Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
BMC Plant Biol ; 22(1): 352, 2022 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-35850575

RESUMEN

BACKGROUND: Pentatricopeptide repeat (PPR) proteins play an essential role in the post-transcriptional regulation of genes in plastid genomes. Although important advances have been made in understanding the functions of these genes, there is little information available on chloroplastic PPR genes in non-model plants and less in plants without chloroplasts. In the present study, a comprehensive and multifactorial bioinformatic strategy was applied to search for putative PPR genes in the foliar and meristematic tissues of green and albino plantlets of the non-model plant Agave angustifolia Haw. RESULTS: A total of 1581 PPR transcripts were identified, of which 282 were chloroplastic. Leaf tissue in the albino plantlets showed the highest levels of expression of chloroplastic PPRs. The search for hypothetical targets of 12 PPR sequences in the chloroplast genes of A. angustifolia revealed their action on transcripts related to ribosomes and translation, photosystems, ATP synthase, plastid-encoded RNA polymerase and RuBisCO. CONCLUSIONS: Our results suggest that the expression of PPR genes depends on the state of cell differentiation and plastid development. In the case of the albino leaf tissue, which lacks functional chloroplasts, it is possible that anterograde and retrograde signaling networks are severely compromised, leading to a compensatory anterograde response characterized by an increase in the expression of PPR genes.


Asunto(s)
Agave , Proteínas de Cloroplastos , Agave/metabolismo , Proteínas de Cloroplastos/genética , Cloroplastos/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/metabolismo
2.
Plant Physiol Biochem ; 201: 107902, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37506650

RESUMEN

Amino acids (AA) are essential molecules for plant physiology, acting as precursor molecules for proteins and other organic compounds. Chloroplasts play a vital role in AA metabolism, yet little is known about the impact on AA metabolism of albino plants' lack of chloroplasts. In this study, we conducted a quantitative proteome analysis on albino and variegated somaclonal variants of Agave angustifolia Haw. to investigate metabolic alterations in chloroplast-deficient plants, with a focus on AA metabolic pathways. We identified 82 enzymes involved in AA metabolism, with 32 showing differential accumulation between the somaclonal variants. AaCM, AaALS, AaBCAT, AaIPMS1, AaSHMT, AaAST, AaCGS, and AaMS enzymes were particularly relevant in chloroplast-deficient Agave plantlets. Both variegated and albino phenotypes exhibited excessive synthesis of AA typically associated with chloroplasts (aromatic AAs, BCAAs, Asp, Lys, Pro and Met). Consistent trends were observed for AaBCAT and AaCM at mRNA and protein levels in albino plantlets. These findings highlight the critical activation and reprogramming of AA metabolic pathways in plants lacking chloroplasts. This study contributes to unraveling the intricate relationship between AA metabolism and chloroplast absence, offering insights into survival mechanisms of albino plants.


Asunto(s)
Agave , Proteoma , Proteoma/metabolismo , Agave/metabolismo , Aminoácidos/metabolismo , Cloroplastos/metabolismo , Fotosíntesis/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA