RESUMEN
The Smc5/6 complex is a highly conserved molecular machine involved in the maintenance of genome integrity. While its functions largely depend on restraining the fork remodeling activity of Mph1 in yeast, the presence of an analogous Smc5/6-FANCM regulation in humans remains unknown. We generated human cell lines harboring mutations in the NSE1 subunit of the Smc5/6 complex. Point mutations or truncations in the RING domain of NSE1 result in drastically reduced Smc5/6 protein levels, with differential contribution of the two zinc-coordinating centers in the RING. In addition, nse1-RING mutant cells display cell growth defects, reduced replication fork rates, and increased genomic instability. Notably, our findings uncover a synthetic sick interaction between Smc5/6 and FANCM and show that Smc5/6 controls fork progression and chromosome disjunction in a FANCM-independent manner. Overall, our study demonstrates that the NSE1 RING domain plays vital roles in Smc5/6 complex stability and fork progression through pathways that are not evolutionary conserved.
Asunto(s)
Proteínas de Ciclo Celular , Replicación del ADN , Inestabilidad Genómica , Humanos , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Línea Celular , Proteínas Cromosómicas no Histona/metabolismo , Proteínas Cromosómicas no Histona/genética , ADN Helicasas , Mutación , Dominios Proteicos , Estabilidad Proteica , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismoRESUMEN
Diabetic neuropathy (DN) is a common complication of long-lasting type 1 and type 2 diabetes, with no curative treatment available. Here, we tested the effect of the incretin mimetic liraglutide in DN in mice with early-stage type 1 diabetes bred in a standard laboratory or enriched environment. With a single i.p. injection of streptozotocin 150 mg/kg, we induced murine diabetes. Liraglutide (0.4 mg/kg once daily, i.p. for ten days since the eighth post-streptozotocin day) failed to decrease the glycemia in the diabetic mice; however, it alleviated their antinociceptive behavior, as tested with formalin. The second phase of the formalin test had significantly lower results in liraglutide-treated mice reared in the enriched environment vs. liraglutide-treated mice under standard conditions [2.00 (0.00-11.00) vs. 29.00 (2.25-41.50) s, p = 0.016]. Liraglutide treatment, however, decreased the threshold of reactivity in the von Fray test. A significantly higher neopterin level was demonstrated in the diabetic control group compared to treatment-naïve controls and the liraglutide-treated diabetic mice (p < 0.001). The glutamine/glutamate ratio in both liraglutide-treated groups, either reared under standard conditions (p = 0.003) or an enriched environment (p = 0.002), was significantly higher than in the diabetic controls. This study demonstrates an early liraglutide effect on pain sensation in two streptozotocin-induced diabetes mouse models by reducing some inflammatory and oxidative stress parameters.
Asunto(s)
Diabetes Mellitus Experimental , Neuropatías Diabéticas , Ácido Glutámico , Glutamina , Liraglutida , Neopterin , Animales , Liraglutida/farmacología , Liraglutida/uso terapéutico , Ratones , Neuropatías Diabéticas/tratamiento farmacológico , Neuropatías Diabéticas/metabolismo , Neuropatías Diabéticas/etiología , Glutamina/metabolismo , Diabetes Mellitus Experimental/tratamiento farmacológico , Masculino , Ácido Glutámico/metabolismo , Neopterin/metabolismo , Estreptozocina , Analgésicos/farmacología , Analgésicos/uso terapéuticoRESUMEN
One of the pathological hallmarks of Alzheimer's disease (AD) associated with its progression that contributes to ß-amyloid (Aß) generation is oxidative stress (OS). Clinical data suggest that melatonin is a potent antioxidant that might be effective in the adjunctive therapy of this neurodegenerative disease. The present study aimed to explore the role of melatonin on behavioral changes and markers of OS in three rat models, namely, pinealectomy (pin) model of melatonin deficit, intracerebroventricular (icv)Aß1-42 model of AD, and combination of both pin and Aß1-42 model (pin+icvAß1-42). The chronic injection with vehicle/melatonin (50 mg/kg, i.p. for 40 days) started on the same day of sham/pin and icv vehicle/Aß1-42 infusion procedures. Anxiety in the open field and the elevated plus-maze test and cognitive responses in the object recognition test were tested between the 30th-35th day after the surgical procedures. Markers of OS in the frontal cortex (FC) and hippocampus were detected by the ELISA method. Melatonin treatment corrected the exacerbated anxiety response only in the pin+icvAß1-42 model while it alleviated the cognitive impairment in the three models. Pinealectomy disturbed the antioxidant system via enhanced SOD activity and decreased GSH levels both in the FC and hippocampus. The Aß1-42 model decreased the SOD activity in the FC and elevated the MDA level in the two brain structures. The pin+icvAß1-42 model impaired the antioxidant system and elevated lipid peroxidation. Melatonin supplementation restored only the elevated MDA level of icvAß1-42 and pin+icvAß1-42 model in the hippocampus. In conclusion, our study reveals that the pin+icvAß1-42 rat model triggers more pronounced anxiety and alterations in markers of OS that may be associated with melatonin deficit concomitant to icvAß1-42-induced AD pathology.
Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Péptidos beta-Amiloides/toxicidad , Disfunción Cognitiva/tratamiento farmacológico , Melatonina/farmacología , Trastornos de la Memoria/tratamiento farmacológico , Estrés Oxidativo/efectos de los fármacos , Pinealectomía/efectos adversos , Enfermedad de Alzheimer/etiología , Enfermedad de Alzheimer/patología , Animales , Antioxidantes/farmacología , Disfunción Cognitiva/etiología , Disfunción Cognitiva/patología , Modelos Animales de Enfermedad , Masculino , Aprendizaje por Laberinto , Trastornos de la Memoria/etiología , Trastornos de la Memoria/patología , Ratas , Ratas Sprague-DawleyRESUMEN
Betulinic acid (BA) is a natural pentacyclic triterpene with diverse biological activities. However, its low water solubility limits its pharmaceutical application. The conversion of pharmaceutically active molecules into ionic liquids (ILs) is a promising strategy to improve their physicochemical properties, stability, and/or potency. Here, we report the synthesis and characterization of 15 novel ILs containing a cation ethyl ester of a polar, non-polar, or charged amino acid [AAOEt] and an anion BA. Except for [ValOEt][BA], we observed preserved or up to 2-fold enhanced cytotoxicity toward hormone-dependent breast cancer cells MCF-7. The estimated IC50 (72 h) values within the series varied between 4.8 and 25.7 µM. We found that the most cytotoxic IL, [LysOEt][BA]2, reduced clonogenic efficiency to 20% compared to that of BA. In addition, we evaluated the effect of a 72 h treatment with BA or [LysOEt][BA]2, the most cytotoxic compound, on the thermodynamic behavior of MCF-7 cells. Based on our data, we suggest that the charged amino acid lysine included in the novel ILs provokes cytotoxicity by a mechanism involving alteration in membrane lipid organization, which could be accompanied by modulation of the visco-elastic properties of the cytoplasm.
RESUMEN
BACKGROUND: Common butterbur (Petasites hybridus L.) is a traditional medicinal plant with numerous therapeutic properties among which is its recently uncovered anti-tumor activity. The present study aims to examine the activity of a standardized Bulgarian Petasites hybridus L. root extract, containing the active ingredients petasins, on the human breast cancer cell line MDA-MB-231 and non-cancerous MCF-10A cells. Specifically, we examined cell death, oxidative stress, and nuclear factor kappa-B (NF-κB) signaling. METHODS: A standardized butterbur powdered extract containing a minimum of 15% petasins was used. A lipophilic extract was obtained from subterranean portion of the plant of Bulgarian populations of Petasites hybridus using liquid-liquid extraction after completely removing pyrrolizidine alkaloids. The induction of apoptosis and necrosis was analyzed by flow cytometry, and oxidative stress biomarkers and NF-κB were measured using enzyme-linked immunosorbent assay (ELISA). RESULTS: Petasites hybridus L. root extract triggered apoptosis in a cancer-specific fashion and induced a moderate oxidative stress characterized by diminished glutathione (GSH) levels and elevated malondialdehyde (MDA) levels in MDA-MB-231 72 h after treatment. NF-κB levels were higher in cancer cells after treatment with IC50 and IC75 doses, this suggested that the NF-κB pathway was activated in response to oxidative stress leading to the induction of apoptosis. MCF-10A cells were affected to a lesser extent by the Petasites hybridus extract, and the adaptive response of their antioxidant defense system halted oxidative stress. CONCLUSIONS: Overall, these results indicate that Petasites hybridus L. root extract selectively acts as a pro-oxidant in breast cancer cells and thus represents a potential therapeutic option for cancer treatment with fewer side effects.
Asunto(s)
Neoplasias de la Mama , Petasites , Humanos , Femenino , Especies Reactivas de Oxígeno , FN-kappa B , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/inducido químicamente , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Apoptosis , Línea CelularRESUMEN
Fluorescent micellar carriers with controlled release of a novel anticancer drug were developed to enable intracellular imaging and cancer treatment simultaneously. The nanosized fluorescent micellar systems were embedded with a novel anticancer drug via the self-assembling behavior of well-defined block copolymers based on amphiphilic poly(acrylic acid)-block-poly(n-butyl acrylate) (PAA-b-PnBA) copolymer obtained by Atom Transfer Radical Polymerization (ATRP) and hydrophobic anticancer benzimidazole-hydrazone drug (BzH). Through this method, well-defined nanosized fluorescent micelles were obtained consisting of a hydrophilic PAA shell and a hydrophobic PnBA core embedded with the BzH drug due to the hydrophobic interactions, thus reaching very high encapsulation efficiency. The size, morphology, and fluorescent properties of blank and drug-loaded micelles were investigated using dynamic light scattering (DLS), transmission electron microscopy (TEM), and fluorescent spectroscopy, respectively. Additionally, after 72 h of incubation, drug-loaded micelles released 3.25 µM of BzH, which was spectrophotometrically determined. The BzH drug-loaded micelles were found to exhibit enhanced antiproliferative and cytotoxic effects on MDA-MB-231 cells, with long-lasting effects on microtubule organization, with apoptotic alterations and preferential localization in the perinuclear space of cancer cells. In contrast, the antitumor effect of BzH alone or incorporated in micelles on non-cancerous cells MCF-10A was relatively weak.
RESUMEN
Replication of a damaged DNA template can threaten the integrity of the genome, requiring the use of various mechanisms to tolerate DNA lesions. The Smc5/6 complex, together with the Nse2/Mms21 SUMO ligase, plays essential roles in genome stability through undefined tasks at damaged replication forks. Various subunits within the Smc5/6 complex are substrates of Nse2, but we currently do not know the role of these modifications. Here we show that sumoylation of Smc5 is targeted to its coiled-coil domain, is upregulated by replication fork damage, and participates in bypass of DNA lesions. smc5-KR mutant cells display defects in formation of sister chromatid junctions and higher translesion synthesis. Also, we provide evidence indicating that Smc5 sumoylation modulates Mph1-dependent fork regression, acting synergistically with other pathways to promote chromosome disjunction. We propose that sumoylation of Smc5 enhances physical remodeling of damaged forks, avoiding the use of a more mutagenic tolerance pathway.
Asunto(s)
Proteínas de Ciclo Celular/genética , Replicación del ADN/genética , Proteínas de Saccharomyces cerevisiae/genética , Sumoilación/genética , Cromátides/genética , Cromosomas/genética , ADN/genética , Daño del ADN/genética , Reparación del ADN/genética , Saccharomyces cerevisiae/genéticaRESUMEN
The partial efficacy and high toxicity of the current anticancer chemotherapeutics as well as the development of multiple drug resistance are the major problems in cancer therapy. Therefore, there is an emergency need for the development of novel well-tolerated anticancer agents with different mode of action that could be successfully used in combination with other drugs as an adjuvant therapy. The inhibition of intracellular signaling pathways associated with cancer growth and invasiveness is a main therapeutic approach in cancer treatment. It is well known that lipid metabolism is involved in the regulation of key cellular processes such as proliferation, differentiation and apoptosis. Statins and alkylphospholipids are both relatively new synthetic agents with considerable anticancer properties that disturb lipid metabolism and subsequently modulate proliferation and cell survival signaling pathways, leading to apoptosis. Numerous in vitro and in vivo studies have shown promising results for the use of statins and alkylphospholipids as potential therapeutic agents in the treatment of various human malignancies. However, more investigations and clinical trials are needed to assess their optimal safe dose and maximal efficacy and better understand the molecular mechanisms underlying the antitumor effects of these drugs.
Asunto(s)
Antineoplásicos/farmacología , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Metabolismo de los Lípidos/efectos de los fármacos , Neoplasias/tratamiento farmacológico , Fosfolípidos/farmacología , Animales , Antineoplásicos/química , Proliferación Celular/efectos de los fármacos , Humanos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/química , Estructura Molecular , Neoplasias/patología , Fosfolípidos/químicaRESUMEN
Angiogenesis is one of the key processes during development, wound healing and tumor formation. Prerequisite for its existence is the presence of endogenous electrical fields (EFs) generated by active ion transport across polarized epithelia and endothelia, and appearance of the transcellular potentials. During angiogenesis cellular factor as endothelial growth factor (VEGF), synthesis of adhesive proteins and membrane metalloproteinases (MMPs) govern the angiogenic response to different external stimuli as biomaterials interactions and/or exogenous EF. Gelatin-based hydrogels with elasticities comparable to human tissues have shown to influence cell behavior as well as cell attachment, protein synthesis, VEGF and MMP's production after the application of EF. Gelatin-based matrices with 3 (G10_LNCO3), 5 (G10_LNCO5), and 8 (G10_LNCO8) fold excess of isocyanate groups per mol of amine groups present in gelatin were used. Human umbilical endothelial cells (HUVEC) (Lonza Basel, Switzerland) and highly invasive breast cancer MDA-MB-231 cells (ATCC®HTB-26TM) were used. For an estimation of the amount of VEGF released from cells a commercially available VEGF ELISA (Thermo Fisher Scientific, Germany) kit was used. Fibronectin (FN) enzyme immunoassay (EIA) was used to analyze the secreted amount of FN by cells seeded on the materials. Secreted MMPs were analyzed by zymography. Gelatin-based hydrogels attracted HUVEC adhesion and diminished the adhesion of MDA-MB-231 cells. The applied direct current (DC) EF induced an almost 5-fold increase in VEGF production by HUVEC seeded on gelatin-based hydrogels, while in contrast, the applied EF decreased the production of VEGF by cancer cells. FN synthesis was elevated in HUVEC cells seeded on gelatin-based materials in comparison to FN synthesis by cancer cells. HUVEC seeded on gelatin hydrogels showed an expression mainly of MMP-2. The application of EF increased the production of MMP-2 in HUVEC seeded on gelatin materials. In contrast, for MDA-MB-231 the production of MMPs on gelatin materials was lower compared to control materials. With the application of EF the levels of MMP-9 decreased but MMP-2 expression raised significantly for gelatin materials. Overall, the results showed that studied gelatin materials suppressed attachment of cancerous cells, as well as suppressed their angiogenic potential revealed by decreased VEGF and MMP production. Thus, this study approved gelatin-based hydrogels with proper elasticity characteristics and different degradation behavior as useful matrices for use in vascular tissue regeneration or in restriction of tumor growth after tumor resection.
Asunto(s)
Células Endoteliales/metabolismo , Hidrogeles/metabolismo , Estimulación Eléctrica , Células Endoteliales/citología , Fibronectinas/síntesis química , Gelatina , Humanos , Neovascularización Patológica , Factor A de Crecimiento Endotelial VascularRESUMEN
This is the first study on the surface modification of a hemocyanin from marine snail Rapana thomasiana (RtH) with series of imidazolium-based amino acid ionic liquids [emim][AA]. We monitored the induced by [emim][AA] conformational changes in RtH molecule and evaluated the effect of these ionic liquids (ILs) on the protein thermal stability. The cytotoxicity of all obtained RtH-[emim][AA] complexes was assessed toward breast cancer cells (MCF-7) and murine fibroblasts (3T3). As a whole, even small amounts of the tested ILs altered the secondary structure of RtH. The thermal denaturation of RtH in presence of [emim][AA] displayed multi-component transitions, which were shifted toward lower temperatures in comparison to those estimated for the native RtH. The profiles of the RtH-IL calorimetric curves show a clear dependence on the structure of the added salts. In addition, all RtH-[emim][AA] complexes exhibited an enhanced antiprofilerative activity of toward MCF-7 cells in comparison to that of the native RtH. The best results are observed for RtH-[emim][Leu], RtH-[emim][Trp] or RtH-[emim][Ile], which applied in concentration of 700 µg/mL inhibited the MCF-7 cell viability (for 24h) by 66, 63 and 53%, respectively. In addition, these IL-RtH complexes were less cytotoxic to 3T3 cells, i.e. they exhibited some cell specificity.