Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Glia ; 70(9): 1681-1698, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35524725

RESUMEN

Diffuse midline glioma (DMG) is a type of lethal brain tumor that develops mainly in children. The majority of DMG harbor the K27M mutation in histone H3. Oligodendrocyte progenitor cells (OPCs) in the brainstem are candidate cells-of-origin for DMG, yet there is no genetically engineered mouse model of DMG initiated in OPCs. Here, we used the RCAS/Tv-a avian retroviral system to generate DMG in Olig2-expressing progenitors and Nestin-expressing progenitors in the neonatal mouse brainstem. PDGF-A or PDGF-B overexpression, along with p53 deletion, resulted in gliomas in both models. Exogenous overexpression of H3.3K27M had a significant effect on tumor latency and tumor cell proliferation when compared with H3.3WT in Nestin+ cells but not in Olig2+ cells. Further, the fraction of H3.3K27M-positive cells was significantly lower in DMGs initiated in Olig2+ cells relative to Nestin+ cells, both in PDGF-A and PDGF-B-driven models, suggesting that the requirement for H3.3K27M is reduced when tumorigenesis is initiated in Olig2+ cells. RNA-sequencing analysis revealed that the differentially expressed genes in H3.3K27M tumors were non-overlapping between Olig2;PDGF-B, Olig2;PDGF-A, and Nestin;PDGF-A models. GSEA analysis of PDGFA tumors confirmed that the transcriptomal effects of H3.3K27M are cell-of-origin dependent with H3.3K27M promoting epithelial-to-mesenchymal transition (EMT) and angiogenesis when Olig2 marks the cell-of-origin and inhibiting EMT and angiogenesis when Nestin marks the cell-of-origin. We did observe some overlap with H3.3K27M promoting negative enrichment of TNFA_Signaling_Via_NFKB in both models. Our study suggests that the tumorigenic effects of H3.3K27M are cell-of-origin dependent, with H3.3K27M being more oncogenic in Nestin+ cells than Olig2+ cells.


Asunto(s)
Neoplasias Encefálicas , Glioma , Células Precursoras de Oligodendrocitos , Animales , Neoplasias Encefálicas/patología , Modelos Animales de Enfermedad , Glioma/patología , Histonas , Ratones , Mutación/genética , Nestina/genética , Células Precursoras de Oligodendrocitos/patología
2.
Life (Basel) ; 14(8)2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39202668

RESUMEN

High-grade glioma is the most frequent and lethal primary tumor of the central nervous system. Despite advances in surgical, pharmacological, and cell-directed therapies, there have been no updates to the standard of care in over a decade. This cross-sectional study analyzes patient and trial data from 201 interventional trials completed between 2010 and 2023, encompassing 18,563 participants. Although we found that all trials reported participant age and sex, only 52% of trials reported participant demographics, resulting in 51% of total participant demographics being unreported. The majority of studies did not report ethnicity, with approximately 60% of participants unreported. Additionally, males were significantly underrepresented in trials, comprising 60% of participants despite representing 75% of glioblastoma patients. Improved demographic reporting has been observed since 2011; however, it is inconsistent. Furthermore, we cataloged the geographic diversity of trials across the United States and found significant coverage deserts in relatively rural, but highly affected, areas such as Montana and Maine. We found a wider distribution of trials in both urban and wealthier regions, which indicates extensive coverage gaps and decreased access to participation for patients of a lower socioeconomic status.

3.
bioRxiv ; 2024 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-38645178

RESUMEN

Diffuse gliomas are epigenetically dysregulated, immunologically cold, and fatal tumors characterized by mutations in isocitrate dehydrogenase (IDH). Although IDH mutations yield a uniquely immunosuppressive tumor microenvironment, the regulatory mechanisms that drive the immune landscape of IDH mutant (IDHm) gliomas remain unknown. Here, we reveal that transcriptional repression of retinoic acid (RA) pathway signaling impairs both innate and adaptive immune surveillance in IDHm glioma through epigenetic silencing of retinol binding protein 1 (RBP1) and induces a profound anti-inflammatory landscape marked by loss of inflammatory cell states and infiltration of suppressive myeloid phenotypes. Restorative retinoic acid therapy in murine glioma models promotes clonal CD4 + T cell expansion and induces tumor regression in IDHm, but not IDH wildtype (IDHwt), gliomas. Our findings provide a mechanistic rationale for RA immunotherapy in IDHm glioma and is the basis for an ongoing investigator-initiated, single-center clinical trial investigating all-trans retinoic acid (ATRA) in recurrent IDHm human subjects.

4.
Nat Commun ; 14(1): 1839, 2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-37012245

RESUMEN

Myeloid cells comprise the majority of immune cells in tumors, contributing to tumor growth and therapeutic resistance. Incomplete understanding of myeloid cells response to tumor driver mutation and therapeutic intervention impedes effective therapeutic design. Here, by leveraging CRISPR/Cas9-based genome editing, we generate a mouse model that is deficient of all monocyte chemoattractant proteins. Using this strain, we effectively abolish monocyte infiltration in genetically engineered murine models of de novo glioblastoma (GBM) and hepatocellular carcinoma (HCC), which show differential enrichment patterns for monocytes and neutrophils. Eliminating monocyte chemoattraction in monocyte enriched PDGFB-driven GBM invokes a compensatory neutrophil influx, while having no effect on Nf1-silenced GBM model. Single-cell RNA sequencing reveals that intratumoral neutrophils promote proneural-to-mesenchymal transition and increase hypoxia in PDGFB-driven GBM. We further demonstrate neutrophil-derived TNF-a directly drives mesenchymal transition in PDGFB-driven primary GBM cells. Genetic or pharmacological inhibiting neutrophils in HCC or monocyte-deficient PDGFB-driven and Nf1-silenced GBM models extend the survival of tumor-bearing mice. Our findings demonstrate tumor-type and genotype dependent infiltration and function of monocytes and neutrophils and highlight the importance of targeting them simultaneously for cancer treatments.


Asunto(s)
Neoplasias Encefálicas , Carcinoma Hepatocelular , Glioblastoma , Neoplasias Hepáticas , Ratones , Animales , Glioblastoma/patología , Monocitos/metabolismo , Neutrófilos/metabolismo , Carcinoma Hepatocelular/metabolismo , Proteínas Proto-Oncogénicas c-sis/metabolismo , Línea Celular Tumoral , Neoplasias Encefálicas/patología , Neoplasias Hepáticas/metabolismo
5.
J Clin Invest ; 133(22)2023 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-37733448

RESUMEN

Monocytes and monocyte-derived macrophages (MDMs) from blood circulation infiltrate glioblastoma (GBM) and promote growth. Here, we show that PDGFB-driven GBM cells induce the expression of the potent proinflammatory cytokine IL-1ß in MDM, which engages IL-1R1 in tumor cells, activates the NF-κB pathway, and subsequently leads to induction of monocyte chemoattractant proteins (MCPs). Thus, a feedforward paracrine circuit of IL-1ß/IL-1R1 between tumors and MDM creates an interdependence driving PDGFB-driven GBM progression. Genetic loss or locally antagonizing IL-1ß/IL-1R1 leads to reduced MDM infiltration, diminished tumor growth, and reduced exhausted CD8+ T cells and thereby extends the survival of tumor-bearing mice. In contrast to IL-1ß, IL-1α exhibits antitumor effects. Genetic deletion of Il1a/b is associated with decreased recruitment of lymphoid cells and loss-of-interferon signaling in various immune populations and subsets of malignant cells and is associated with decreased survival time of PDGFB-driven tumor-bearing mice. In contrast to PDGFB-driven GBM, Nf1-silenced tumors have a constitutively active NF-κB pathway, which drives the expression of MCPs to recruit monocytes into tumors. These results indicate local antagonism of IL-1ß could be considered as an effective therapy specifically for proneural GBM.


Asunto(s)
Glioblastoma , Interleucina-1beta , Receptores Tipo I de Interleucina-1 , Animales , Humanos , Ratones , Genotipo , Glioblastoma/metabolismo , Glioblastoma/patología , Interleucina-1beta/metabolismo , Macrófagos/metabolismo , FN-kappa B/genética , FN-kappa B/metabolismo , Proteínas Proto-Oncogénicas c-sis/metabolismo , Receptores de Interleucina-1/metabolismo , Receptores Tipo I de Interleucina-1/metabolismo , Comunicación Paracrina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA