Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 156(6): 1167-1178, 2014 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-24630720

RESUMEN

Aging entails a progressive decline in protein homeostasis, which often leads to age-related diseases. The endoplasmic reticulum (ER) is the site of protein synthesis and maturation for secreted and membrane proteins. Correct folding of ER proteins requires covalent attachment of N-linked glycan oligosaccharides. Here, we report that increased synthesis of N-glycan precursors in the hexosamine pathway improves ER protein homeostasis and extends lifespan in C. elegans. Addition of the N-glycan precursor N-acetylglucosamine to the growth medium slows aging in wild-type animals and alleviates pathology of distinct neurotoxic disease models. Our data suggest that reduced aggregation of metastable proteins and lifespan extension depend on enhanced ER-associated protein degradation, proteasomal activity, and autophagy. Evidently, hexosamine pathway activation or N-acetylglucosamine supplementation induces distinct protein quality control mechanisms, which may allow therapeutic intervention against age-related and proteotoxic diseases.


Asunto(s)
Vías Biosintéticas , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Glutamina-Fructosa-6-Fosfato Transaminasa (Isomerizadora)/metabolismo , Hexosaminas/metabolismo , Longevidad , Proteínas/metabolismo , Secuencia de Aminoácidos , Animales , Autofagia , Caenorhabditis elegans/enzimología , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Retículo Endoplásmico/metabolismo , Estrés del Retículo Endoplásmico , Glutamina-Fructosa-6-Fosfato Transaminasa (Isomerizadora)/genética , Humanos , Datos de Secuencia Molecular , Mutación , Biosíntesis de Proteínas , Alineación de Secuencia , Tunicamicina/farmacología
2.
Nature ; 616(7958): 814-821, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37046086

RESUMEN

Physiological homeostasis becomes compromised during ageing, as a result of impairment of cellular processes, including transcription and RNA splicing1-4. However, the molecular mechanisms leading to the loss of transcriptional fidelity are so far elusive, as are ways of preventing it. Here we profiled and analysed genome-wide, ageing-related changes in transcriptional processes across different organisms: nematodes, fruitflies, mice, rats and humans. The average transcriptional elongation speed (RNA polymerase II speed) increased with age in all five species. Along with these changes in elongation speed, we observed changes in splicing, including a reduction of unspliced transcripts and the formation of more circular RNAs. Two lifespan-extending interventions, dietary restriction and lowered insulin-IGF signalling, both reversed most of these ageing-related changes. Genetic variants in RNA polymerase II that reduced its speed in worms5 and flies6 increased their lifespan. Similarly, reducing the speed of RNA polymerase II by overexpressing histone components, to counter age-associated changes in nucleosome positioning, also extended lifespan in flies and the division potential of human cells. Our findings uncover fundamental molecular mechanisms underlying animal ageing and lifespan-extending interventions, and point to possible preventive measures.


Asunto(s)
Envejecimiento , Longevidad , Elongación de la Transcripción Genética , Animales , Humanos , Ratones , Ratas , Envejecimiento/genética , Insulina/metabolismo , Longevidad/genética , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , Transducción de Señal , Drosophila melanogaster/genética , Caenorhabditis elegans/genética , ARN Circular , Somatomedinas , Nucleosomas , Histonas , División Celular , Restricción Calórica
3.
Annu Rev Biochem ; 80: 885-916, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21495846

RESUMEN

Sterol metabolites are critical signaling molecules that regulate metabolism, development, and homeostasis. Oxysterols, bile acids (BAs), and steroids work primarily through cognate sterol-responsive nuclear hormone receptors to control these processes through feed-forward and feedback mechanisms. These signaling pathways are conserved from simple invertebrates to mammals. Indeed, results from various model organisms have yielded fundamental insights into cholesterol and BA homeostasis, lipid and glucose metabolism, protective mechanisms, tissue differentiation, development, reproduction, and even aging. Here, we review how sterols act through evolutionarily ancient mechanisms to control these processes.


Asunto(s)
Metabolismo Energético , Crecimiento y Desarrollo , Homeostasis/fisiología , Esteroles/metabolismo , Animales , Evolución Molecular , Ayuno , Glucosa/metabolismo , Humanos , Inmunidad , Esperanza de Vida , Metabolismo de los Lípidos , Receptores X del Hígado , Receptores Nucleares Huérfanos/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Transducción de Señal/fisiología , Esteroles/química
4.
EMBO J ; 41(8): e109633, 2022 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-35253240

RESUMEN

Ageing is a complex process with common and distinct features across tissues. Unveiling the underlying processes driving ageing in individual tissues is indispensable to decipher the mechanisms of organismal longevity. Caenorhabditis elegans is a well-established model organism that has spearheaded ageing research with the discovery of numerous genetic pathways controlling its lifespan. However, it remains challenging to dissect the ageing of worm tissues due to the limited description of tissue pathology and access to tissue-specific molecular changes during ageing. In this study, we isolated cells from five major tissues in young and old worms and profiled the age-induced transcriptomic changes within these tissues. We observed a striking diversity of ageing across tissues and identified different sets of longevity regulators therein. In addition, we found novel tissue-specific factors, including irx-1 and myrf-2, which control the integrity of the intestinal barrier and sarcomere structure during ageing respectively. This study demonstrates the complexity of ageing across worm tissues and highlights the power of tissue-specific transcriptomic profiling during ageing, which can serve as a resource to the field.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Envejecimiento/genética , Envejecimiento/metabolismo , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Longevidad/genética , Transcriptoma
5.
EMBO Rep ; 25(2): 704-724, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38263327

RESUMEN

TFEB is a master regulator of autophagy, lysosome biogenesis, mitochondrial metabolism, and immunity that works primarily through transcription controlled by cytosol-to-nuclear translocation. Emerging data indicate additional regulatory interactions at the surface of organelles such as lysosomes. Here we show that TFEB has a non-transcriptional role in mitochondria, regulating the electron transport chain complex I to down-modulate inflammation. Proteomics analysis reveals extensive TFEB co-immunoprecipitation with several mitochondrial proteins, whose interactions are disrupted upon infection with S. Typhimurium. High resolution confocal microscopy and biochemistry confirms TFEB localization in the mitochondrial matrix. TFEB translocation depends on a conserved N-terminal TOMM20-binding motif and is enhanced by mTOR inhibition. Within the mitochondria, TFEB and protease LONP1 antagonistically co-regulate complex I, reactive oxygen species and the inflammatory response. Consequently, during infection, lack of TFEB specifically in the mitochondria exacerbates the expression of pro-inflammatory cytokines, contributing to innate immune pathogenesis.


Asunto(s)
Autofagia , Inflamación , Humanos , Inflamación/metabolismo , Citosol/metabolismo , Transporte Activo de Núcleo Celular , Lisosomas/metabolismo , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Proteínas Mitocondriales/metabolismo , Proteasas ATP-Dependientes/metabolismo
6.
Proc Natl Acad Sci U S A ; 120(39): e2221553120, 2023 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-37722055

RESUMEN

Accumulating evidence has demonstrated the presence of intertissue-communication regulating systemic aging, but the underlying molecular network has not been fully explored. We and others previously showed that two basic helix-loop-helix transcription factors, MML-1 and HLH-30, are required for lifespan extension in several longevity paradigms, including germlineless Caenorhabditis elegans. However, it is unknown what tissues these factors target to promote longevity. Here, using tissue-specific knockdown experiments, we found that MML-1 and its heterodimer partners MXL-2 and HLH-30 act primarily in neurons to extend longevity in germlineless animals. Interestingly, however, the downstream cascades of MML-1 in neurons were distinct from those of HLH-30. Neuronal RNA interference (RNAi)-based transcriptome analysis revealed that the glutamate transporter GLT-5 is a downstream target of MML-1 but not HLH-30. Furthermore, the MML-1-GTL-5 axis in neurons is critical to prevent an age-dependent collapse of proteostasis and increased oxidative stress through autophagy and peroxidase MLT-7, respectively, in long-lived animals. Collectively, our study revealed that systemic aging is regulated by a molecular network involving neuronal MML-1 function in both neural and peripheral tissues.


Asunto(s)
Envejecimiento , Neuronas , Animales , Envejecimiento/genética , Sistema de Transporte de Aminoácidos X-AG , Autofagia/genética , Caenorhabditis elegans/genética , Peroxidasas , Proteínas de Caenorhabditis elegans/genética
7.
Proc Natl Acad Sci U S A ; 118(9)2021 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-33627403

RESUMEN

Duchenne muscular dystrophy (DMD) is an X-linked recessive disorder characterized by progressive muscle degeneration and weakness due to mutations in the dystrophin gene. The symptoms of DMD share similarities with those of accelerated aging. Recently, hydrogen sulfide (H2S) supplementation has been suggested to modulate the effects of age-related decline in muscle function, and metabolic H2S deficiencies have been implicated in affecting muscle mass in conditions such as phenylketonuria. We therefore evaluated the use of sodium GYY4137 (NaGYY), a H2S-releasing molecule, as a possible approach for DMD treatment. Using the dys-1(eg33) Caenorhabditis elegans DMD model, we found that NaGYY treatment (100 µM) improved movement, strength, gait, and muscle mitochondrial structure, similar to the gold-standard therapeutic treatment, prednisone (370 µM). The health improvements of either treatment required the action of the kinase JNK-1, the transcription factor SKN-1, and the NAD-dependent deacetylase SIR-2.1. The transcription factor DAF-16 was required for the health benefits of NaGYY treatment, but not prednisone treatment. AP39 (100 pM), a mitochondria-targeted H2S compound, also improved movement and strength in the dys-1(eg33) model, further implying that these improvements are mitochondria-based. Additionally, we found a decline in total sulfide and H2S-producing enzymes in dystrophin/utrophin knockout mice. Overall, our results suggest that H2S deficit may contribute to DMD pathology, and rectifying/overcoming the deficit with H2S delivery compounds has potential as a therapeutic approach to DMD treatment.


Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Distrofina/genética , Sulfuro de Hidrógeno/farmacología , Mitocondrias Musculares/efectos de los fármacos , Morfolinas/farmacología , Músculo Esquelético/efectos de los fármacos , Distrofia Muscular Animal/tratamiento farmacológico , Compuestos Organofosforados/farmacología , Compuestos Organotiofosforados/farmacología , Tionas/farmacología , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Distrofina/deficiencia , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Regulación de la Expresión Génica , Humanos , Sulfuro de Hidrógeno/metabolismo , Locomoción/efectos de los fármacos , Locomoción/genética , Masculino , Ratones , Ratones Endogámicos mdx , Mitocondrias Musculares/metabolismo , Mitocondrias Musculares/patología , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Morfolinas/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Distrofia Muscular Animal/genética , Distrofia Muscular Animal/metabolismo , Distrofia Muscular Animal/patología , Distrofia Muscular de Duchenne/tratamiento farmacológico , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/patología , Compuestos Organofosforados/metabolismo , Compuestos Organotiofosforados/metabolismo , Prednisona/farmacología , Sirtuinas/genética , Sirtuinas/metabolismo , Tionas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Utrofina/deficiencia , Utrofina/genética
8.
Int J Mol Sci ; 25(4)2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38396730

RESUMEN

Heterozygous variants in the Poly(U) Binding Splicing Factor 60kDa gene (PUF60) have been associated with Verheij syndrome, which has the key features of coloboma, short stature, skeletal abnormalities, developmental delay, palatal abnormalities, and congenital heart and kidney defects. Here, we report five novel patients from unrelated families with PUF60-related disorders exhibiting novel genetic and clinical findings with three truncating variants, one splice-site variant with likely reduced protein expression, and one missense variant. Protein modeling of the patient's missense variant in the PUF60 AlphaFold structure revealed a loss of polar bonds to the surrounding residues. Neurodevelopmental disorders were present in all patients, with variability in speech, motor, cognitive, social-emotional and behavioral features. Novel phenotypic expansions included movement disorders as well as immunological findings with recurrent respiratory, urinary and ear infections, atopic diseases, and skin abnormalities. We discuss the role of PUF60 in immunity with and without infection based on recent organismic and cellular studies. As our five patients showed less-severe phenotypes than classical Verheij syndrome, particularly with the absence of key features such as coloboma or palatal abnormalities, we propose a reclassification as PUF60-related neurodevelopmental disorders with multi-system involvement. These findings will aid in the genetic counseling of patients and families.


Asunto(s)
Coloboma , Trastornos del Neurodesarrollo , Humanos , Mutación Missense , Trastornos del Neurodesarrollo/genética , Fenotipo , Factores de Empalme de ARN/genética
9.
J Cell Sci ; 134(9)2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33973637

RESUMEN

Stem cell differentiation is accompanied by increased mRNA translation. The rate of protein biosynthesis is influenced by the polyamines putrescine, spermidine and spermine, which are essential for cell growth and stem cell maintenance. However, the role of polyamines as endogenous effectors of stem cell fate and whether they act through translational control remains obscure. Here, we investigate the function of polyamines in stem cell fate decisions using hair follicle stem cell (HFSC) organoids. Compared to progenitor cells, HFSCs showed lower translation rates, correlating with reduced polyamine levels. Surprisingly, overall polyamine depletion decreased translation but did not affect cell fate. In contrast, specific depletion of natural polyamines mediated by spermidine/spermine N1-acetyltransferase (SSAT; also known as SAT1) activation did not reduce translation but enhanced stemness. These results suggest a translation-independent role of polyamines in cell fate regulation. Indeed, we identified N1-acetylspermidine as a determinant of cell fate that acted through increasing self-renewal, and observed elevated N1-acetylspermidine levels upon depilation-mediated HFSC proliferation and differentiation in vivo. Overall, this study delineates the diverse routes of polyamine metabolism-mediated regulation of stem cell fate decisions. This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Folículo Piloso , Espermina , Acetiltransferasas/genética , Diferenciación Celular , Espermidina , Células Madre
10.
Rheumatology (Oxford) ; 62(10): 3459-3468, 2023 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-36752501

RESUMEN

OBJECTIVE: We describe a family with a novel mutation in the TNF Receptor Superfamily Member 1A (TNFRSF1A) gene causing TNF receptor-associated periodic syndrome (TRAPS) with renal AA amyloidosis. METHODS: Case series of affected family members. We further investigated the plasma metabolome of these patients in comparison with healthy controls using mass spectrometry. RESULTS: In all symptomatic family members, we detected the previously undescribed variant c.332A>G (p.Q111R) in the TNFRSF1A gene. Canakinumab proved an effective treatment option leading to remission in all treated patients. One patient with suspected renal amyloidosis showed near normalization of proteinuria under treatment. Analysis of the metabolome revealed 31 metabolic compounds to be upregulated and 35 compounds to be downregulated compared with healthy controls. The most dysregulated metabolites belonged to pathways identified as arginine biosynthesis, phenylalanine, tyrosine and tryptophan biosynthesis, and cysteine and methionine metabolism. Interestingly, the metabolic changes observed in all three TRAPS patients seemed independent of treatment with canakinumab and subsequent remission. CONCLUSION: We present a novel mutation in the TNFRSF1A gene associated with amyloidosis. Canakinumab is an effective treatment for individuals with this new likely pathogenic variant. Alterations in the metabolome were most prominent in the pathways related to arginine biosynthesis, tryptophan metabolism, and metabolism of cysteine and methionine, and seemed to be unaffected by treatment with canakinumab. Further investigation is needed to determine the role of these metabolomic changes in the pathophysiology of TRAPS.


Asunto(s)
Amiloidosis , Fiebre Mediterránea Familiar , Humanos , Receptores del Factor de Necrosis Tumoral , Fiebre Mediterránea Familiar/tratamiento farmacológico , Fiebre Mediterránea Familiar/genética , Fiebre Mediterránea Familiar/complicaciones , Cisteína/genética , Triptófano , Receptores Tipo I de Factores de Necrosis Tumoral/genética , Amiloidosis/complicaciones , Mutación , Metionina , Arginina
11.
Proc Natl Acad Sci U S A ; 116(33): 16551-16560, 2019 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-31350351

RESUMEN

The dynamic interplay between metabolism and immune responses in health and disease, by which different immune cells impact on metabolic processes, are being increasingly appreciated. However, the potential of master regulators of metabolism to control innate immunity are less understood. Here, we studied the cross-talk between leptin signaling and macrophage function in the context of bacterial infections. We found that upon infection with Gram-negative pathogens, such as Salmonella Typhimurium, leptin receptor (Lepr) expression increased in both mouse and human macrophages. Unexpectedly, both genetic Lepr ablation in macrophages and global pharmacologic leptin antagonization augmented lysosomal functions, reduced S Typhimurium burden, and diminished inflammation in vitro and in vivo. Mechanistically, we show that leptin induction activates the mTORC2/Akt pathway and subsequently down-regulates Phlpp1 phosphatase, allowing for phosphorylated Akt to impair lysosomal-mediated pathogen clearance. These data highlight a link between leptin signaling, the mTORC2/Phlpp1/Akt axis, and lysosomal activity in macrophages and have important therapeutic implications for modulating innate immunity to combat Gram-negative bacterial infections.


Asunto(s)
Leptina/metabolismo , Macrófagos/inmunología , Salmonella typhimurium/inmunología , Transducción de Señal , Adulto , Animales , Femenino , Humanos , Inflamación/patología , Leptina/antagonistas & inhibidores , Lisosomas/metabolismo , Macrófagos/microbiología , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , Ratones , Ratones Endogámicos C57BL , Modelos Biológicos , Fagosomas/metabolismo , Fosfoproteínas Fosfatasas/metabolismo , Fosforilación , Proteínas Proto-Oncogénicas c-akt/metabolismo , Células RAW 264.7 , Receptores de Leptina/metabolismo , Salmonelosis Animal , Adulto Joven
12.
Anal Bioanal Chem ; 413(26): 6457-6468, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34476522

RESUMEN

Cyclic dinucleotides (CDNs) are key secondary messenger molecules produced by cyclic dinucleotide synthases that trigger various cellular signaling cascades from bacteria to vertebrates. In mammals, cyclic GMP-AMP synthase (cGAS) has been shown to bind to intracellular DNA and catalyze the production of the dinucleotide 2'3' cGAMP, which signals downstream effectors to regulate immune function, interferon signaling, and the antiviral response. Despite the importance of CDNs, sensitive and accurate methods to measure their levels in vivo are lacking. Here, we report a novel LC-MS/MS method to quantify CDNs in vivo. We characterized the mass spectrometric behavior of four different biologically relevant CDNs (c-di-AMP, c-di-GMP, 3'3' cGAMP, 2'3' cGAMP) and provided a means of visually representing fragmentation resulting from collision-induced dissociation at different energies using collision energy breakdown graphs. We then validated the method and quantified CDNs in two in vivo systems, the bacteria Escherichia coli OP50 and the killifish Nothobranchius furzeri. We found that optimization of LC-MS/MS parameters is crucial to sensitivity and accuracy. These technical advances should help illuminate physiological and pathological roles of these CDNs in in vivo settings. Graphical abstract.


Asunto(s)
GMP Cíclico/análogos & derivados , Fosfatos de Dinucleósidos/análisis , Nucleótidos Cíclicos/análisis , Animales , Cromatografía Liquida , GMP Cíclico/análisis , Escherichia coli/química , Fundulidae/metabolismo , Espectrometría de Masas en Tándem
13.
Mol Cell ; 49(6): 1159-66, 2013 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-23478441

RESUMEN

F-box proteins and DCAF proteins are the substrate binding subunits of the Skp1-Cul1-F-box protein (SCF) and Cul4-RING protein ligase (CRL4) ubiquitin ligase complexes, respectively. Using affinity purification and mass spectrometry, we determined that the F-box protein FBXO11 interacts with CDT2, a DCAF protein that controls cell-cycle progression, and recruits CDT2 to the SCF(FBXO11)complex to promote its proteasomal degradation. In contrast to most SCF substrates, which exhibit phosphodegron-dependent binding to F-box proteins, CDK-mediated phosphorylation of Thr464 present in the CDT2 degron inhibits recognition by FBXO11. Finally, our results show that the functional interaction between FBXO11 and CDT2 is evolutionary conserved from worms to humans and plays an important role in regulating the timing of cell-cycle exit.


Asunto(s)
Ciclo Celular , Proteínas F-Box/metabolismo , Proteínas Nucleares/metabolismo , Proteína-Arginina N-Metiltransferasas/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Diferenciación Celular , Secuencia Conservada , Proteínas F-Box/genética , Técnicas de Silenciamiento del Gen , Células HEK293 , Células HeLa , Humanos , Mutagénesis Sitio-Dirigida , Proteínas Nucleares/genética , Fosforilación , Unión Proteica , Procesamiento Proteico-Postraduccional , Proteína-Arginina N-Metiltransferasas/genética , ARN Interferente Pequeño/genética , Ubiquitina-Proteína Ligasas/genética
14.
Nucleic Acids Res ; 47(8): 3957-3969, 2019 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-30838421

RESUMEN

RNA interference (RNAi) is a valuable technique to determine gene function. In Caenorhabditis elegans, RNAi can be achieved by feeding worms bacteria carrying a plasmid expressing double-stranded RNA (dsRNA) targeting a gene of interest. The most commonly used plasmid vector for this purpose is L4440. However, it has been noticed that sequences within L4440 may elicit unspecific effects. Here, we provide a comprehensive characterization of these effects and their mechanisms and describe new unexpected phenotypes uncovered by the administration of unspecific exogenous dsRNA. An example involves dsRNA produced by the multiple cloning site (MCS) of L4440, which shares complementary sequences with some widely used reporter vectors and induces partial transgene silencing via the canonical and antiviral RNAi pathway. Going beyond transgene silencing, we found that the reduced embryonic viability of mir-35-41(gk262) mutants is partially reversed by exogenous dsRNA via a mechanism that involves canonical RNAi. These results indicate cross-regulation between different small RNA pathways in C. elegans to regulate embryonic viability. Recognition of the possible unspecific effects elicited by RNAi vectors is important for rigorous interpretation of results from RNAi-based experiments.


Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Interferencia de ARN , ARN Bicatenario/genética , ARN Interferente Pequeño/genética , Animales , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Embrión no Mamífero , Escherichia coli/genética , Escherichia coli/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Mutación , Fenotipo , Plásmidos/química , Plásmidos/metabolismo , ARN Bicatenario/metabolismo , ARN Interferente Pequeño/metabolismo
15.
Anal Bioanal Chem ; 412(17): 4089-4099, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32333075

RESUMEN

Steroids are essential structural components of cell membranes that organize lipid rafts and modulate membrane fluidity. They can also act as signalling molecules that work through nuclear and G protein-coupled receptors to impact health and disease. Notably, changes in steroid levels have been implicated in metabolic, cardiovascular and neurodegenerative diseases, but how alterations in the steroid pool affect ageing is less well understood. One of the major challenges in steroidomic analysis is the ability to simultaneously detect and distinguish various steroids due to low in vivo concentrations and naturally occurring stereoisomers. Here, we established such a method to study the mass spectrometry behaviour of nine sterols/steroids and related molecules (cholesterol precursors: squalene, lanosterol; sterol metabolites; 7 Dehydrocholesterol, 24, 25 and 27 Hydroxycholesterol; and steroids: progesterone, testosterone, and corticosterone) during ageing in the African turquoise killifish, a new model for studying vertebrate longevity. We find that levels of all tested steroids change significantly with age in multiple tissues, suggesting that specific steroids could be used as biomarkers of ageing. These findings pave the way for use of Nothobranchius furzeri as a novel model organism to unravel the role of sterols/steroids in ageing and age-related diseases. Graphical abstract.


Asunto(s)
Envejecimiento , Fundulidae/fisiología , Esteroides/análisis , Animales , Colesterol/análogos & derivados , Colesterol/análisis , Colesterol/metabolismo , Espectrometría de Masas , Estereoisomerismo , Esteroides/metabolismo
16.
PLoS Genet ; 13(4): e1006717, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28394895

RESUMEN

Environmental conditions experienced during animal development are thought to have sustained impact on maturation and adult lifespan. Here we show that in the model organism C. elegans developmental rate and adult lifespan depend on larval population density, and that this effect is mediated by excreted small molecules. By using the time point of first egg laying as a marker for full maturity, we found that wildtype hermaphrodites raised under high density conditions developed significantly faster than animals raised in isolation. Population density-dependent acceleration of development (Pdda) was dramatically enhanced in fatty acid ß-oxidation mutants that are defective in the biosynthesis of ascarosides, small-molecule signals that induce developmental diapause. In contrast, Pdda is abolished by synthetic ascarosides and steroidal ligands of the nuclear hormone receptor DAF-12. We show that neither ascarosides nor any known steroid hormones are required for Pdda and that another chemical signal mediates this phenotype, in part via the nuclear hormone receptor NHR-8. Our results demonstrate that C. elegans development is regulated by a push-pull mechanism, based on two antagonistic chemical signals: chemosensation of ascarosides slows down development, whereas population-density dependent accumulation of a different chemical signal accelerates development. We further show that the effects of high larval population density persist through adulthood, as C. elegans larvae raised at high densities exhibit significantly reduced adult lifespan and respond differently to exogenous chemical signals compared to larvae raised at low densities, independent of density during adulthood. Our results demonstrate how inter-organismal signaling during development regulates reproductive maturation and longevity.


Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/crecimiento & desarrollo , Longevidad/genética , Receptores Citoplasmáticos y Nucleares/genética , Animales , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/biosíntesis , Ácidos Grasos/metabolismo , Regulación del Desarrollo de la Expresión Génica , Organismos Hermafroditas/genética , Organismos Hermafroditas/crecimiento & desarrollo , Larva/genética , Larva/crecimiento & desarrollo , Neuropéptidos/metabolismo , Densidad de Población , Receptores Citoplasmáticos y Nucleares/biosíntesis , Transducción de Señal
17.
Int J Mol Sci ; 21(21)2020 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-33153048

RESUMEN

The intestine is an organ essential to organismal nutrient absorption, metabolic control, barrier function and immunoprotection. The Caenorhabditis elegans intestine consists of 20 cells harboring a dense intermediate filament network positioned below the apical plasma membrane that forms a junction-anchored sheath around the intestinal lumen. This evolutionarily conserved arrangement provides mechanical and overall stress-protection, and it serves as an important model for deciphering the role of intestinal architecture in metazoan biology. We recently reported that the loss-of-function mutation of the intestinal intermediate filament organizer IFO-1 perturbs this architecture, leading to reduced body size and reproduction. Here, we demonstrate that the IFO-1 mutation dramatically affects cholesterol metabolism. Mutants showed an increased sensitivity to cholesterol depletion, reduced cholesterol uptake, and cholesterol transfer to the gonads, which is also observed in worms completely lacking an intermediate filament network. Accordingly, we found striking similarities to transcriptome and lipidome profiles of a nuclear hormone receptor (NHR)-8 mutant. NHR-8 is homologous to mammalian LXR (liver X receptor) that serves as a sterol sensor and transcriptional regulator of lipid metabolism. Remarkably, increasing exogenous cholesterol partially rescues the developmental retardation in IFO-1 mutants. Our results uncover a novel link of the intestinal intermediate filament cytoskeleton to cholesterol metabolism that contributes to compromised growth and reproduction.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans , Colesterol/metabolismo , Proteínas de Filamentos Intermediarios/genética , Metabolismo de los Lípidos/genética , Animales , Animales Modificados Genéticamente , Caenorhabditis elegans/efectos de los fármacos , Caenorhabditis elegans/embriología , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Colesterol/farmacología , Embrión no Mamífero , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Proteínas de Filamentos Intermediarios/metabolismo , Filamentos Intermedios/metabolismo , Mucosa Intestinal/embriología , Mucosa Intestinal/metabolismo , Mucosa Intestinal/ultraestructura , Intestinos/embriología , Intestinos/fisiología , Intestinos/ultraestructura , Metabolismo de los Lípidos/efectos de los fármacos , Lipidómica , Receptores Citoplasmáticos y Nucleares/fisiología , Transcriptoma/efectos de los fármacos
18.
PLoS Genet ; 11(4): e1005023, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25830239

RESUMEN

Temperature potently modulates various physiologic processes including organismal motility, growth rate, reproduction, and ageing. In ectotherms, longevity varies inversely with temperature, with animals living shorter at higher temperatures. Thermal effects on lifespan and other processes are ascribed to passive changes in metabolic rate, but recent evidence also suggests a regulated process. Here, we demonstrate that in response to temperature, daf-41/ZC395.10, the C. elegans homolog of p23 co-chaperone/prostaglandin E synthase-3, governs entry into the long-lived dauer diapause and regulates adult lifespan. daf-41 deletion triggers constitutive entry into the dauer diapause at elevated temperature dependent on neurosensory machinery (daf-10/IFT122), insulin/IGF-1 signaling (daf-16/FOXO), and steroidal signaling (daf-12/FXR). Surprisingly, daf-41 mutation alters the longevity response to temperature, living longer than wild-type at 25°C but shorter than wild-type at 15°C. Longevity phenotypes at 25°C work through daf-16/FOXO and heat shock factor hsf-1, while short lived phenotypes converge on daf-16/FOXO and depend on the daf-12/FXR steroid receptor. Correlatively daf-41 affected expression of DAF-16 and HSF-1 target genes at high temperature, and nuclear extracts from daf-41 animals showed increased occupancy of the heat shock response element. Our studies suggest that daf-41/p23 modulates key transcriptional changes in longevity pathways in response to temperature.


Asunto(s)
Caenorhabditis elegans/metabolismo , Respuesta al Choque Térmico , Oxidorreductasas Intramoleculares/metabolismo , Longevidad , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/crecimiento & desarrollo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Factor I del Crecimiento Similar a la Insulina/metabolismo , Oxidorreductasas Intramoleculares/genética , Prostaglandina-E Sintasas , Transducción de Señal
19.
PLoS Genet ; 10(3): e1004225, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24675767

RESUMEN

Insulin-like peptides (ILPs) play highly conserved roles in development and physiology. Most animal genomes encode multiple ILPs. Here we identify mechanisms for how the forty Caenorhabditis elegans ILPs coordinate diverse processes, including development, reproduction, longevity and several specific stress responses. Our systematic studies identify an ILP-based combinatorial code for these phenotypes characterized by substantial functional specificity and diversity rather than global redundancy. Notably, we show that ILPs regulate each other transcriptionally, uncovering an ILP-to-ILP regulatory network that underlies the combinatorial phenotypic coding by the ILP family. Extensive analyses of genetic interactions among ILPs reveal how their signals are integrated. A combined analysis of these functional and regulatory ILP interactions identifies local genetic circuits that act in parallel and interact by crosstalk, feedback and compensation. This organization provides emergent mechanisms for phenotypic specificity and graded regulation for the combinatorial phenotypic coding we observe. Our findings also provide insights into how large hormonal networks regulate diverse traits.


Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Insulina/genética , Receptor de Insulina/genética , Animales , Caenorhabditis elegans/crecimiento & desarrollo , Redes Reguladoras de Genes , Insulina/metabolismo , Longevidad/genética , Fenotipo , Receptor de Insulina/metabolismo , Transducción de Señal/genética , Somatomedinas/genética , Somatomedinas/metabolismo
20.
PLoS Genet ; 9(7): e1003651, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23935515

RESUMEN

Dietary restriction (DR) extends lifespan in a wide variety of species, yet the underlying mechanisms are not well understood. Here we show that the Caenorhabditis elegans HNF4α-related nuclear hormone receptor NHR-62 is required for metabolic and physiologic responses associated with DR-induced longevity. nhr-62 mediates the longevity of eat-2 mutants, a genetic mimetic of dietary restriction, and blunts the longevity response of DR induced by bacterial food dilution at low nutrient levels. Metabolic changes associated with DR, including decreased Oil Red O staining, decreased triglyceride levels, and increased autophagy are partly reversed by mutation of nhr-62. Additionally, the DR fatty acid profile is altered in nhr-62 mutants. Expression profiles reveal that several hundred genes induced by DR depend on the activity of NHR-62, including a putative lipase required for the DR response. This study provides critical evidence of nuclear hormone receptor regulation of the DR longevity response, suggesting hormonal and metabolic control of life span.


Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Restricción Calórica , Factor Nuclear 4 del Hepatocito/genética , Longevidad/genética , Receptores Citoplasmáticos y Nucleares/genética , Animales , Autofagia , Caenorhabditis elegans/fisiología , Proteínas de Caenorhabditis elegans/metabolismo , Ácidos Grasos/metabolismo , Factor Nuclear 4 del Hepatocito/metabolismo , Mutación , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA