Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Plants (Basel) ; 13(10)2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38794389

RESUMEN

Photosynthesis is a process where solar energy is utilized to convert atmospheric CO2 into carbohydrates, which forms the basis for plant productivity. The increasing demand for food has created a global urge to enhance yield. Earlier, the plant breeding program was targeting the yield and yield-associated traits to enhance the crop yield. However, the yield cannot be further improved without improving the leaf photosynthetic rate. Hence, in this review, various strategies to enhance leaf photosynthesis were presented. The most promising strategies were the optimization of Rubisco carboxylation efficiency, the introduction of a CO2 concentrating mechanism in C3 plants, and the manipulation of photorespiratory bypasses in C3 plants, which are discussed in detail. Improving Rubisco's carboxylation efficiency is possible by engineering targets such as Rubisco subunits, chaperones, and Rubisco activase enzyme activity. Carbon-concentrating mechanisms can be introduced in C3 plants by the adoption of pyrenoid and carboxysomes, which can increase the CO2 concentration around the Rubisco enzyme. Photorespiration is the process by which the fixed carbon is lost through an oxidative process. Different approaches to reduce carbon and nitrogen loss were discussed. Overall, the potential approaches to improve the photosynthetic process and the way forward were discussed in detail.

2.
Front Plant Sci ; 15: 1382914, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38606062

RESUMEN

In recent years, environmental stresses viz., drought and high-temperature negatively impacts the tomato growth, yield and quality. The effects of combined drought and high-temperature (HT) stresses during the flowering stage were investigated. The main objective was to assess the effects of foliar spray of melatonin under both individual and combined drought and HT stresses at the flowering stage. Drought stress was imposed by withholding irrigation, whereas HT stress was imposed by exposing the plants to an ambient temperature (AT)+5°C temperature. The drought+HT stress was imposed by exposing the plants to drought first, followed by exposure to AT+5°C temperature. The duration of individual and combined drought or HT stress was 10 days. The results showed that drought+HT stress had a significant negative effect compared with individual drought or HT stress alone. However, spraying 100 µM melatonin on the plants challenged with individual or combined drought and HT stress showed a significant increase in total chlorophyll content [drought: 16%, HT: 14%, and drought+HT: 11%], Fv/Fm [drought: 16%, HT: 15%, and drought+HT: 13%], relative water content [drought: 10%, HT: 2%, and drought+HT: 8%], and proline [drought: 26%, HT: 17%, and drought+HT: 14%] compared with their respective stress control. Additionally, melatonin positively influenced the stomatal and trichome characteristics compared with stress control plants. Also, the osmotic adjustment was found to be significantly increased in the melatonin-sprayed plants, which, in turn, resulted in an increased number of fruits, fruit set percentage, and fruit yield. Moreover, melatonin spray also enhanced the quality of fruits through increased lycopene content, carotenoid content, titratable acidity, and ascorbic acid content, compared with the stress control. Overall, this study highlights the usefulness of melatonin in effectively mitigating the negative effects of drought, HT, and drought+HT stress, thus leading to an increased drought and HT stress tolerance in tomato.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA