neuronas Dopaminérgicas/patología , Mitocondrias/metabolismo , Estrés Oxidativo , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Apoptosis/efectos de los fármacos , Calcio/metabolismo , Bloqueadores de los Canales de Calcio/química , Bloqueadores de los Canales de Calcio/farmacología , Línea Celular , Neuronas Dopaminérgicas/metabolismo , Homeostasis/efectos de los fármacos , Humanos , Células Madre Pluripotentes Inducidas , Mitocondrias/efectos de los fármacos , Modelos Biológicos , Proyección Neuronal/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Estrés Oxidativo/efectos de los fármacos , Proteínas Quinasas/metabolismo , Rotenona/toxicidad , Ubiquitina-Proteína Ligasas/metabolismo
6.
Chem Commun (Camb) ; 54(11): 1355-1358, 2018 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-29350722

RESUMEN

This report describes the design and evaluation of phosphorylated 7-ethyl-10-hydroxycamptothecin (SN38-P), which selectively eliminates tumor-forming proliferative stem cells, including human induced pluripotent stem cells (hiPSCs) and neural stem cells, from iPSC-derived neural cell mixtures. Results of the present study demonstrate that simple phosphorylation of an anticancer drug can provide a safe, cost-effective, and chemically-defined tool for decontaminating hiPSC-derived neuron.


Asunto(s)
Antineoplásicos/farmacología , Camptotecina/análogos & derivados , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Células-Madre Neurales/efectos de los fármacos , Fosfatasa Alcalina/metabolismo , Animales , Antineoplásicos/síntesis química , Antineoplásicos/química , Antineoplásicos/metabolismo , Camptotecina/síntesis química , Camptotecina/química , Camptotecina/metabolismo , Camptotecina/farmacología , Bovinos , Línea Celular , Permeabilidad de la Membrana Celular , Daño del ADN , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/enzimología , Irinotecán , Células-Madre Neurales/citología , Células-Madre Neurales/enzimología , Neuronas/citología , Neuronas/efectos de los fármacos , Fosforilación
7.
Keio J Med ; 66(1): 1-8, 2017 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-28111378

RESUMEN

Human induced pluripotent stem cells (hiPSCs) represent a potentially useful tool for studying the molecular mechanisms of disease thanks to their ability to generate patient-specific hiPSC clones. However, previous studies have reported that DNA methylation profiles, including those for imprinted genes, may change during passaging of hiPSCs. This is particularly problematic for hiPSC models of X-linked disease, because unstable X chromosome inactivation status may affect the detection of phenotypes. In the present study, we examined the epigenetic status of hiPSCs derived from patients with Rett syndrome, an X-linked disease, during long-term culture. To analyze X chromosome inactivation, we used a methylation-specific polymerase chain reaction (MSP) to assay the human androgen receptor locus (HUMARA). We found that single cell-derived hiPSC clones exhibit various states of X chromosome inactivation immediately after clonal isolation, even when established simultaneously from a single donor. X chromosome inactivation states remain variable in hiPSC clones at early passages, and this variability may affect cellular phenotypes characteristic of X-linked diseases. Careful evaluation of X chromosome inactivation in hiPSC clones, particularly in early passages, by methods such as HUMARA-MSP, is therefore important when using patient-specific hiPSCs to model X-linked disease.


Asunto(s)
Epigénesis Genética , Células Madre Pluripotentes Inducidas/metabolismo , Receptores Androgénicos/genética , Síndrome de Rett/genética , Inactivación del Cromosoma X , Diferenciación Celular , Proliferación Celular , Reprogramación Celular , Niño , Células Clonales , Metilación de ADN , Femenino , Fibroblastos/metabolismo , Fibroblastos/patología , Sitios Genéticos , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/patología , Cariotipificación , Lentivirus/genética , Lentivirus/metabolismo , Reacción en Cadena de la Polimerasa/métodos , Cultivo Primario de Células , Receptores Androgénicos/metabolismo , Síndrome de Rett/metabolismo , Síndrome de Rett/patología , Piel/metabolismo , Piel/patología , Transducción Genética , Gemelos Monocigóticos
8.
CNS Neurol Disord Drug Targets ; 15(5): 544-50, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27071793

RESUMEN

Rett syndrome (RTT) is one of a group of neurodevelopmental disorders typically characterized by deficits in the X-linked gene MECP2 (methyl-CpG binding protein 2). The MECP2 gene encodes a multifunctional protein involved in transcriptional repression, transcriptional activation, chromatin remodeling, and RNA splicing. Genetic deletion of Mecp2 in mice revealed neuronal disabilities including RTT-like phenotypes and provided an excellent platform for understanding the pathogenesis of RTT. So far, there are no effective pharmacological treatments for RTT because the role of MECP2 in RTT is incompletely understood. Recently, human induced pluripotent stem cell (hiPSC) technologies have improved our knowledge of neurological and neurodevelopmental diseases including RTT because neurons derived from RTT-hiPSCs can be used for disease modeling to understand RTT phenotypes and to perform high throughput pharmaceutical drug screening. In this review, we provide an overview of RTT, including MeCP2 function and mouse models of RTT. In addition, we introduce recent advances in disease modeling of RTT using hiPSC-derived neural cells.


Asunto(s)
Células Madre Pluripotentes Inducidas/metabolismo , Proteína 2 de Unión a Metil-CpG/metabolismo , Neuronas/metabolismo , Síndrome de Rett/metabolismo , Animales , Modelos Animales de Enfermedad , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Ratones , Neuronas/citología , Neuronas/efectos de los fármacos , Síndrome de Rett/tratamiento farmacológico
9.
Stem Cell Reports ; 6(3): 422-35, 2016 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-26905201

RESUMEN

Modeling of neurological diseases using induced pluripotent stem cells (iPSCs) derived from the somatic cells of patients has provided a means of elucidating pathogenic mechanisms and performing drug screening. T cells are an ideal source of patient-specific iPSCs because they can be easily obtained from samples. Recent studies indicated that iPSCs retain an epigenetic memory relating to their cell of origin that restricts their differentiation potential. The classical method of differentiation via embryoid body formation was not suitable for T cell-derived iPSCs (TiPSCs). We developed a neurosphere-based robust differentiation protocol, which enabled TiPSCs to differentiate into functional neurons, despite differences in global gene expression between TiPSCs and adult human dermal fibroblast-derived iPSCs. Furthermore, neurons derived from TiPSCs generated from a juvenile patient with Parkinson's disease exhibited several Parkinson's disease phenotypes. Therefore, we conclude that TiPSCs are a useful tool for modeling neurological diseases.


Asunto(s)
Células Madre Pluripotentes Inducidas/citología , Neurogénesis , Neuronas/citología , Cultivo Primario de Células/métodos , Linfocitos T/citología , Células Cultivadas , Fibroblastos/citología , Humanos
10.
Mol Brain ; 8: 31, 2015 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-26012557

RESUMEN

BACKGROUND: Rett syndrome (RTT) is one of the most prevalent neurodevelopmental disorders in females, caused by de novo mutations in the X-linked methyl CpG-binding protein 2 gene, MECP2. Although abnormal regulation of neuronal genes due to mutant MeCP2 is thought to induce autistic behavior and impaired development in RTT patients, precise cellular mechanisms underlying the aberrant neural progression remain unclear. RESULTS: Two sets of isogenic pairs of either wild-type or mutant MECP2-expressing human induced pluripotent stem cell (hiPSC) lines were generated from a single pair of 10-year-old RTT-monozygotic (MZ) female twins. Mutant MeCP2-expressing hiPSC lines did not express detectable MeCP2 protein during any stage of differentiation. The lack of MeCP2 reflected altered gene expression patterns in differentiated neural cells rather than in undifferentiated hiPSCs, as assessed by microarray analysis. Furthermore, MeCP2 deficiency in the neural cell lineage increased astrocyte-specific differentiation from multipotent neural stem cells. Additionally, chromatin immunoprecipitation (ChIP) and bisulfite sequencing assays indicated that anomalous glial fibrillary acidic protein gene (GFAP) expression in the MeCP2-negative, differentiated neural cells resulted from the absence of MeCP2 binding to the GFAP gene. CONCLUSIONS: An isogenic RTT-hiPSC model demonstrated that MeCP2 participates in the differentiation of neural cells. Moreover, MeCP2 deficiency triggers perturbation of astrocytic gene expression, yielding accelerated astrocyte formation from RTT-hiPSC-derived neural stem cells. These findings are likely to shed new light on astrocytic abnormalities in RTT, and suggest that astrocytes, which are required for neuronal homeostasis and function, might be a new target of RTT therapy.


Asunto(s)
Astrocitos/patología , Diferenciación Celular , Linaje de la Célula , Células Madre Multipotentes/patología , Células-Madre Neurales/patología , Síndrome de Rett/patología , Línea Celular , Niño , Metilación de ADN/genética , Fibroblastos/metabolismo , Fibroblastos/patología , Proteína Ácida Fibrilar de la Glía/genética , Humanos , Células Madre Pluripotentes Inducidas/patología , Proteína 2 de Unión a Metil-CpG/genética , Mosaicismo , Mutación/genética , Unión Proteica , Gemelos Monocigóticos , Inactivación del Cromosoma X/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA