Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Int J Mol Sci ; 22(8)2021 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-33920983

RESUMEN

Ovarian cancer is an aggressive gynaecological cancer with extremely poor prognosis, due to late diagnosis as well as the development of chemoresistance after first-line therapy. Research advances have found stem-like cells present in ovarian tumours, which exist in a dynamic niche and persist through therapy. The stem cell niche interacts extensively with the immune and non-immune components of the tumour microenvironment. Significant pathways associated with the cancer stem cell niche have been identified which interfere with the immune component of the tumour microenvironment, leading to immune surveillance evasion, dysfunction and suppression. This review aims to summarise current evidence-based knowledge on the cancer stem cell niche within the ovarian cancer tumour microenvironment and its effect on immune surveillance. Furthermore, the review seeks to understand the clinical consequences of this dynamic interaction by highlighting current therapies which target these processes.


Asunto(s)
Vigilancia Inmunológica , Células Madre Neoplásicas/patología , Neoplasias Ováricas/inmunología , Neoplasias Ováricas/patología , Nicho de Células Madre/inmunología , Animales , Femenino , Humanos , Inflamación/patología , Neoplasias Ováricas/terapia , Transducción de Señal
2.
Br J Cancer ; 122(3): 361-371, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31772325

RESUMEN

BACKGROUND: ALM201 is a therapeutic peptide derived from FKBPL that has previously undergone preclinical and clinical development for oncology indications and has completed a Phase 1a clinical trial in ovarian cancer patients and other advanced solid tumours. METHODS: In vitro, cancer stem cell (CSC) assays in a range of HGSOC cell lines and patient samples, and in vivo tumour initiation, growth delay and limiting dilution assays, were utilised. Mechanisms were determined by using immunohistochemistry, ELISA, qRT-PCR, RNAseq and western blotting. Endogenous FKBPL protein levels were evaluated using tissue microarrays (TMA). RESULTS: ALM201 reduced CSCs in cell lines and primary samples by inducing differentiation. ALM201 treatment of highly vascularised Kuramochi xenografts resulted in tumour growth delay by disruption of angiogenesis and a ten-fold decrease in the CSC population. In contrast, ALM201 failed to elicit a strong antitumour response in non-vascularised OVCAR3 xenografts, due to high levels of IL-6 and vasculogenic mimicry. High endogenous tumour expression of FKBPL was associated with an increased progression-free interval, supporting the protective role of FKBPL in HGSOC. CONCLUSION: FKBPL-based therapy can (i) dually target angiogenesis and CSCs, (ii) target the CD44/STAT3 pathway in tumours and (iii) is effective in highly vascularised HGSOC tumours with low levels of IL-6.


Asunto(s)
Carcinoma Epitelial de Ovario/patología , Diferenciación Celular/efectos de los fármacos , Células Madre Neoplásicas/efectos de los fármacos , Neovascularización Patológica/patología , Neoplasias Ováricas/patología , Péptidos/farmacología , Proteínas de Unión a Tacrolimus , Animales , Carcinoma Epitelial de Ovario/irrigación sanguínea , Carcinoma Epitelial de Ovario/metabolismo , Línea Celular Tumoral , Femenino , Humanos , Receptores de Hialuranos/efectos de los fármacos , Receptores de Hialuranos/metabolismo , Técnicas In Vitro , Interleucina-6/metabolismo , Ratones , Ratones SCID , Neovascularización Patológica/metabolismo , Neoplasias Ováricas/irrigación sanguínea , Neoplasias Ováricas/metabolismo , Factor de Transcripción STAT3/efectos de los fármacos , Factor de Transcripción STAT3/metabolismo , Transducción de Señal , Proteínas de Unión a Tacrolimus/efectos de los fármacos , Proteínas de Unión a Tacrolimus/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
3.
BMC Cancer ; 19(1): 351, 2019 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-30975104

RESUMEN

BACKGROUND: Optimising breast cancer treatment remains a challenge. Resistance to therapy is a major problem in both ER- and ER+ breast cancer. Tumour recurrence after chemotherapy and/or targeted therapy leads to more aggressive tumours with enhanced metastatic ability. Self-renewing cancer stem cells (CSCs) have been implicated in treatment resistance, recurrence and the development of metastatic disease. METHODS: In this study, we utilised in vitro, in vivo and ex vivo breast cancer models using ER+ MCF-7 and ER- MDA-MB-231 cells, as well as solid and metastatic breast cancer patient samples, to interrogate the effects of FKBPL and its peptide therapeutics on metastasis, endocrine therapy resistant CSCs and DLL4 and Notch4 expression. The effects of FKBPL overexpression or peptide treatment were assessed using a t-test or one-way ANOVA with Dunnett's multiple comparison test. RESULTS: We demonstrated that FKBPL overexpression or treatment with FKBPL-based therapeutics (AD-01, pre-clinical peptide /ALM201, clinical peptide) inhibit i) CSCs in both ER+ and ER- breast cancer, ii) cancer metastasis in a triple negative breast cancer metastasis model and iii) endocrine therapy resistant CSCs in ER+ breast cancer, via modulation of the DLL4 and Notch4 protein and/or mRNA expression. AD-01 was effective at reducing triple negative MDA-MB-231 breast cancer cell migration (n ≥ 3, p < 0.05) and invasion (n ≥ 3, p < 0.001) and this was translated in vivo where AD-01 inhibited breast cancer metastasis in MDA-MB-231-lucD3H1 in vivo model (p < 0.05). In ER+ MCF-7 cells and primary breast tumour samples, we demonstrated that ALM201 inhibits endocrine therapy resistant mammospheres, representative of CSC content (n ≥ 3, p < 0.05). Whilst an in vivo limiting dilution assay, using SCID mice, demonstrated that ALM201 alone or in combination with tamoxifen was very effective at delaying tumour recurrence by 12 (p < 0.05) or 21 days (p < 0.001), respectively, by reducing the number of CSCs. The potential mechanism of action, in addition to CD44, involves downregulation of DLL4 and Notch4. CONCLUSION: This study demonstrates, for the first time, the pre-clinical activity of novel systemic anti-cancer therapeutic peptides, ALM201 and AD-01, in the metastatic setting, and highlights their impact on endocrine therapy resistant CSCs; both areas of unmet clinical need.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Inmunofilinas/farmacología , Células Madre Neoplásicas/efectos de los fármacos , Péptidos/farmacología , Proteínas Adaptadoras Transductoras de Señales , Animales , Antineoplásicos Hormonales/farmacología , Antineoplásicos Hormonales/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Mama/patología , Neoplasias de la Mama/patología , Proteínas de Unión al Calcio , Línea Celular Tumoral , Regulación hacia Abajo/efectos de los fármacos , Resistencia a Antineoplásicos , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Inmunofilinas/uso terapéutico , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Ratones , Ratones SCID , Recurrencia Local de Neoplasia/prevención & control , Células Madre Neoplásicas/patología , Péptidos/uso terapéutico , Receptor Notch4/metabolismo , Transducción de Señal/efectos de los fármacos , Proteínas de Unión a Tacrolimus , Tamoxifeno/farmacología , Tamoxifeno/uso terapéutico , Resultado del Tratamiento , Ensayos Antitumor por Modelo de Xenoinjerto
4.
Mol Pharm ; 13(4): 1217-28, 2016 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-26954700

RESUMEN

Bisphosphonates (BPs) are a class of bone resorptive drug with a high affinity for the hydroxyapatite structure of bone matrices that are used for the treatment of osteoporosis. However, clinical application is limited by a common toxicity, BP-related osteonecrosis of the jaw. There is emerging evidence that BPs possess anticancer potential, but exploitation of these antiproliferative properties is limited by their toxicities. We previously reported the utility of a cationic amphipathic fusogenic peptide, RALA, to traffic anionic nucleic acids into various cell types in the form of cationic nanoparticles. We hypothesized that complexation with RALA could similarly be used to conceal a BP's hydroxyapatite affinity, and to enhance bioavailability, thereby improving anticancer efficacy. Incubation of RALA with alendronate, etidronate, risedronate, or zoledronate provoked spontaneous electrostatic formation of cationic nanoparticles that did not exceed 100 nm in diameter and that were stable over a range of temperatures and for up to 6 h. The nanoparticles demonstrated a pH responsiveness, possibly indicative of a conformational change, that could facilitate release of the BP cargo in the endosomal environment. RALA/BP nanoparticles were more potent anticancer agents than their free BP counterparts in assays investigating the viability of PC3 prostate cancer and MDA-MB-231 breast cancer cells. Moreover, RALA complexation potentiated the tumor growth delay activity of alendronate in a PC3 xenograft model of prostate cancer. Taken together, these findings further validate the use of BPs as repurposed anticancer agents.


Asunto(s)
Antineoplásicos/química , Antineoplásicos/farmacología , Difosfonatos/química , Nanopartículas/química , Péptidos/química , Péptidos/farmacología , Alendronato/química , Alendronato/farmacología , Alendronato/uso terapéutico , Animales , Antineoplásicos/uso terapéutico , Conservadores de la Densidad Ósea/química , Conservadores de la Densidad Ósea/farmacología , Conservadores de la Densidad Ósea/uso terapéutico , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Difosfonatos/farmacología , Difosfonatos/uso terapéutico , Humanos , Imidazoles/química , Imidazoles/farmacología , Masculino , Ratones , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto , Ácido Zoledrónico
5.
J Thromb Haemost ; 22(2): 394-409, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37865288

RESUMEN

BACKGROUND: Myeloid cell metabolic reprogramming is a hallmark of inflammatory disease; however, its role in inflammation-induced hypercoagulability is poorly understood. OBJECTIVES: We aimed to evaluate the role of inflammation-associated metabolic reprogramming in regulating blood coagulation. METHODS: We used novel myeloid cell-based global hemostasis assays and murine models of immunometabolic disease. RESULTS: Glycolysis was essential for enhanced activated myeloid cell tissue factor expression and decryption, driving increased cell-dependent thrombin generation in response to inflammatory challenge. Similarly, inhibition of glycolysis enhanced activated macrophage fibrinolytic activity through reduced plasminogen activator inhibitor 1 activity. Macrophage polarization or activation markedly increased endothelial protein C receptor (EPCR) expression on monocytes and macrophages, leading to increased myeloid cell-dependent protein C activation. Importantly, inflammation-dependent EPCR expression on tissue-resident macrophages was also observed in vivo. Adipose tissue macrophages from obese mice fed a high-fat diet exhibited significantly enhanced EPCR expression and activated protein C generation compared with macrophages isolated from the adipose tissue of healthy mice. Similarly, the induction of colitis in mice prompted infiltration of EPCR+ innate myeloid cells within inflamed colonic tissue that were absent from the intestinal tissue of healthy mice. CONCLUSION: Collectively, this study identifies immunometabolic regulation of myeloid cell hypercoagulability, opening new therapeutic possibilities for targeted mitigation of thromboinflammatory disease.


Asunto(s)
Proteína C , Trombofilia , Animales , Ratones , Proteína C/metabolismo , Receptor de Proteína C Endotelial/metabolismo , Células Mieloides/metabolismo , Inflamación/metabolismo , Trombofilia/etiología , Glucólisis , Ratones Endogámicos C57BL
6.
Front Endocrinol (Lausanne) ; 14: 1148934, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37361533

RESUMEN

Obesity is a global epidemic and overwhelming evidence indicates that it is a risk factor for numerous cancers, including hepatocellular carcinoma (HCC), the third leading cause of cancer-related deaths worldwide. Obesity-associated hepatic tumorigenesis develops from nonalcoholic fatty liver disease (NAFLD), progressing to nonalcoholic steatohepatitis (NASH), cirrhosis and ultimately to HCC. The rising incidence of obesity is resulting in an increased prevalence of NAFLD and NASH, and subsequently HCC. Obesity represents an increasingly important underlying etiology of HCC, in particular as the other leading causes of HCC such as hepatitis infection, are declining due to effective treatments and vaccines. In this review, we provide a comprehensive overview of the molecular mechanisms and cellular signaling pathways involved in the pathogenesis of obesity-associated HCC. We summarize the preclinical experimental animal models available to study the features of NAFLD/NASH/HCC, and the non-invasive methods to diagnose NAFLD, NASH and early-stage HCC. Finally, since HCC is an aggressive tumor with a 5-year survival of less than 20%, we will also discuss novel therapeutic targets for obesity-associated HCC and ongoing clinical trials.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Enfermedad del Hígado Graso no Alcohólico , Animales , Enfermedad del Hígado Graso no Alcohólico/complicaciones , Enfermedad del Hígado Graso no Alcohólico/terapia , Enfermedad del Hígado Graso no Alcohólico/epidemiología , Carcinoma Hepatocelular/epidemiología , Carcinoma Hepatocelular/etiología , Carcinoma Hepatocelular/terapia , Neoplasias Hepáticas/epidemiología , Neoplasias Hepáticas/etiología , Neoplasias Hepáticas/terapia , Obesidad/complicaciones
7.
Br J Pharmacol ; 180 Suppl 2: S289-S373, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-38123154

RESUMEN

The Concise Guide to PHARMACOLOGY 2023/24 is the sixth in this series of biennial publications. The Concise Guide provides concise overviews, mostly in tabular format, of the key properties of approximately 1800 drug targets, and about 6000 interactions with about 3900 ligands. There is an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. Although the Concise Guide constitutes almost 500 pages, the material presented is substantially reduced compared to information and links presented on the website. It provides a permanent, citable, point-in-time record that will survive database updates. The full contents of this section can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.16176. In addition to this overview, in which are identified 'Other protein targets' which fall outside of the subsequent categorisation, there are six areas of focus: G protein-coupled receptors, ion channels, nuclear hormone receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The landscape format of the Concise Guide is designed to facilitate comparison of related targets from material contemporary to mid-2023, and supersedes data presented in the 2021/22, 2019/20, 2017/18, 2015/16 and 2013/14 Concise Guides and previous Guides to Receptors and Channels. It is produced in close conjunction with the Nomenclature and Standards Committee of the International Union of Basic and Clinical Pharmacology (NC-IUPHAR), therefore, providing official IUPHAR classification and nomenclature for human drug targets, where appropriate.


Asunto(s)
Bases de Datos Farmacéuticas , Canales Iónicos , Humanos , Ligandos , Receptores Citoplasmáticos y Nucleares , Receptores Acoplados a Proteínas G
8.
Pharmacol Res Perspect ; 10(2): e00923, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35289104

RESUMEN

Obesity is highly prevalent in breast cancer patients and is associated with increased recurrence and breast cancer-specific mortality. Glucocorticoids (GC) are used as an adjuvant in cancer treatment and are associated with promoting breast cancer metastasis through activation of stemness-related pathways. Therefore, we utilized the synergetic allograft E0771 breast cancer model to investigate if treatment with GCs had differential effects on promoting cancer stem cells in lean and diet-induced obese mice. Indeed, both lean mice treated with dexamethasone and obese mice with no treatment had no effect on the ex vivo colony-forming ability, mammosphere formation, or aldehyde dehydrogenase (ALDH) bright subpopulation. However, treatment of obese mice with dexamethasone resulted in a significant increase in ex vivo colony formation, mammosphere formation, ALDH bright subpopulation, and expression of pluripotency transcription factors. GC transcriptionally regulated genes were not altered in the dexamethasone-treated groups compared to treatment controls. In summary, these results provide initial evidence that obesity presents a higher risk of GC-induced cancer stemness via non-genomic GC signaling which is of potential translational significance.


Asunto(s)
Neoplasias de la Mama , Aldehído Deshidrogenasa/metabolismo , Animales , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Línea Celular Tumoral , Dexametasona/farmacología , Femenino , Humanos , Ratones , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Obesidad/metabolismo
9.
Mol Ther Nucleic Acids ; 29: 643-655, 2022 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-36090747

RESUMEN

Macrophages are plastic cells playing a crucial role in innate immunity. While fundamental in responding to infections, when persistently maintained in a pro-inflammatory state they can initiate and sustain inflammatory diseases. Therefore, a strategy that reprograms pro-inflammatory macrophages toward an anti-inflammatory phenotype could hold therapeutic potential in that context. We have recently shown that arginase 2 (Arg2), a mitochondrial enzyme involved in arginine metabolism, promotes the resolution of inflammation in macrophages and it is targeted by miR-155. Here, we designed and tested a target site blocker (TSB) that specifically interferes and blocks the interaction between miR-155 and Arg2 mRNA, leading to Arg2 increased expression and activity. In bone marrow-derived macrophages transfected with Arg2 TSB (in the presence or absence of the pro-inflammatory stimulus LPS), we observed an overall shift of the polarization status of macrophages toward an anti-inflammatory phenotype, as shown by significant changes in surface markers (CD80 and CD71), metabolic parameters (mitochondrial oxidative phosphorylation) and cytokines secretion (IL-1ß, IL-6, and TNF). Moreover, in an in vivo model of LPS-induced acute inflammation, intraperitoneal administration of Arg2 TSB led to an overall decrease in systemic levels of pro-inflammatory cytokines. Overall, this proof-of-concept strategy represent a promising approach to modulating macrophage phenotype.

10.
Biol Futur ; 72(2): 129-138, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34554467

RESUMEN

In 2019, the record for the most expensive drug was broken at US$2.1 million per patient. The high costs of new drugs are justified by the pharmaceutical industry as the expense required for maintaining research and development (R&D) pipelines. However, this does not take into account that globally the public pays for between one to two-thirds of upfront R&D costs through taxpayers or charitable donations. Governments are effectively paying twice for medicines; first through R&D, and then paying the high prices upon approval. High drug prices distort research priorities, emphasising financial gains and not health gains. In this manuscript, issues surrounding the current patent-based drug development model, public funding of research and pharmaceutical lobbying will be addressed. Finally, innovations in drug development to improve public health needs and guaranteeing medication access to patients will be explored.


Asunto(s)
Costos de los Medicamentos/normas , Desarrollo de Medicamentos/métodos , Financiación Gubernamental/economía , Costos de los Medicamentos/tendencias , Desarrollo de Medicamentos/economía , Industria Farmacéutica/economía , Financiación Gubernamental/tendencias , Humanos
11.
Cancers (Basel) ; 13(7)2021 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-33916028

RESUMEN

In solid malignancies, the glucocorticoid receptor (GR) signalling axis is associated with tumour progression and GR antagonists are in clinical development. Therefore, GR expression may be a useful potential prognostic or predictive biomarker for GR antagonist therapy in cancer. The aim of this review is to investigate if GR expression in tumours is predictive of overall survival or progression free survival. Twenty-five studies were identified through systematic searches of three databases and a meta-analysis conducted using a random effects model, quantifying statistical heterogeneity. Subgroup analysis was conducted for cancer types and publication bias was assessed via funnel plots. There was high heterogeneity in meta-analysis of the studies in all cancer types, which found no association between high GR expression with overall survival (pooled unadjusted HR 1.16, 95% CI (0.89-1.50), n = 2814; pooled adjusted HR 1.02, 95% CI (0.77-1.37), n = 2355) or progression-free survival (pooled unadjusted HR 1.12, 95% CI (0.88-1.42), n = 3365; pooled adjusted HR 1.04, 95% CI (0.6-1.81), n = 582) across all cancer types. However, subgroup meta-analyses showed that high GR expression in gynaecological cancers (endometrial and ovarian) (unadjusted HR 1.83, 95% CI (1.31-2.56), n = 664) and early stage, untreated triple negative breast cancers (TNBCs) (unadjusted HR 1.73, 95% CI (1.35-2.23), n = 687) is associated with disease progression. GR expression in late stage, chemotherapy treated TNBC was not prognostic (unadjusted HR 0.76, 95% CI (0.44, 1.32), n = 287). In conclusion, high GR expression is associated with an increased risk of disease progression in gynaecological and early stage, untreated TNBC. Additional studies are required to elucidate the tumour specific function of the GR receptor in order to ensure GR antagonists target the correct patient groups.

12.
Front Oncol ; 11: 669078, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34604026

RESUMEN

BACKGROUND: The Rehabilitation Strategies Following Esophagogastric cancer (ReStOre) randomized control trial demonstrated a significant improvement in cardiorespiratory fitness of esophagogastric cancer survivors. This follow-up, exploratory study analyzed the biological effect of exercise intervention on levels of 55 serum proteins, encompassing mediators of angiogenesis, inflammation, and vascular injury, from participants on the ReStOre trial. METHODS: Patients >6 months disease free from esophagogastric cancer were randomized to usual care or the 12-week ReStOre program (exercise training, dietary counselling, and multidisciplinary education). Serum was collected at baseline (T0), post-intervention (T1), and at 3-month follow up (T2). Serum biomarkers were quantified by enzyme-linked immunosorbent assay (ELISA). RESULTS: Thirty-seven patients participated in this study; 17 in the control arm and 20 in the intervention arm. Exercise intervention resulted in significant alterations in the level of expression of serum IP-10 (mean difference (MD): 38.02 (95% CI: 0.69 to 75.35)), IL-27 (MD: 249.48 (95% CI: 22.43 to 476.53)), and the vascular injury biomarkers, ICAM-1 (MD: 1.05 (95% CI: 1.07 to 1.66)), and VCAM-1 (MD: 1.51 (95% CI: 1.04 to 2.14)) at T1. A significant increase in eotaxin-3 (MD: 2.59 (95% CI: 0.23 to 4.96)), IL-15 (MD: 0.27 (95% CI: 0 to 0.54)) and decrease in bFGF (MD: 1.62 (95% CI: -2.99 to 0.26)) expression was observed between control and intervention cohorts at T2 (p<0.05). CONCLUSIONS: Exercise intervention significantly altered the expression of a number of serum biomarkers in disease-free patients who had prior treatment for esophagogastric cancer. IMPACT: Exercise rehabilitation causes a significant biological effect on serum biomarkers in esophagogastric cancer survivors. CLINICAL TRIAL REGISTRATION: ClinicalTrials.gov (NCT03314311).

13.
Nat Commun ; 12(1): 1460, 2021 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-33674584

RESUMEN

Mitochondria are important regulators of macrophage polarisation. Here, we show that arginase-2 (Arg2) is a microRNA-155 (miR-155) and interleukin-10 (IL-10) regulated protein localized at the mitochondria in inflammatory macrophages, and is critical for IL-10-induced modulation of mitochondrial dynamics and oxidative respiration. Mechanistically, the catalytic activity and presence of Arg2 at the mitochondria is crucial for oxidative phosphorylation. We further show that Arg2 mediates this process by increasing the activity of complex II (succinate dehydrogenase). Moreover, Arg2 is essential for IL-10-mediated downregulation of the inflammatory mediators succinate, hypoxia inducible factor 1α (HIF-1α) and IL-1ß in vitro. Accordingly, HIF-1α and IL-1ß are highly expressed in an LPS-induced in vivo model of acute inflammation using Arg2-/- mice. These findings shed light on a new arm of IL-10-mediated metabolic regulation, working to resolve the inflammatory status of the cell.


Asunto(s)
Arginasa/metabolismo , Interleucina-10/metabolismo , Macrófagos/metabolismo , Mitocondrias/metabolismo , Animales , Arginasa/genética , Regulación hacia Abajo , Femenino , Interleucina-1beta/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados/genética , Mitocondrias/enzimología , Succinato Deshidrogenasa/metabolismo
14.
Cancers (Basel) ; 12(12)2020 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-33339340

RESUMEN

Obesity is a modern health problem that has reached pandemic proportions. It is an established risk factor for carcinogenesis, however, evidence for the contribution of adipose tissue to the metastatic behavior of tumors is also mounting. Over 90% of cancer mortality is attributed to metastasis and metastatic tumor cells must communicate with their microenvironment for survival. Many of the characteristics observed in obese adipose tissue strongly mirror the tumor microenvironment. Thus in the case of prostate, pancreatic and breast cancer and esophageal adenocarcinoma, which are all located in close anatomical proximity to an adipose tissue depot, the adjacent fat provides an ideal microenvironment to enhance tumor growth, progression and metastasis. Adipocytes provide adipokines, fatty acids and other soluble factors to tumor cells whilst immune cells infiltrate the tumor microenvironment. In addition, there are emerging studies on the role of the extracellular vesicles secreted from adipose tissue, and the extracellular matrix itself, as drivers of obesity-induced metastasis. In the present review, we discuss the major mechanisms responsible for the obesity-metastatic link. Furthermore, understanding these complex mechanisms will provide novel therapies to halt the tumor-adipose tissue crosstalk with the ultimate aim of inhibiting tumor progression and metastatic growth.

15.
Pharmacol Ther ; 215: 107623, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32622856

RESUMEN

FK506 binding (FKBP) proteins are part of the highly conserved immunophilin family and its members have fundamental roles in the regulation of signalling pathways involved in inflammation, adaptive immune responses, cancer and developmental biology. The original member of this family, FKBP12, is a well-known binding partner for the immunosuppressive drugs tacrolimus (FK506) and sirolimus (rapamycin). FKBP12 and its analog, FKBP12.6, function as cis/trans peptidyl prolyl isomerases (PPIase) and they catalyse the interconversion of cis/trans prolyl conformations. Members of this family uniquely contain a PPIase domain, which may not be functional. The larger FKBPs, such as FKBP51, FKBP52 and FKBPL, contain extra regions, including tetratricopeptide repeat (TPR) domains, which are important for their versatile protein-protein interactions with inflammation-related signalling pathways. In this review we focus on the pivotal role of FKBP proteins in regulating glucocorticoid signalling, canonical and non-canonical NF-κB signalling, mTOR/AKT signalling and TGF-ß signalling. We examine the mechanism of action of FKBP based immunosuppressive drugs on these cell signalling pathways and how off target interactions lead to the development of side effects often seen in the clinic. Finally, we discuss the latest advances in the role of FKBPs as therapeutic targets and the development of novel agents for a range of indications of unmet clinical need, including glucocorticoid resistance, obesity, stress-induced inflammation and novel cancer immunotherapy.


Asunto(s)
Inmunosupresores/farmacología , Inflamación/fisiopatología , Proteínas de Unión a Tacrolimus/metabolismo , Animales , Desarrollo de Medicamentos , Humanos , Inmunosupresores/efectos adversos , Inflamación/tratamiento farmacológico , Neoplasias/patología , Neoplasias/terapia , Transducción de Señal/efectos de los fármacos , Sirolimus/efectos adversos , Sirolimus/farmacología , Tacrolimus/efectos adversos , Tacrolimus/farmacología
16.
Cells ; 9(6)2020 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-32575680

RESUMEN

Evolutionarily conserved Notch plays a critical role in embryonic development and cellular self-renewal. It has both tumour suppressor and oncogenic activity, the latter of which is widely described. Notch-activating mutations are associated with haematological malignancies and several solid tumours including breast, lung and adenoid cystic carcinoma. Moreover, upregulation of Notch receptors and ligands and aberrant Notch signalling is frequently observed in cancer. It is involved in cancer hallmarks including proliferation, survival, migration, angiogenesis, cancer stem cell renewal, metastasis and drug resistance. It is a key component of cell-to-cell interactions between cancer cells and cells of the tumour microenvironment, such as endothelial cells, immune cells and fibroblasts. Notch displays diverse crosstalk with many other oncogenic signalling pathways, and may drive acquired resistance to targeted therapies as well as resistance to standard chemo/radiation therapy. The past 10 years have seen the emergence of different classes of drugs therapeutically targeting Notch including receptor/ligand antibodies, gamma secretase inhibitors (GSI) and most recently, the development of Notch transcription complex inhibitors. It is an exciting time for Notch research with over 70 cancer clinical trials registered and the first-ever Phase III trial of a Notch GSI, nirogacestat, currently at the recruitment stage.


Asunto(s)
Células Endoteliales/metabolismo , Neoplasias/metabolismo , Receptores Notch/metabolismo , Microambiente Tumoral/fisiología , Humanos , Oncogenes/fisiología , Transducción de Señal
17.
Pharmacol Ther ; 187: 13-30, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29421575

RESUMEN

Resistance to chemotherapy and cancer relapse are major clinical challenges attributed to a sub population of cancer stem cells (CSCs). The concept of CSCs has been the subject of intense research by the oncology community since evidence for their existence was first published over twenty years ago. Emerging data indicates that they are also able to evade novel therapies such as targeted agents, immunotherapies and anti-angiogenics. The inability to appropriately identify and isolate CSCs is a major hindrance to the field and novel technologies are now being utilized. Agents that target CSC-associated cell surface receptors and signaling pathways have generated promising pre-clinical results and are now entering clinical trial. Here we discuss and evaluate current therapeutic strategies to target CSCs.


Asunto(s)
Terapia Molecular Dirigida , Neoplasias/tratamiento farmacológico , Células Madre Neoplásicas , Animales , Resistencia a Antineoplásicos , Humanos , Neovascularización Patológica , Transducción de Señal , Microambiente Tumoral
18.
Curr Mol Pharmacol ; 9(2): 165-79, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25986561

RESUMEN

Peptidyl prolyl isomerases (PPIases) are proteins belonging to the immunophilin family and are characterised by their cis-trans isomerization activity at the X-Pro peptide bond, in addition to their tetratricopeptide repeat (TPR) domain, important for interaction with the molecular chaperone, Hsp90. Due to this unique structure these proteins are able to facilitate protein-protein interactions which can impact significantly on a range of cellular processes such as cell signalling, differentiation, cell cycle progression, metabolic activity and apoptosis. Malfunction and/or dysregulation of most members of this class of proteins promotes cellular damage and tissue/organ failure, predisposing to ageing and age-related diseases. Many individual genes within the PPIase family are associated with several age-related diseases including cardiovascular diseases (CVDs), atherosclerosis, type II diabetes mellitus (T2D), chronic kidney disease (CDK), neurodegeneration, cancer and age-related macular degeneration (AMD), in addition to the ageing process itself. This review will focus on the different roles of PPIases, and their therapeutic/ biomarker potential in these age-related vascular diseases.


Asunto(s)
Envejecimiento , Enfermedades Cardiovasculares/enzimología , Isomerasa de Peptidilprolil/metabolismo , Animales , Enfermedades Cardiovasculares/metabolismo , Enfermedades Cardiovasculares/patología , Diabetes Mellitus Tipo 2/enzimología , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patología , Humanos , Degeneración Macular/enzimología , Degeneración Macular/metabolismo , Degeneración Macular/patología , Terapia Molecular Dirigida , Neoplasias/enzimología , Neoplasias/metabolismo , Neoplasias/patología , Enfermedades Neurodegenerativas/enzimología , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Isomerasa de Peptidilprolil/antagonistas & inhibidores , Insuficiencia Renal Crónica/enzimología , Insuficiencia Renal Crónica/metabolismo , Insuficiencia Renal Crónica/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA