Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
J Biol Chem ; 292(36): 15143-15158, 2017 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-28663369

RESUMEN

Pertussis-like toxins are secreted by several bacterial pathogens during infection. They belong to the AB5 virulence factors, which bind to glycans on host cell membranes for internalization. Host cell recognition and internalization are mediated by toxin B subunits sharing a unique pentameric ring-like assembly. Although the role of pertussis toxin in whooping cough is well-established, pertussis-like toxins produced by other bacteria are less studied, and their mechanisms of action are unclear. Here, we report that some extra-intestinal Escherichia coli pathogens (i.e. those that reside in the gut but can spread to other bodily locations) encode a pertussis-like toxin that inhibits mammalian cell growth in vitro We found that this protein, EcPlt, is related to toxins produced by both nontyphoidal and typhoidal Salmonella serovars. Pertussis-like toxins are secreted as disulfide-bonded heterohexamers in which the catalytic ADP-ribosyltransferase subunit is activated when exposed to the reducing environment in mammalian cells. We found here that the reduced EcPlt exhibits large structural rearrangements associated with its activation. We noted that inhibitory residues tethered within the NAD+-binding site by an intramolecular disulfide in the oxidized state dissociate upon the reduction and enable loop restructuring to form the nucleotide-binding site. Surprisingly, although pertussis toxin targets a cysteine residue within the α subunit of inhibitory trimeric G-proteins, we observed that activated EcPlt toxin modifies a proximal lysine/asparagine residue instead. In conclusion, our results reveal the molecular mechanism underpinning activation of pertussis-like toxins, and we also identified differences in host target specificity.


Asunto(s)
Toxinas Bacterianas/química , Toxinas Bacterianas/farmacología , Escherichia coli/química , Proteínas de Unión al GTP Heterotriméricas/antagonistas & inhibidores , Toxina del Pertussis/química , Animales , Proliferación Celular/efectos de los fármacos , Chlorocebus aethiops , Relación Dosis-Respuesta a Droga , Células Epiteliales/efectos de los fármacos , Células HEK293 , Proteínas de Unión al GTP Heterotriméricas/metabolismo , Humanos , Modelos Moleculares , Relación Estructura-Actividad , Células Vero
2.
Biochem Pharmacol ; 188: 114560, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33844984

RESUMEN

Emerging evidence suggests that G protein coupled receptor 55 (GPR55) may influence adrenoceptor function/activity in the cardiovascular system. Whether this reflects direct interaction (dimerization) between receptors or signalling crosstalk has not been investigated. This study explored the interaction between GPR55 and the alpha 1A-adrenoceptor (α1A-AR) in the cardiovascular system and the potential to influence function/signalling activities. GPR55 and α1A-AR mediated changes in both cardiac and vascular function was assessed in male wild-type (WT) and GPR55 homozygous knockout (GPR55-/-) mice by pressure volume loop analysis and isolated vessel myography, respectively. Dimerization of GPR55 with the α1A-AR was examined in transfected Chinese hamster ovary-K1 (CHO-K1) cells via Bioluminescence Resonance Energy Transfer (BRET). GPR55 and α1A-AR mediated signalling (extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation) was investigated in neonatal rat ventricular cardiomyocytes using AlphaScreen proximity assays. GPR55-/- mice exhibited both enhanced pressor and inotropic responses to A61603 (α1A-AR agonist), while in isolated vessels, A61603 induced vasoconstriction was attenuated by a GPR55-dependent mechanism. Conversely, GPR55-mediated vasorelaxation was not altered by pharmacological blockade of α1A-ARs with tamsulosin. While cellular studies demonstrated that GPR55 and α1A-AR failed to dimerize, pharmacological blockade of GPR55 altered α1A-AR mediated signalling and reduced ERK1/2 phosphorylation. Taken together, this study provides evidence that GPR55 and α1A-AR do not dimerize to form heteromers, but do interact at the signalling level to modulate the function of α1A-AR in the cardiovascular system.


Asunto(s)
Multimerización de Proteína/fisiología , Receptores Adrenérgicos alfa 1/genética , Receptores Adrenérgicos alfa 1/metabolismo , Receptores de Cannabinoides/deficiencia , Receptores de Cannabinoides/genética , Agonistas de Receptores Adrenérgicos alfa 1/farmacología , Animales , Animales Recién Nacidos , Células CHO , Células Cultivadas , Cricetinae , Cricetulus , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Técnicas de Cultivo de Órganos , Embarazo , Multimerización de Proteína/efectos de los fármacos , Ratas , Ratas Sprague-Dawley
3.
J Mol Endocrinol ; 60(3): 213-224, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29535183

RESUMEN

Insulin-like peptide 5 (INSL5) is a newly discovered gut hormone expressed in colonic enteroendocrine L-cells but little is known about its biological function. Here, we show using RT-qPCR and in situ hybridisation that Insl5 mRNA is highly expressed in the mouse colonic mucosa, colocalised with proglucagon immunoreactivity. In comparison, mRNA for RXFP4 (the cognate receptor for INSL5) is expressed in various mouse tissues, including the intestinal tract. We show that the human enteroendocrine L-cell model NCI-H716 cell line, and goblet-like colorectal cell lines SW1463 and LS513 endogenously express RXFP4. Stimulation of NCI-H716 cells with INSL5 produced phosphorylation of ERK1/2 (Thr202/Tyr204), AKT (Thr308 and Ser473) and S6RP (Ser235/236) and inhibited cAMP production but did not stimulate Ca2+ release. Acute INSL5 treatment had no effect on GLP-1 secretion mediated by carbachol or insulin, but modestly inhibited forskolin-stimulated GLP-1 secretion in NCI-H716 cells. However, chronic INSL5 pre-treatment (18 h) increased basal GLP-1 secretion and prevented the inhibitory effect of acute INSL5 administration. LS513 cells were found to be unresponsive to INSL5 despite expressing RXFP4 Another enteroendocrine L-cell model, mouse GLUTag cells did not express detectable levels of Rxfp4 and were unresponsive to INSL5. This study provides novel insights into possible autocrine/paracrine roles of INSL5 in the intestinal tract.


Asunto(s)
Péptido 1 Similar al Glucagón/metabolismo , Insulina/metabolismo , Proteínas/metabolismo , Transducción de Señal , Animales , Línea Celular , Colon/metabolismo , AMP Cíclico/biosíntesis , Perfilación de la Expresión Génica , Células Caliciformes/metabolismo , Humanos , Insulina/genética , Ratones Endogámicos C57BL , Fosforilación , Proteínas/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Péptidos/genética , Receptores de Péptidos/metabolismo
4.
Naunyn Schmiedebergs Arch Pharmacol ; 390(1): 105-111, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27888281

RESUMEN

The relaxin family peptide receptor 4 (RXFP4) is a G protein-coupled receptor (GPCR) expressed in the colorectum with emerging roles in metabolism and appetite regulation. It is activated by its cognate ligand insulin-like peptide 5 (INSL5) that is expressed in enteroendocrine L cells in the gut. Whether other evolutionarily related peptides such as relaxin-2, relaxin-3, or INSL3 activate RXFP4 signal transduction mechanisms with a pattern similar to or distinct from INSL5 is still unclear. In this study, we compare the signaling pathways activated by various relaxin family peptides to INSL5. We found that, like INSL5, relaxin-3 activated ERK1/2, p38MAPK, Akt, and S6RP phosphorylations leading to increased cell proliferation and also caused GRK and ß-arrestin-mediated receptor internalization. Interestingly, relaxin-3 was slightly more potent than INSL5 in ERK1/2 and Akt phosphorylations, but both peptides were almost equipotent in adenylyl cyclase inhibition, S6RP phosphorylation, and cell proliferation. In addition, relaxin-3 showed greater efficacy only in Akt phosphorylation but not in the other pathways investigated. In contrast, no signaling activity or receptor internalization mechanisms were observed following relaxin-2 and INSL3. In conclusion, relaxin-3 is a high-efficacy agonist at RXFP4 with a comparable signal transduction profile to INSL5.


Asunto(s)
Receptores Acoplados a Proteínas G/agonistas , Receptores de Péptidos/agonistas , Relaxina/farmacología , Transducción de Señal/efectos de los fármacos , Adenilil Ciclasas/metabolismo , Animales , Células CHO , Proliferación Celular/efectos de los fármacos , Cricetulus , Relación Dosis-Respuesta a Droga , Activación Enzimática , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Quinasa 2 del Receptor Acoplado a Proteína-G/metabolismo , Humanos , Insulina/farmacología , Ligandos , Fosforilación , Transporte de Proteínas , Proteínas/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Péptidos/genética , Receptores de Péptidos/metabolismo , Proteínas Quinasas S6 Ribosómicas/metabolismo , Factores de Tiempo , Transfección , beta-Arrestinas/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
5.
Br J Pharmacol ; 174(10): 1077-1089, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-27243554

RESUMEN

BACKGROUND AND PURPOSE: Insulin-like peptide 5 (INSL5) is a two-chain, three-disulfide-bonded peptide of the insulin/relaxin superfamily, uniquely expressed in enteroendocrine L-cells of the colon. It is the cognate ligand of relaxin family peptide RXFP4 receptor that is mainly expressed in the colorectum and enteric nervous system. This study identifies new signalling pathways activated by INSL5 acting on RXFP4 receptors. EXPERIMENTAL APPROACH: INSL5/RXFP4 receptor signalling was investigated using AlphaScreen® proximity assays. Recruitment of Gαi/o proteins by RXFP4 receptors was determined by rescue of Pertussis toxin (PTX)-inhibited cAMP and ERK1/2 responses following transient transfection of PTX-insensitive Gαi/o C351I mutants. Cell proliferation was studied with bromodeoxyuridine. RXFP4 receptor interactions with ß-arrestins, GPCR kinase 2 (GRK2), KRas and Rab5a was assessed with real-time BRET. Gene expression was investigated using real-time quantitative PCR. Insulin release was measured using HTRF and intracellular Ca2+ flux monitored in a Flexstation® using Fluo-4-AM. KEY RESULTS: INSL5 inhibited forskolin-stimulated cAMP accumulation and increased phosphorylation of ERK1/2, p38MAPK, Akt Ser473 , Akt Thr308 and S6 ribosomal protein. cAMP and ERK1/2 responses were abolished by PTX and rescued by mGαoA , mGαoB and mGαi2 and to a lesser extent mGαi1 and mGαi3 . RXFP4 receptors interacted with GRK2 and ß-arrestins, moved towards Rab5a and away from KRas, indicating internalisation following receptor activation. INSL5 inhibited glucose-stimulated insulin secretion and Ca2+ mobilisation in MIN6 insulinoma cells and forskolin-stimulated cAMP accumulation in NCI-H716 enteroendocrine cells. CONCLUSIONS AND IMPLICATIONS: Knowledge of signalling pathways activated by INSL5 at RXFP4 receptors is essential for understanding the biological roles of this novel gut hormone. LINKED ARTICLES: This article is part of a themed section on Recent Progress in the Understanding of Relaxin Family Peptides and their Receptors. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.10/issuetoc.


Asunto(s)
Insulina/farmacología , Proteínas/farmacología , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Péptidos/metabolismo , Transducción de Señal/efectos de los fármacos , Animales , Células CHO , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Cricetulus , AMP Cíclico/antagonistas & inhibidores , AMP Cíclico/metabolismo , Relación Dosis-Respuesta a Droga , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Humanos , Ratones , Fosforilación , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteína S6 Ribosómica/metabolismo , Relación Estructura-Actividad , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
6.
Sci Rep ; 7(1): 2968, 2017 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-28592882

RESUMEN

Activation of the relaxin receptor RXFP1 has been associated with improved survival in acute heart failure. ML290 is a small molecule RXFP1 agonist with simple structure, long half-life and high stability. Here we demonstrate that ML290 is a biased agonist in human cells expressing RXFP1 with long-term beneficial actions on markers of fibrosis in human cardiac fibroblasts (HCFs). ML290 did not directly compete with orthosteric relaxin binding and did not affect binding kinetics, but did increase binding to RXFP1. In HEK-RXFP1 cells, ML290 stimulated cAMP accumulation and p38MAPK phosphorylation but not cGMP accumulation or ERK1/2 phosphorylation although prior addition of ML290 increased p-ERK1/2 responses to relaxin. In human primary vascular endothelial and smooth muscle cells that endogenously express RXFP1, ML290 increased both cAMP and cGMP accumulation but not p-ERK1/2. In HCFs, ML290 increased cGMP accumulation but did not affect p-ERK1/2 and given chronically activated MMP-2 expression and inhibited TGF-ß1-induced Smad2 and Smad3 phosphorylation. In vascular cells, ML290 was 10x more potent for cGMP accumulation and p-p38MAPK than for cAMP accumulation. ML290 caused strong coupling of RXFP1 to Gαs and GαoB but weak coupling to Gαi3. ML290 exhibited signalling bias at RXFP1 possessing a signalling profile indicative of vasodilator and anti-fibrotic properties.


Asunto(s)
Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/química , Receptores de Péptidos/agonistas , Receptores de Péptidos/química , Regulación Alostérica , Células Cultivadas , AMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Humanos , Cinética , Ligandos , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Modelos Biológicos , Modelos Moleculares , Conformación Molecular , Mioblastos/metabolismo , Fosforilación , Unión Proteica , Relaxina/química , Relaxina/farmacología , Transducción de Señal , Proteína Smad2/metabolismo , Proteína smad3/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA