Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Mol Divers ; 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38886315

RESUMEN

This study aimed to use a computational approach that combined the classification-based QSAR model, molecular docking, ADME studies, and molecular dynamics (MD) to identify potential inhibitors of Fyn kinase. First, a robust classification model was developed from a dataset of 1,078 compounds with known Fyn kinase inhibitory activity, using the XGBoost algorithm. After that, molecular docking was performed between potential compounds identified from the QSAR model and Fyn kinase to assess their binding strengths and key interactions, followed by MD simulations. ADME studies were additionally conducted to preliminarily evaluate the pharmacokinetics and drug-like characteristics of these compounds. The results showed that our obtained model exhibited good predictive performance with an accuracy of 0.95 on the test set, affirming its reliability in identifying potent Fyn kinase inhibitors. Through the application of this model in conjunction with molecular docking and ADME studies, nine compounds were identified as potential Fyn kinase inhibitors, including 208 (ZINC70708110), 728 (ZINC8792432), 734 (ZINC8792187), 736 (ZINC8792350), 738 (ZINC8792286), 739 (ZINC8792309), 817 (ZINC33901069), 852 (ZINC20759145), and 1227 (ZINC100006936). MD simulations further demonstrated that the four most promising compounds, 728, 734, 736, and 852 exhibited stable binding with Fyn kinase during the simulation process. Additionally, a web-based platform ( https://fynkinase.streamlit.app/ ) has been developed to streamline the screening process. This platform enables users to predict the activity of their substances of interest on Fyn kinase from their SMILES, using our classification-based QSAR model and molecular docking.

2.
Mol Divers ; 2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38582821

RESUMEN

This study aims to identify potential focal adhesion kinase (FAK) inhibitors through an integrated computational approach, combining mol2vec descriptor-based QSAR, molecular docking, ADMET study, and molecular dynamics simulation. A dataset of 437 compounds with known FAK inhibitory activities was used to develop QSAR models using machine learning algorithms combined with mol2vec descriptors. Subsequently, the most promising compounds were subjected to molecular docking against FAK to evaluate their binding affinities and key interactions. ADMET study and molecular dynamics simulation were also employed to investigate the pharmacokinetic, drug-like properties, and the stability of the protein-ligand complexes. The results showed that the mol2vec descriptor-based QSAR model established by support vector regression demonstrated good predictive performance (R2 = 0.813, RMSE = 0.453, MAE = 0.263 in case of training set, and R2 = 0.729, RMSE = 0.635, MAE = 0.477 in case of test set), indicating their reliability in identifying potent FAK inhibitors. Using this QSAR model and molecular docking, compound 21 (ZINC000004523722) was identified as the most potential compound, with predicted logIC50 value and binding energy of 2.59 and - 9.3 kcal/mol, respectively. The results of molecular dynamics simulation and ADMET study also further suggested its potential as a promising drug candidate. However, because our research was merely theoretical, additional in vitro and in vivo studies are required for the verification of these results.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA