Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Physiol Rev ; 104(4): 1611-1642, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38696337

RESUMEN

A canonical view of the primary physiological function of myoglobin (Mb) is that it is an oxygen (O2) storage protein supporting mitochondrial oxidative phosphorylation, especially as the tissue O2 partial pressure (Po2) drops and Mb off-loads O2. Besides O2 storage/transport, recent findings support functions for Mb in lipid trafficking and sequestration, interacting with cellular glycolytic metabolites such as lactate (LAC) and pyruvate (PYR), and "ectopic" expression in some types of cancer cells and in brown adipose tissue (BAT). Data from Mb knockout (Mb-/-) mice and biochemical models suggest additional metabolic roles for Mb, especially regulation of nitric oxide (NO) pools, modulation of BAT bioenergetics, thermogenesis, and lipid storage phenotypes. From these and other findings in the literature over many decades, Mb's function is not confined to delivering O2 in support of oxidative phosphorylation but may serve as an O2 sensor that modulates intracellular Po2- and NO-responsive molecular signaling pathways. This paradigm reflects a fundamental change in how oxidative metabolism and cell regulation are viewed in Mb-expressing cells such as skeletal muscle, heart, brown adipocytes, and select cancer cells. Here, we review historic and emerging views related to the physiological roles for Mb and present working models illustrating the possible importance of interactions between Mb, gases, and small-molecule metabolites in regulation of cell signaling and bioenergetics.


Asunto(s)
Metabolismo Energético , Mioglobina , Oxígeno , Animales , Mioglobina/metabolismo , Humanos , Oxígeno/metabolismo , Metabolismo Energético/fisiología , Tejido Adiposo Pardo/metabolismo , Fosforilación Oxidativa , Termogénesis/fisiología
2.
Biophys J ; 123(2): 195-209, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38098232

RESUMEN

Mechanosensitive channel MscS, the major bacterial osmolyte release valve, shows a characteristic adaptive behavior. With a sharp onset of activating tension the channel population readily opens, but under prolonged action of moderate tension it inactivates. The inactivated state is non-conductive and tension insensitive, which suggests that the gate becomes uncoupled from the lipid-facing domains. Because the distinct opening and inactivation transitions are both driven from the closed state by tension transmitted through the lipid bilayer, here we explore how mutations of two conserved positively charged lipid anchors, R46 and R74, affect 1) the rates of opening and inactivation and 2) the voltage dependences of these transitions. Previously estimated kinetic rates for opening-closing transitions in wild-type MscS at low voltages were 3-6 orders of magnitude higher than the rates for inactivation and recovery. Here we show that MscS activation exhibits a shallow nearly symmetric dependence on voltage, whereas inactivation is substantially augmented and recovery is slowed down by depolarization. Conversely, hyperpolarization impedes inactivation and speeds up recovery. Mutations of R46 and R74 anchoring the lipid-facing helices to the inner interface to an aromatic residue (W) do not substantially change the activation energy and closing rates, but instead change the kinetics of both inactivation and recovery and essentially eliminate their voltage dependence. Uncharged polar substitutions (S or Q) for these anchors produce functional channels but increase the inactivation and reduce the recovery rates. The data clearly delineate the activation-closing and the inactivation-recovery pathways and strongly suggest that only the latter involves extensive rearrangements of the protein-lipid boundary associated with the uncoupling of the lipid-facing helices from the gate. The discovery that hyperpolarization robustly assists MscS recovery suggests that membrane potential is one of the factors that regulates osmolyte release valves by putting them either on "ready" or "standby" based on the cell's metabolic state.


Asunto(s)
Lípidos , Potenciales de la Membrana , Mutación , Cinética
3.
Proc Natl Acad Sci U S A ; 116(19): 9410-9416, 2019 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-31010928

RESUMEN

An adequate response of a living cell to the ever-changing environment requires integration of numerous sensory inputs. In many cases, it can be achieved even at the level of a single receptor molecule. Polymodal transient receptor potential (TRP) channels have been shown to integrate mechanical, chemical, electric, and thermal stimuli. Inappropriate gating can lead to pathologies. Among the >60 known TRP vanilloid subfamily (V) 4 mutations that interfere with bone development are Y602C or R616Q at the S4-S5 linker. A cation-π bond between the conservative residues Y602 and R616 of neighboring subunits appears likely in many homologous channel structures in a closed state. Our experiments with TRPV4 mutants indicate that the resting-closed state remains stable while the bond is substituted by a salt bridge or disulfide bond, whereas disruption of the contact by mutations like Y602C or R616Q produces gain-of-function phenotypes when TRPV4 is heterologously expressed in the Xenopus oocyte or yeast. Our data indicate that the Y602-R616 cation-π interactions link the four S4-S5 linker helices together, forming a girdle backing the closed gate. Analogous cation-π bonds and the girdle are seen in many closed TRP channel structures. This girdle is not observed in the cryo-EM structure of amphibian TRPV4 (Protein Data Bank ID code 6BBJ), which appears to be in a different impermeable state-we hypothesize this is the inactivated state.


Asunto(s)
Mutación Missense , Canales Catiónicos TRPV , Sustitución de Aminoácidos , Animales , Humanos , Conformación Proteica en Hélice alfa , Estabilidad Proteica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Canales Catiónicos TRPV/química , Canales Catiónicos TRPV/genética , Canales Catiónicos TRPV/metabolismo , Xenopus laevis
4.
Int J Mol Sci ; 23(9)2022 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-35563138

RESUMEN

Myoglobin (Mb)-mediated oxygen (O2) delivery and dissolved O2 in the cytosol are two major sources that support oxidative phosphorylation. During intense exercise, lactate (LAC) production is elevated in skeletal muscles as a consequence of insufficient intracellular O2 supply. The latter results in diminished mitochondrial oxidative metabolism and an increased reliance on nonoxidative pathways to generate ATP. Whether or not metabolites from these pathways impact Mb-O2 associations remains to be established. In the present study, we employed isothermal titration calorimetry, O2 kinetic studies, and UV-Vis spectroscopy to evaluate the LAC affinity toward Mb (oxy- and deoxy-Mb) and the effect of LAC on O2 release from oxy-Mb in varying pH conditions (pH 6.0-7.0). Our results show that LAC avidly binds to both oxy- and deoxy-Mb (only at acidic pH for the latter). Similarly, in the presence of LAC, increased release of O2 from oxy-Mb was detected. This suggests that with LAC binding to Mb, the structural conformation of the protein (near the heme center) might be altered, which concomitantly triggers the release of O2. Taken together, these novel findings support a mechanism where LAC acts as a regulator of O2 management in Mb-rich tissues and/or influences the putative signaling roles for oxy- and deoxy-Mb, especially under conditions of LAC accumulation and lactic acidosis.


Asunto(s)
Mioglobina , Oxígeno , Cinética , Ácido Láctico , Mioglobina/química , Oxígeno/metabolismo , Consumo de Oxígeno/fisiología , Análisis Espectral , Termodinámica
5.
Int J Mol Sci ; 23(15)2022 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-35955898

RESUMEN

Myoglobin (Mb), besides its roles as an oxygen (O2) carrier/storage protein and nitric oxide NO scavenger/producer, may participate in lipid trafficking and metabolite binding. Our recent findings have shown that O2 is released from oxy-Mb upon interaction with lactate (LAC, anerobic glycolysis end-product). Since pyruvate (PYR) is structurally similar and metabolically related to LAC, we investigated the effects of PYR (aerobic glycolysis end-product) on Mb using isothermal titration calorimetry, circular dichroism, and O2-kinetic studies to evaluate PYR affinity toward Mb and to compare the effects of PYR and LAC on O2 release kinetics of oxy-Mb. Similar to LAC, PYR interacts with both oxy- and deoxy-Mb with a 1:1 stoichiometry. Time-resolved circular dichroism spectra revealed that there are no major conformational changes in the secondary structures of oxy- or deoxy-Mb during interactions with PYR or LAC. However, we found contrasting results with respect to binding affinities and substrate preference, where PYR has higher affinity toward deoxy-Mb when compared with LAC (which prefers oxy-Mb). Furthermore, PYR interaction with oxy-Mb releases a significantly lower amount of O2 than LAC. Taken together, our findings support the hypothesis that glycolytic end-products play a distinctive role in the Mb-rich tissues by serving as novel regulators of O2 availability, and/or by impacting other activities related to oxy-/deoxy-Mb toggling in resting vs. exercised or metabolically activated conditions.


Asunto(s)
Mioglobina , Oxígeno , Cinética , Mioglobina/química , Oxígeno/metabolismo , Ácido Pirúvico , Relación Estructura-Actividad , Termodinámica
6.
Int J Mol Sci ; 23(23)2022 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-36499106

RESUMEN

Previous research has indicated that various metabolites belonging to phenolic acids (PAs), produced by gut microflora through the breakdown of polyphenols, help in promoting bone development and protecting bone from degeneration. Results have also suggested that G-protein-coupled receptor 109A (GPR109A) functions as a receptor for those specific PAs such as hippuric acid (HA) and 3-(3-hydroxyphenyl) propionic acid (3-3-PPA). Indeed, HA has a molecular structural similarity with nicotinic acid (niacin) which has been shown previously to bind to GPR109A receptor and to mediate antilipolytic effects; however, the binding pocket and the structural nature of the interaction remain to be recognized. In the present study, we employed a computational strategy to elucidate the molecular structural determinants of HA binding to GPR109A and GPR109B homology models in understanding the regulation of osteoclastogenesis. Based on the docking and molecular dynamics simulation studies, HA binds to GPR109A similarly to niacin. Specifically, the transmembrane helices 3, 4 and 6 (TMH3, TMH4 and TMH6) and Extracellular loop 1 and 2 (ECL1 and ECL2) residues of GRP109A; R111 (TMH3), K166 (TMH4), ECL2 residues; S178 and S179, and R251 (TMH6), and residues of GPR109B; Y87, Y86, S91 (ECL1) and C177 (ECL2) contribute for HA binding. Simulations and Molecular Mechanics Poisson-Boltzmann solvent accessible area (MM-PBSA) calculations reveal that HA has higher affinity for GPR109A than for GPR109B. Additionally, in silico mutation analysis of key residues have disrupted the binding and HA exited out from the GPR109A protein. Furthermore, measurements of time-resolved circular dichroism spectra revealed that there are no major conformational changes in the protein secondary structure on HA binding. Taken together, our findings suggest a mechanism of interaction of HA with both GPR109A and GPR109B receptors.


Asunto(s)
Niacina , Receptores Nicotínicos , Niacina/metabolismo , Receptores Nicotínicos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Hipuratos , Análisis Espectral
7.
Biophys J ; 120(2): 232-242, 2021 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-33333032

RESUMEN

Membrane tension perceived by mechanosensitive (MS) proteins mediates cellular responses to mechanical stimuli and osmotic stresses, and it also guides multiple biological functions including cardiovascular control and development. In bacteria, MS channels function as tension-activated pores limiting excessive turgor pressure, with MS channel of large conductance (MscL) acting as an emergency release valve preventing cell lysis. Previous attempts to simulate gating transitions in MscL by either directly applying steering forces to the protein or by increasing the whole-system tension were not fully successful and often disrupted the integrity of the system. We present a novel, to our knowledge, locally distributed tension molecular dynamics (LDT-MD) simulation method that allows application of forces continuously distributed among lipids surrounding the channel using a specially constructed collective variable. We report reproducible and reversible transitions of MscL to the open state with measured parameters of lateral expansion and conductivity that exactly satisfy experimental values. The LDT-MD method enables exploration of the MscL-gating process with different pulling velocities and variable tension asymmetry between the inner and outer membrane leaflets. We use LDT-MD in combination with well-tempered metadynamics to reconstruct the tension-dependent free-energy landscape for the opening transition in MscL. The flexible definition of the LDT collective variable allows general application of our method to study mechanical activation of any membrane-embedded protein.


Asunto(s)
Proteínas de Escherichia coli , Simulación de Dinámica Molecular , Proteínas de Escherichia coli/metabolismo , Activación del Canal Iónico , Canales Iónicos/metabolismo , Mecanotransducción Celular
8.
Langmuir ; 37(4): 1372-1385, 2021 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-33449700

RESUMEN

The outer membrane (OM) of Gram-negative (G-) bacteria presents a barrier for many classes of antibacterial agents. Lipopolysaccharide (LPS), present in the outer leaflet of the OM, is stabilized by divalent cations and is considered to be the major impediment for antibacterial agent permeation. However, the actual affinities of major antibiotic classes toward LPS have not yet been determined. In the present work, we use Langmuir monolayers formed from E. coli Re and Rd types of LPS to record pressure-area isotherms in the presence of antimicrobial agents. Our observations suggest three general types of interactions. First, some antimicrobials demonstrated no measurable interactions with LPS. This lack of interaction in the case of cefsulodin, a third-generation cephalosporin antibiotic, correlates with its low efficacy against G- bacteria. Ampicillin and ciprofloxacin also show no interactions with LPS, but in contrast to cefsulodin, both exhibit good efficacy against G- bacteria, indicating permeation through common porins. Second, we observe substantial intercalation of the more hydrophobic antibiotics, novobiocin, rifampicin, azithromycin, and telithromycin, into relaxed LPS monolayers. These largely repartition back to the subphase with monolayer compression. We find that the hydrophobic area, charge, and dipole all show correlations with both the mole fraction of antibiotic retained in the monolayer at the monolayer-bilayer equivalence pressure and the efficacies of these antibiotics against G- bacteria. Third, amine-rich gentamicin and the cationic antimicrobial peptides polymyxin B and colistin show no hydrophobic insertion but are instead strongly driven into the polar LPS layer by electrostatic interactions in a pressure-independent manner. Their intercalation stably increases the area per molecule (by up to 20%), which indicates massive formation of defects in the LPS layer. These defects support a self-promoted permeation mechanism of these antibiotics through the OM, which explains the high efficacy and specificity of these antimicrobials against G- bacteria.


Asunto(s)
Antibacterianos , Lipopolisacáridos , Antibacterianos/farmacología , Escherichia coli , Porinas , Electricidad Estática
9.
Biochemistry ; 59(20): 1927-1945, 2020 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-32364696

RESUMEN

Two bacterial type II l-asparaginases, from Escherichia coli and Dickeya chrysanthemi, have played a critical role for more than 40 years as therapeutic agents against juvenile leukemias and lymphomas. Despite a long history of successful pharmacological applications and the apparent simplicity of the catalytic reaction, controversies still exist regarding major steps of the mechanism. In this report, we provide a detailed description of the reaction catalyzed by E. coli type II l-asparaginase (EcAII). Our model was developed on the basis of new structural and biochemical experiments combined with previously published data. The proposed mechanism is supported by quantum chemistry calculations based on density functional theory. We provide strong evidence that EcAII catalyzes the reaction according to the double-displacement (ping-pong) mechanism, with formation of a covalent intermediate. Several steps of catalysis by EcAII are unique when compared to reactions catalyzed by other known hydrolytic enzymes. Here, the reaction is initiated by a weak nucleophile, threonine, without direct assistance of a general base, although a distant general base is identified. Furthermore, tetrahedral intermediates formed during the catalytic process are stabilized by a never previously described motif. Although the scheme of the catalytic mechanism was developed only on the basis of data obtained from EcAII and its variants, this novel mechanism of enzymatic hydrolysis could potentially apply to most (and possibly all) l-asparaginases.


Asunto(s)
Asparaginasa/metabolismo , Biocatálisis , Dickeya chrysanthemi/enzimología , Escherichia coli/enzimología , Asparaginasa/química , Cristalografía por Rayos X , Hidrólisis , Cinética , Modelos Moleculares
10.
J Immunol ; 201(7): 2082-2093, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-30111632

RESUMEN

Crystal structure of the ternary complex of human IL-24 with two receptors, IL-22R1 and IL-20R2, has been determined at 2.15 Å resolution. A crystallizable complex was created by a novel approach involving fusing the ligand with a flexible linker to the presumed low-affinity receptor, and coexpression of this construct in Drosophila S2 cells together with the presumed high-affinity receptor. This approach, which may be generally applicable to other multiprotein complexes with low-affinity components, was necessitated by the instability of IL-24 expressed by itself in either bacteria or insect cells. Although IL-24 expressed in Escherichia coli was unstable and precipitated almost immediately upon its refolding and purification, a small fraction of IL-24 remaining in the folded state was shown to be active in a cell-based assay. In the crystal structure presented here, we found that two cysteine residues in IL-24 do not form a predicted disulfide bond. Lack of structural restraint by disulfides, present in other related cytokines, is most likely reason for the low stability of IL-24. Although the contact area between IL-24 and IL-22R1 is larger than between the cytokine and IL-20R2, calculations show the latter interaction to be slightly more stable, suggesting that the shared receptor (IL-20R2) might be the higher-affinity receptor.


Asunto(s)
Interleucinas/metabolismo , Complejos Multiproteicos/metabolismo , Receptores de Interleucina/metabolismo , Animales , Línea Celular , Cristalografía por Rayos X , Citocinas , Drosophila , Humanos , Unión Proteica , Conformación Proteica , Dominios Proteicos/genética , Receptores de Interleucina/genética , Transducción de Señal
11.
J Biol Chem ; 293(14): 5307-5322, 2018 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-29462784

RESUMEN

Transient receptor potential vanilloid 4 (TRPV4) is a Ca2+-permeable channel of the transient receptor potential (TRP) superfamily activated by diverse stimuli, including warm temperature, mechanical forces, and lipid mediators such as arachidonic acid (AA) and its metabolites. This activation is tightly regulated by protein phosphorylation carried out by various serine/threonine or tyrosine kinases. It remains poorly understood how phosphorylation differentially regulates TRPV4 activation in response to different stimuli. We investigated how TRPV4 activation by AA, an important signaling process in the dilation of coronary arterioles, is affected by protein kinase A (PKA)-mediated phosphorylation at Ser-824. Wildtype and mutant TRPV4 channels were expressed in human coronary artery endothelial cells (HCAECs). AA-induced TRPV4 activation was blunted in the S824A mutant but was enhanced in the phosphomimetic S824E mutant, whereas the channel activation by the synthetic agonist GSK1016790A was not affected. The low level of basal phosphorylation at Ser-824 was robustly increased by the redox signaling molecule hydrogen peroxide (H2O2). The H2O2-induced phosphorylation was accompanied by an enhanced channel activation by AA, and this enhanced response was largely abolished by PKA inhibition or S824A mutation. We further identified a potential structural context dependence of Ser-824 phosphorylation-mediated TRPV4 regulation involving an interplay between AA binding and the possible phosphorylation-induced rearrangements of the C-terminal helix bearing Ser-824. These results provide insight into how phosphorylation specifically regulates TRPV4 activation. Redox-mediated TRPV4 phosphorylation may contribute to pathologies associated with enhanced TRPV4 activity in endothelial and other systems.


Asunto(s)
Canales Catiónicos TRPV/metabolismo , Canales Catiónicos TRPV/fisiología , Ácido Araquidónico/metabolismo , Canales de Calcio/metabolismo , Células Cultivadas , Vasos Coronarios/metabolismo , Cristalografía por Rayos X , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Células Endoteliales/metabolismo , Humanos , Peróxido de Hidrógeno/metabolismo , Fosforilación , Transducción de Señal
12.
Proc Natl Acad Sci U S A ; 113(42): 11847-11852, 2016 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-27698146

RESUMEN

We have some generalized physical understanding of how ion channels interact with surrounding lipids but few detailed descriptions on how interactions of particular amino acids with contacting lipids may regulate gating. Here we discovered a structure-specific interaction between an amino acid and inner-leaflet lipid that governs the gating transformations of TRPV4 (transient receptor potential vanilloid type 4). Many cation channels use a S4-S5 linker to transmit stimuli to the gate. At the start of TRPV4's linker helix is leucine 596. A hydrogen bond between the indole of W733 of the TRP helix and the backbone oxygen of L596 secures the helix/linker contact, which acts as a latch maintaining channel closure. The modeled side chain of L596 interacts with the inner lipid leaflet near the polar-nonpolar interface in our model-an interaction that we explored by mutagenesis. We examined the outward currents of TRPV4-expressing Xenopus oocyte upon depolarizations as well as phenotypes of expressing yeast cells. Making this residue less hydrophobic (L596A/G/W/Q/K) reduces open probability [Po; loss-of-function (LOF)], likely due to altered interactions at the polar-nonpolar interface. L596I raises Po [gain-of-function (GOF)], apparently by placing its methyl group further inward and receiving stronger water repulsion. Molecular dynamics simulations showed that the distance between the levels of α-carbons of H-bonded residues L596 and W733 is shortened in the LOFs and lengthened in the GOFs, strengthening or weakening the linker/TRP helix latch, respectively. These results highlight that L596 lipid attraction counteracts the latch bond in a tug-of-war to tune the Po of TRPV4.


Asunto(s)
Aminoácidos/química , Interacciones Hidrofóbicas e Hidrofílicas , Activación del Canal Iónico , Dominios y Motivos de Interacción de Proteínas , Canales Catiónicos TRPV/química , Canales Catiónicos TRPV/metabolismo , Secuencia de Aminoácidos , Animales , Mutación con Ganancia de Función , Enlace de Hidrógeno , Activación del Canal Iónico/efectos de los fármacos , Lípidos/química , Mutación con Pérdida de Función , Membranas/química , Membranas/metabolismo , Modelos Moleculares , Fenotipo , Conformación Proteica , Relación Estructura-Actividad , Canales Catiónicos TRPV/agonistas , Canales Catiónicos TRPV/genética , Xenopus , Levaduras/genética , Levaduras/metabolismo
13.
Arch Biochem Biophys ; 655: 56-66, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-30092229

RESUMEN

Myoglobin, besides its role in oxygen turnover, has gained recognition as a potential regulator of lipid metabolism. Previously, we confirmed the interaction of fatty acids and acylcarnitines with Oxy-Myoglobin, using both molecular dynamic simulations and Isothermal Titration Calorimetry studies. However, those studies were limited to testing only the binding sites derived from homology to fatty acid binding proteins and predictions using automated docking. To explore the entry mechanisms of the lipid ligands into myoglobin, we conducted molecular dynamic simulations of murine Oxy- and Deoxy-Mb structures with palmitate or palmitoylcarnitine starting at different positions near the protein surface. The simulations indicated that both ligands readily (under ∼10-20 ns) enter the Oxy-Mb structure through a dynamic area ("portal region") near heme, known to be the entry point for small molecule gaseous ligands like O2, CO and NO. The entry is not observed with Deoxy-Mb where lipid ligands move away from protein surface, due to a compaction of the entry portal and the heme-containing crevice in the Mb protein upon O2 removal. The results suggest quick spontaneous binding of lipids to Mb driven by hydrophobic interactions, strongly enhanced by oxygenation, and consistent with the emergent role of Mb in lipid metabolism.


Asunto(s)
Proteínas de Unión a Ácidos Grasos/metabolismo , Mioglobina/metabolismo , Ácido Palmítico/metabolismo , Palmitoilcarnitina/metabolismo , Secuencia de Aminoácidos , Animales , Sitios de Unión , Proteínas de Unión a Ácidos Grasos/química , Hemo/química , Caballos , Ligandos , Ratones , Simulación de Dinámica Molecular , Mioglobina/química , Oxígeno/química , Ácido Palmítico/química , Palmitoilcarnitina/química , Unión Proteica , Conformación Proteica , Alineación de Secuencia , Homología de Secuencia de Aminoácido
14.
Eur Biophys J ; 47(6): 663-677, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29687344

RESUMEN

Adaptive desensitization and inactivation are common properties of most ion channels and receptors. The mechanosensitive channel of small conductance MscS, which serves as a low-threshold osmolyte release valve in most bacteria, inactivates not from the open, but from the resting state under moderate tensions. This mechanism enables the channel to respond differently to slow tension ramps versus abruptly applied stimuli. In this work, we present a reconstruction of the energy landscape for MscS transitions based on patch current kinetics recorded under special pressure protocols. The data are analyzed with a three-state continuous time Markov model, where the tension-dependent transition rates are governed by Arrhenius-type relations. The analysis provides assignments to the intrinsic opening, closing, inactivation, and recovery rates as well as their tension dependencies. These parameters, which define the spatial (areal) distances between the energy wells and the positions of barriers, describe the tension-dependent distribution of the channel population between the three states and predict the experimentally observed dynamic pulse and ramp responses. Our solution also provides an analytic expression for the area of the inactivated state in terms of two experimentally accessible parameters: the tension at which inactivation probability is maximized, γ*, and the midpoint tension for activation, γ0.5. The analysis initially performed on Escherichia coli MscS shows its applicability to the recently characterized MscS homolog from Pseudomonas aeruginosa. Inactivation appears to be a common property of low-threshold MscS channels, which mediate proper termination of the osmotic permeability response and contribute to the environmental fitness of bacteria.


Asunto(s)
Adaptación Fisiológica , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Activación del Canal Iónico , Canales Iónicos/metabolismo , Fenómenos Electrofisiológicos , Escherichia coli/fisiología , Proteínas de Escherichia coli/química , Canales Iónicos/química , Cinética , Cadenas de Markov , Análisis Espacio-Temporal
15.
Proc Natl Acad Sci U S A ; 112(11): 3386-91, 2015 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-25737550

RESUMEN

Unlike other cation channels, each subunit of most transient receptor potential (TRP) channels has an additional TRP-domain helix with an invariant tryptophan immediately trailing the gate-bearing S6. Recent cryo-electron microscopy of TRP vanilloid subfamily, member 1 structures revealed that this domain is a five-turn amphipathic helix, and the invariant tryptophan forms a bond with the beginning of the four-turn S4-S5 linker helix. By homology modeling, we identified the corresponding L596-W733 bond in TRP vanilloid subfamily, member 4 (TRPV4). The L596P mutation blocks bone development in Kozlowski-type spondylometaphyseal dysplasia in human. Our previous screen also isolated W733R as a strong gain-of-function (GOF) mutation that suppresses growth when the W733R channel is expressed in yeast. We show that, when expressed in Xenopus oocytes, TRPV4 with the L596P or W733R mutation displays normal depolarization-induced activation and outward rectification. However, these mutant channels have higher basal open probabilities and limited responses to the agonist GSK1016790A, explaining their biological GOF phenotypes. In addition, W733R current fails to inactivate during depolarization. Systematic replacement of W733 with amino acids of different properties produced similar electrophysiological and yeast phenotypes. The results can be interpreted consistently in the context of the homology model of TRPV4 molecule we have developed and refined using simulations in explicit medium. We propose that this bond maintains the orientation of the S4-S5 linker to keep the S6 gate closed. Further, the two partner helices, both amphipathic and located at the polar-nonpolar interface of the inner lipid monolayer, may receive and integrate various physiological stimuli.


Asunto(s)
Activación del Canal Iónico , Leucina/química , Canales Catiónicos TRPV/química , Canales Catiónicos TRPV/metabolismo , Triptófano/química , Sustitución de Aminoácidos , Animales , Humanos , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Mutación/genética , Oocitos , Fenotipo , Estabilidad Proteica , Estructura Secundaria de Proteína , Saccharomyces cerevisiae/crecimiento & desarrollo , Relación Estructura-Actividad , Canales Catiónicos TRPV/genética , Xenopus
16.
Proc Natl Acad Sci U S A ; 112(9): E1010-9, 2015 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-25691740

RESUMEN

We examined the origins and functional evolution of the Shaker and KCNQ families of voltage-gated K(+) channels to better understand how neuronal excitability evolved. In bilaterians, the Shaker family consists of four functionally distinct gene families (Shaker, Shab, Shal, and Shaw) that share a subunit structure consisting of a voltage-gated K(+) channel motif coupled to a cytoplasmic domain that mediates subfamily-exclusive assembly (T1). We traced the origin of this unique Shaker subunit structure to a common ancestor of ctenophores and parahoxozoans (cnidarians, bilaterians, and placozoans). Thus, the Shaker family is metazoan specific but is likely to have evolved in a basal metazoan. Phylogenetic analysis suggested that the Shaker subfamily could predate the divergence of ctenophores and parahoxozoans, but that the Shab, Shal, and Shaw subfamilies are parahoxozoan specific. In support of this, putative ctenophore Shaker subfamily channel subunits coassembled with cnidarian and mouse Shaker subunits, but not with cnidarian Shab, Shal, or Shaw subunits. The KCNQ family, which has a distinct subunit structure, also appears solely within the parahoxozoan lineage. Functional analysis indicated that the characteristic properties of Shaker, Shab, Shal, Shaw, and KCNQ currents evolved before the divergence of cnidarians and bilaterians. These results show that a major diversification of voltage-gated K(+) channels occurred in ancestral parahoxozoans and imply that many fundamental mechanisms for the regulation of action potential propagation evolved at this time. Our results further suggest that there are likely to be substantial differences in the regulation of neuronal excitability between ctenophores and parahoxozoans.


Asunto(s)
Ctenóforos/genética , Evolución Molecular , Hydra/genética , Canales de Potasio KCNQ/genética , Filogenia , Canales de Potasio de la Superfamilia Shaker/genética , Secuencia de Aminoácidos , Animales , Ctenóforos/metabolismo , Bases de Datos de Proteínas , Humanos , Hydra/metabolismo , Canales de Potasio KCNQ/metabolismo , Ratones , Datos de Secuencia Molecular , Canales de Potasio de la Superfamilia Shaker/metabolismo , Xenopus laevis
17.
Biochemistry ; 56(40): 5457-5470, 2017 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-28872302

RESUMEN

Beryllium has multiple industrial applications, but its manufacture is associated with a serious occupational risk of developing chronic inflammation in the lungs known as berylliosis, or chronic beryllium disease. Although the Be2+-induced abnormal immune responses have recently been linked to a specific MHC-II allele, the nature of long-lasting granulomas is not fully understood. Here we show that Be2+ binds with a micromolar affinity to phosphatidylserine (PS), the major surface marker of apoptotic cells. Isothermal titration calorimetry indicates that, like that of Ca2+, binding of Be2+ to PS liposomes is largely entropically driven, likely by massive desolvation. Be2+ exerts a compacting effect on PS monolayers, suggesting cross-linking through coordination by both phosphates and carboxyls in multiple configurations, which were visualized in molecular dynamics simulations. Electrostatic modification of PS membranes by Be2+ includes complete neutralization of surface charges at ∼30 µM, accompanied by an increase in the boundary dipole potential. The data suggest that Be2+ can displace Ca2+ from the surface of PS, and being coordinated in a tight shell of four oxygens, it can mask headgroups from Ca2+-mediated recognition by PS receptors. Indeed, 48 µM Be2+ added to IC-21 cultured macrophages specifically suppresses binding and engulfment of PS-coated silica beads or aged erythrocytes. We propose that Be2+ adsorption at the surface of apoptotic cells may potentially prevent normal phagocytosis, thus causing accumulation of secondary necrotic foci and the resulting chronic inflammation.


Asunto(s)
Berilio/metabolismo , Fosfatidilserinas/metabolismo , Macrófagos/metabolismo , Conformación Molecular , Simulación de Dinámica Molecular , Fosfatidilserinas/química , Electricidad Estática , Propiedades de Superficie
18.
J Biol Chem ; 291(48): 25133-25143, 2016 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-27758871

RESUMEN

Previous research has indicated that long-chain fatty acids can bind myoglobin (Mb) in an oxygen-dependent manner. This suggests that oxy-Mb may play an important role in fuel delivery in Mb-rich muscle fibers (e.g. type I fibers and cardiomyocytes), and raises the possibility that Mb also serves as an acylcarnitine-binding protein. We report for the first time the putative interaction and affinity characteristics for different chain lengths of both fatty acids and acylcarnitines with oxy-Mb using molecular dynamic simulations and isothermal titration calorimetry experiments. We found that short- to medium-chain fatty acids or acylcarnitines (ranging from C2:0 to C10:0) fail to achieve a stable conformation with oxy-Mb. Furthermore, our results indicate that C12:0 is the minimum chain length essential for stable binding of either fatty acids or acylcarnitines with oxy-Mb. Importantly, the empirical lipid binding studies were consistent with structural modeling. These results reveal that: (i) the lipid binding affinity for oxy-Mb increases as the chain length increases (i.e. C12:0 to C18:1), (ii) the binding affinities of acylcarnitines are higher when compared with their respective fatty acid counterparts, and (iii) both fatty acids and acylcarnitines bind to oxy-Mb in 1:1 stoichiometry. Taken together, our results support a model in which oxy-Mb is a novel regulator of long-chain acylcarnitine and fatty acid pools in Mb-rich tissues. This has important implications for physiological fuel management during exercise, and relevance to pathophysiological conditions (e.g. fatty acid oxidation disorders and cardiac ischemia) where long-chain acylcarnitine accumulation is evident.


Asunto(s)
Carnitina/análogos & derivados , Ácidos Grasos/química , Modelos Químicos , Mioglobina/química , Animales , Carnitina/química , Caballos
19.
Biochim Biophys Acta ; 1858(9): 1983-1998, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27179641

RESUMEN

Using Arabidopsis thaliana AtCHX17 as an example, we combine structural modeling and mutagenesis to provide insights on its protein architecture and transport function which is poorly characterized. This approach is based on the observation that protein structures are significantly more conserved in evolution than linear sequences, and mechanistic similarities among diverse transporters are emerging. Two homology models of AtCHX17 were obtained that show a protein fold similar to known structures of bacterial Na(+)/H(+) antiporters, EcNhaA and TtNapA. The distinct secondary and tertiary structure models highlighted residues at positions potentially important for CHX17 activity. Mutagenesis showed that asparagine-N200 and aspartate-D201 inside transmembrane5 (TM5), and lysine-K355 inside TM10 are critical for AtCHX17 activity. We reveal previously unrecognized threonine-T170 and lysine-K383 as key residues at unwound regions in the middle of TM4 and TM11 α-helices, respectively. Mutation of glutamate-E111 located near the membrane surface inhibited AtCHX17 activity, suggesting a role in pH sensing. The long carboxylic tail of unknown purpose has an alternating ß-sheet and α-helix secondary structure that is conserved in prokaryote universal stress proteins. These results support the overall architecture of AtCHX17 and identify D201, N200 and novel residues T170 and K383 at the functional core which likely participates in ion recognition, coordination and/or translocation, similar to characterized cation/H(+) exchangers. The core of AtCHX17 models according to EcNhaA and TtNapA templates faces inward and outward, respectively, which may reflect two conformational states of the alternating access transport mode for proteins belonging to the plant CHX family.


Asunto(s)
Proteínas de Arabidopsis/química , Arabidopsis/química , Intercambiadores de Sodio-Hidrógeno/química , Sustitución de Aminoácidos , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Modelos Moleculares , Mutagénesis , Mutación Missense , Estructura Secundaria de Proteína , Intercambiadores de Sodio-Hidrógeno/genética , Intercambiadores de Sodio-Hidrógeno/metabolismo , Homología Estructural de Proteína , Relación Estructura-Actividad
20.
Proc Natl Acad Sci U S A ; 111(22): 7898-905, 2014 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-24850861

RESUMEN

Life's origin entails enclosing a compartment to hoard material, energy, and information. The envelope necessarily comprises amphipaths, such as prebiotic fatty acids, to partition the two aqueous domains. The self-assembled lipid bilayer comes with a set of properties including its strong anisotropic internal forces that are chemically or physically malleable. Added bilayer stretch can alter force vectors on embedded proteins to effect conformational change. The force-from-lipid principle was demonstrated 25 y ago when stretches opened purified Escherichia coli MscL channels reconstituted into artificial bilayers. This reductionistic exercise has rigorously been recapitulated recently with two vertebrate mechanosensitive K(+) channels (TREK1 and TRAAK). Membrane stretches have also been known to activate various voltage-, ligand-, or Ca(2+)-gated channels. Careful analyses showed that Kv, the canonical voltage-gated channel, is in fact exquisitely sensitive even to very small tension. In an unexpected context, the canonical transient-receptor-potential channels in the Drosophila eye, long presumed to open by ligand binding, is apparently opened by membrane force due to PIP2 hydrolysis-induced changes in bilayer strain. Being the intimate medium, lipids govern membrane proteins by physics as well as chemistry. This principle should not be a surprise because it parallels water's paramount role in the structure and function of soluble proteins. Today, overt or covert mechanical forces govern cell biological processes and produce sensations. At the genesis, a bilayer's response to osmotic force is likely among the first senses to deal with the capricious primordial sea.


Asunto(s)
Evolución Biológica , Activación del Canal Iónico/fisiología , Membrana Dobles de Lípidos/química , Mecanotransducción Celular/fisiología , Origen de la Vida , Tacto/fisiología , Animales , Humanos , Presión Osmótica , Estrés Mecánico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA