Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Blood ; 131(17): 1960-1973, 2018 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-29519807

RESUMEN

Naturally occurring, large deletions in the ß-globin locus result in hereditary persistence of fetal hemoglobin, a condition that mitigates the clinical severity of sickle cell disease (SCD) and ß-thalassemia. We designed a clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated protein 9 (Cas9) (CRISPR/Cas9) strategy to disrupt a 13.6-kb genomic region encompassing the δ- and ß-globin genes and a putative γ-δ intergenic fetal hemoglobin (HbF) silencer. Disruption of just the putative HbF silencer results in a mild increase in γ-globin expression, whereas deletion or inversion of a 13.6-kb region causes a robust reactivation of HbF synthesis in adult erythroblasts that is associated with epigenetic modifications and changes in chromatin contacts within the ß-globin locus. In primary SCD patient-derived hematopoietic stem/progenitor cells, targeting the 13.6-kb region results in a high proportion of γ-globin expression in erythroblasts, increased HbF synthesis, and amelioration of the sickling cell phenotype. Overall, this study provides clues for a potential CRISPR/Cas9 genome editing approach to the therapy of ß-hemoglobinopathies.


Asunto(s)
Anemia de Células Falciformes , Sistemas CRISPR-Cas , Hemoglobina Fetal , Edición Génica , Sitios Genéticos , Células Madre Hematopoyéticas/metabolismo , Globinas beta/genética , Anemia de Células Falciformes/genética , Anemia de Células Falciformes/metabolismo , Anemia de Células Falciformes/patología , Anemia de Células Falciformes/terapia , Línea Celular , Hemoglobina Fetal/biosíntesis , Hemoglobina Fetal/genética , Células Madre Hematopoyéticas/patología , Humanos , Globinas beta/metabolismo
2.
Mol Ther ; 27(1): 137-150, 2019 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-30424953

RESUMEN

Editing the ß-globin locus in hematopoietic stem cells is an alternative therapeutic approach for gene therapy of ß-thalassemia and sickle cell disease. Using the CRISPR/Cas9 system, we genetically modified human hematopoietic stem and progenitor cells (HSPCs) to mimic the large rearrangements in the ß-globin locus associated with hereditary persistence of fetal hemoglobin (HPFH), a condition that mitigates the clinical phenotype of patients with ß-hemoglobinopathies. We optimized and compared the efficiency of plasmid-, lentiviral vector (LV)-, RNA-, and ribonucleoprotein complex (RNP)-based methods to deliver the CRISPR/Cas9 system into HSPCs. Plasmid delivery of Cas9 and gRNA pairs targeting two HPFH-like regions led to high frequency of genomic rearrangements and HbF reactivation in erythroblasts derived from sorted, Cas9+ HSPCs but was associated with significant cell toxicity. RNA-mediated delivery of CRISPR/Cas9 was similarly toxic but much less efficient in editing the ß-globin locus. Transduction of HSPCs by LVs expressing Cas9 and gRNA pairs was robust and minimally toxic but resulted in poor genome-editing efficiency. Ribonucleoprotein (RNP)-based delivery of CRISPR/Cas9 exhibited a good balance between cytotoxicity and efficiency of genomic rearrangements as compared to the other delivery systems and resulted in HbF upregulation in erythroblasts derived from unselected edited HSPCs.


Asunto(s)
Proteína 9 Asociada a CRISPR/metabolismo , Sistemas CRISPR-Cas/fisiología , Terapia Genética/métodos , Células Madre Hematopoyéticas/metabolismo , Anemia de Células Falciformes/genética , Anemia de Células Falciformes/metabolismo , Anemia de Células Falciformes/terapia , Proteína 9 Asociada a CRISPR/genética , Sistemas CRISPR-Cas/genética , Edición Génica/métodos , Células Madre Hematopoyéticas/citología , Hemoglobinopatías/genética , Hemoglobinopatías/metabolismo , Hemoglobinopatías/terapia , Ribonucleoproteínas Nucleares Heterogéneas/genética , Ribonucleoproteínas Nucleares Heterogéneas/metabolismo , Humanos , Plásmidos/genética , ARN Guía de Kinetoplastida/genética , ARN Guía de Kinetoplastida/metabolismo , Talasemia beta/genética , Talasemia beta/metabolismo , Talasemia beta/terapia
3.
Mol Ther ; 25(5): 1142-1154, 2017 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-28377044

RESUMEN

ß-Thalassemia and sickle cell disease (SCD) are the world's two most widely disseminated hereditary hemoglobinopathies. ß-Thalassemia originated in the Mediterranean, Middle Eastern, and Asian regions, and SCD originated in central Africa. However, subsequent population migration means that these two diseases are now global and thus constitute a growing health problem in many countries. Despite remarkable improvements in medical care for patients with ß-hemoglobinopathies, there is still only one definitive treatment option: allogeneic hematopoietic stem cell (HSC) transplantation. The development of gene therapy for ß-hemoglobinopathies has been justified by (1) the limited availability of human leukocyte antigen (HLA)-identical donors, (2) the narrow window of application of HSC transplantation to the youngest patients, and (3) recent advances in HSC-based gene therapy. The huge ongoing efforts in translational medicine and the high number of related publications show that gene therapy has the potential to become the treatment of choice for patients who lack either an HLA genoidentical sibling or an alternative, medically acceptable donor. In this dynamic scientific context, we first summarize the main steps toward clinical translation of this therapeutic approach and then discuss novel lentiviral- and genome editing-based treatment strategies for ß-hemoglobinopathies.


Asunto(s)
Anemia de Células Falciformes/terapia , Edición Génica/métodos , Terapia Genética/métodos , Trasplante de Células Madre Hematopoyéticas , Globinas beta/genética , Talasemia beta/terapia , Anemia de Células Falciformes/genética , Anemia de Células Falciformes/metabolismo , Anemia de Células Falciformes/patología , Gammaretrovirus/genética , Gammaretrovirus/inmunología , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/inmunología , Antígenos HLA , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Humanos , Lentivirus/genética , Lentivirus/inmunología , Mutación , Donantes de Tejidos , Trasplante Homólogo , Globinas beta/metabolismo , Talasemia beta/genética , Talasemia beta/metabolismo , Talasemia beta/patología
4.
Cytotherapy ; 19(12): 1447-1461, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28917627

RESUMEN

BACKGROUND AIMS: Growing evidence supports the therapeutic potential of bone marrow (BM)-derived stem/progenitor cells for end-stage liver disease (ESLD). We recently demonstrated that CD133+ stem/progenitor cell (SPC) reinfusion in patients with ESLD is feasible and safe and improve, albeit transiently, liver function. However, the mechanism(s) through which BM-derived SPCs may improve liver function are not fully elucidated. METHODS: Here, we characterized the circulating SPCs compartment of patients with ESLD undergoing CD133+ cell therapy. Next, we set up an in vitro model mimicking SPCs/liver microenvironment interaction by culturing granulocyte colony-stimulating factor (G-CSF)-mobilized CD133+and LX-2 hepatic stellate cells. RESULTS: We found that patients with ESLD show normal basal levels of circulating hematopoietic and endothelial progenitors with impaired clonogenic ability. After G-CSF treatment, patients with ESLD were capable to mobilize significant numbers of functional multipotent SPCs, and interestingly, this was associated with increased levels of selected cytokines potentially facilitating SPC function. Co-culture experiments showed, at the molecular and functional levels, the bi-directional cross-talk between CD133+ SPCs and human hepatic stellate cells LX-2. Human hepatic stellate cells LX-2 showed reduced activation and fibrotic potential. In turn, hepatic stellate cells enhanced the proliferation and survival of CD133+ SPCs as well as their endothelial and hematopoietic function while promoting an anti-inflammatory profile. DISCUSSION: We demonstrated that the interaction between CD133+ SPCs from patients with ESLD and hepatic stellate cells induces significant functional changes in both cellular types that may be instrumental for the improvement of liver function in cirrhotic patients undergoing cell therapy.


Asunto(s)
Antígeno AC133/metabolismo , Enfermedad Hepática en Estado Terminal/terapia , Células Estrelladas Hepáticas/citología , Hígado/citología , Trasplante de Células Madre/métodos , Células Madre/metabolismo , Proliferación Celular , Técnicas de Cocultivo , Enfermedad Hepática en Estado Terminal/patología , Factor Estimulante de Colonias de Granulocitos/metabolismo , Factor Estimulante de Colonias de Granulocitos/farmacología , Células Estrelladas Hepáticas/fisiología , Humanos , Hígado/metabolismo , Hígado/patología , Neovascularización Fisiológica , Células Madre/citología , Células del Estroma/efectos de los fármacos , Células del Estroma/metabolismo
5.
iScience ; 23(4): 101018, 2020 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-32283524

RESUMEN

Erythroid commitment and differentiation are regulated by the coordinated action of a host of transcription factors, including GATA2 and GATA1. Here, we explored GATA-mediated transcriptional regulation through the integrative analysis of gene expression, chromatin modifications, and GATA factors' binding in human multipotent hematopoietic stem/progenitor cells, early erythroid progenitors, and late precursors. A progressive loss of H3K27 acetylation and a diminished usage of active enhancers and super-enhancers were observed during erythroid commitment and differentiation. GATA factors mediate transcriptional changes through a stage-specific interplay with regulatory elements: GATA1 binds different sets of regulatory elements in erythroid progenitors and precursors and controls the transcription of distinct genes during commitment and differentiation. Importantly, our results highlight a pivotal role of promoters in determining the transcriptional program activated upon erythroid differentiation. Finally, we demonstrated that GATA1 binding to a stage-specific super-enhancer sustains the expression of the KIT receptor in human erythroid progenitors.

6.
Mol Ther Methods Clin Dev ; 10: 268-280, 2018 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-30140714

RESUMEN

Autologous transplantation of hematopoietic stem cells transduced with a lentiviral vector (LV) expressing an anti-sickling HBB variant is a potential treatment for sickle cell disease (SCD). With a clinical trial as our ultimate goal, we generated LV constructs containing an anti-sickling HBB transgene (HBBAS3), a minimal HBB promoter, and different combinations of DNase I hypersensitive sites (HSs) from the locus control region (LCR). Hematopoietic stem progenitor cells (HSPCs) from SCD patients were transduced with LVs containing either HS2 and HS3 (ß-AS3) or HS2, HS3, and HS4 (ß-AS3 HS4). The inclusion of the HS4 element drastically reduced vector titer and infectivity in HSPCs, with negligible improvement of transgene expression. Conversely, the LV containing only HS2 and HS3 was able to efficiently transduce SCD bone marrow and Plerixafor-mobilized HSPCs, with anti-sickling HBB representing up to ∼60% of the total HBB-like chains. The expression of the anti-sickling HBB and the reduced incorporation of the ßS-chain in hemoglobin tetramers allowed up to 50% reduction in the frequency of RBC sickling under hypoxic conditions. Together, these results demonstrate the ability of a high-titer LV to express elevated levels of a potent anti-sickling HBB transgene ameliorating the SCD cell phenotype.

7.
Stem Cells Transl Med ; 6(12): 2106-2114, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-29080249

RESUMEN

Hematopoiesis is the process of blood cell formation starting from hematopoietic stem/progenitor cells (HSPCs). The understanding of regulatory networks involved in hematopoiesis and their impact on gene expression is crucial to decipher the molecular mechanisms that control hematopoietic development in physiological and pathological conditions, and to develop novel therapeutic strategies. An increasing number of epigenetic studies aim at defining, on a genome-wide scale, the cis-regulatory sequences (e.g., promoters and enhancers) used by human HSPCs and their lineage-restricted progeny at different stages of development. In parallel, human genetic studies allowed the discovery of genetic variants mapping to cis-regulatory elements and associated with hematological phenotypes and diseases. Here, we summarize recent epigenetic and genetic studies in hematopoietic cells that give insights into human hematopoiesis and provide a knowledge basis for the development of novel therapeutic approaches. As an example, we discuss the therapeutic approaches targeting cis-regulatory regions to reactivate fetal hemoglobin for the treatment of ß-hemoglobinopathies. Epigenetic studies allowed the definition of cis-regulatory sequences used by human hematopoietic cells. Promoters and enhancers are targeted by transcription factors and are characterized by specific histone modifications. Genetic variants mapping to cis-regulatory elements are often associated with hematological phenotypes and diseases. In some cases, these variants can alter the binding of transcription factors, thus changing the expression of the target genes. Targeting cis-regulatory sequences represents a promising therapeutic approach for many hematological diseases. Stem Cells Translational Medicine 2017;6:2106-2114.


Asunto(s)
Epigénesis Genética , Hematopoyesis/genética , Animales , Regulación del Desarrollo de la Expresión Génica , Terapia Genética/métodos , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA