Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Antimicrob Agents Chemother ; 68(10): e0094124, 2024 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-39264188

RESUMEN

Metformin, a safe biguanide derivative with antiproliferative properties, has shown antiparasitic efficacy against the Echinococcus larval stage. Hence, we assessed the efficacy of a dose of 250 mg kg-1 day-1 in experimental models of advanced CE, at 6 and 12 months post-infection with oral and intraperitoneal administration, respectively. At this high dose, metformin reached intracystic concentrations between 0.7 and 1.7 mM and triggered Eg-TOR inhibition through AMPK activation by AMP-independent and -dependent mechanisms, which are dependent on drug dose. Cystic metformin uptake was controlled by increased expression of organic cation transporters in the presence of the drug. In both experimental models, metformin reduced the weight of parasite cysts, altered the ultrastructural integrity of their germinal layers, and reduced the intracystic availability of glucose, limiting the cellular carbon and energy charge and the proliferative capacity of metacestodes. This glucose depletion in the parasite was associated with a slight increase in cystic uptake of 2-deoxiglucose and the transcriptional induction of GLUT genes in metacestodes. In this context, drastic glycogen consumption led to increased lactate production and altered intermediary metabolism in treated metacestodes. Specifically, the fraction of reducing soluble sugars decreased twofold, and the levels of non-reducing soluble sugars, such as sucrose and trehalose, were modified in both cystic fluid and germinal cells. Taken together, our findings highlight the relevance of metformin as a promising candidate for CE treatment and warrant further research to improve the therapeutic conditions of this chronic zoonosis in humans.


Asunto(s)
Equinococosis , Metformina , Metformina/farmacología , Animales , Equinococosis/tratamiento farmacológico , Equinococosis/parasitología , Ratones , Carbono , Glucosa/metabolismo , Echinococcus granulosus/efectos de los fármacos , Echinococcus granulosus/metabolismo , Femenino , Larva/efectos de los fármacos
2.
Biometals ; 37(2): 405-419, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37987956

RESUMEN

In this study, the metabolic adjustments performed by maize (Zea mays L.) seminal roots exposed to 25 µM Cd2+ or 25 µM Cu2+ at pre-emergence are compared, focusing on the proteomic changes after metal exposure. Root width was increased, and root length was decreased after 72 h of metal treatment. Both metals induced H2O2 accumulation and lipid peroxidation in the root tip. These changes were accompanied by increases in lipoxygenase activity and 4-hydroxy-2-nonenal content. NMR spectroscopy revealed that the abundance of 38 water-soluble metabolites was significantly modified by Cd and Cu exposure; this set of metabolites comprised carboxylic acids, amino acids, carbohydrates, and unidentified phenolic compounds. Linoleic acid content significantly decreased in Cu-treated samples. The total amount of proteins detected in maize root apexes was 2,171. Gene ontology enrichment analysis of the differentially accumulated proteins was performed to detect pathways probably affected by metal additions. Both metals altered redox homeostasis, up-regulated oxylipins biosynthetic process, and shifted metabolism towards the oxidative pentose-phosphate in the root apexes. However, the methionine salvage pathway appears as a key metabolic module only under Cd stress. The integrative analysis carried out in this study suggests that most molecular features behind the reprogramming of maize root tips to cope with cadmium and copper toxicity are common, but some are not.


Asunto(s)
Cobre , Contaminantes del Suelo , Cobre/metabolismo , Cadmio/metabolismo , Zea mays/metabolismo , Meristema/metabolismo , Peróxido de Hidrógeno/metabolismo , Proteómica , Raíces de Plantas/metabolismo , Contaminantes del Suelo/metabolismo
3.
Biotechnol Bioeng ; 120(2): 409-425, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36225115

RESUMEN

Frataxin is a kinetic activator of the mitochondrial supercomplex for iron-sulfur cluster assembly. Low frataxin expression or a decrease in its functionality results in Friedreich's Ataxia (FRDA). With the aim of creating new molecular tools to study this metabolic pathway, and ultimately, to explore new therapeutic strategies, we have investigated the possibility of obtaining small proteins exhibiting a high affinity for frataxin. In this study, we applied the ribosome display approach, using human frataxin as the target. We focused on Affi_224, one of the proteins that we were able to select after five rounds of selection. We have studied the interaction between both proteins and discussed some applications of this specific molecular tutor, concerning the modulation of the supercomplex activity. Affi_224 and frataxin showed a KD value in the nanomolar range, as judged by surface plasmon resonance analysis. Most likely, it binds to the frataxin acidic ridge, as suggested by the analysis of chemical shift perturbations (nuclear magnetic resonance) and computational simulations. Affi_224 was able to increase Cys NFS1 desulfurase activation exerted by the FRDA frataxin variant G130V. Importantly, Affi_224 interacts with frataxin in a human cellular model. Our results suggest quaternary addition may be a new tool to modulate frataxin function in vivo. Nevertheless, more functional experiments under physiological conditions should be carried out to evaluate Affi_224 effectiveness in FRDA cell models.


Asunto(s)
Liasas de Carbono-Azufre , Proteínas de Unión a Hierro , Humanos , Proteínas de Unión a Hierro/genética , Proteínas de Unión a Hierro/química , Proteínas de Unión a Hierro/metabolismo , Liasas de Carbono-Azufre/química , Liasas de Carbono-Azufre/metabolismo , Frataxina
4.
J Struct Biol ; 212(1): 107595, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32736071

RESUMEN

Tailed bacteriophages are one of the most widespread biological entities on Earth. Their singular structures, such as spikes or fibers are of special interest given their potential use in a wide range of biotechnological applications. In particular, the long fibers present at the termini of the T4 phage tail have been studied in detail and are important for host recognition and adsorption. Although significant progress has been made in elucidating structural mechanisms of model phages, the high-resolution structural description of the vast population of marine phages is still unexplored. In this context, we present here the crystal structure of C24, a putative receptor-binding tip-like protein from Bizionia argentinensis JUB59, a psychrotolerant bacterium isolated from the marine surface waters of Potter Cove, Antarctica. The structure resembles the receptor-binding tip from the bacteriophage T4 long tail fiber yet showing marked differences in its domain organization, size, sequence identity and metal binding nature. We confirmed the viral origin of C24 by induction experiments using mitomycin C. Our results reveal the presence of a novel uncharacterized prophage in the genome of B. argentinensis JUB59, whose morphology is compatible with the order Caudovirales and that carries the nucleotide sequence of C24 in its genome. This work provides valuable information to expand our current knowledge on the viral machinery prevalent in the oceans.


Asunto(s)
Bacteriófagos/genética , Flavobacteriaceae/virología , Regiones Antárticas , Genoma Bacteriano/genética , Genoma Viral/genética , Unión Proteica/genética
5.
Arch Biochem Biophys ; 691: 108491, 2020 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-32707090

RESUMEN

The relationships between conformational dynamics, stability and protein function are not obvious. Frataxin (FXN) is an essential protein that forms part of a supercomplex dedicated to the iron-sulfur (Fe-S) cluster assembly within the mitochondrial matrix. In humans, the loss of FXN expression or a decrease in its functionality results in Friedreich's Ataxia, a cardio-neurodegenerative disease. Recently, the way in which FXN interacts with the rest of the subunits of the supercomplex was uncovered. This opens a window to explore relationships between structural dynamics and function. In this study, we prepared a set of FXN variants spanning a broad range of conformational stabilities. Variants S160I, S160M and A204R were more stable than the wild-type and showed similar biological activity. Additionally, we prepared SILCAR, a variant that combines S160I, L203C and A204R mutations. SILCAR was 2.4 kcal mol-1 more stable and equally active. Some of the variants were significantly more resistant to proteolysis than the wild-type FXN. SILCAR showed the highest resistance, suggesting a more rigid structure. It was corroborated by means of molecular dynamics simulations. Relaxation dispersion NMR experiments comparing SILCAR and wild-type variants suggested similar internal motions in the microsecond to millisecond timescale. Instead, variant S157I showed higher denaturation resistance but a significant lower function, similarly to that observed for the FRDA variant N146K. We concluded that the contribution of particular side chains to the conformational stability of FXN might be highly subordinated to their impact on both the protein function and the stability of the functional supercomplex.


Asunto(s)
Proteínas de Unión a Hierro/química , Liasas de Carbono-Azufre/química , Biología Computacional , Humanos , Proteínas de Unión a Hierro/genética , Simulación de Dinámica Molecular , Mutación Puntual , Conformación Proteica , Ingeniería de Proteínas , Estabilidad Proteica , Proteolisis , Frataxina
6.
Subcell Biochem ; 93: 393-438, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31939159

RESUMEN

Mammalian frataxin is a small mitochondrial protein involved in iron sulfur cluster assembly. Frataxin deficiency causes the neurodegenerative disease Friedreich's Ataxia. Valuable knowledge has been gained on the structural dynamics of frataxin, metal-ion-protein interactions, as well as on the effect of mutations on protein conformation, stability and internal motions. Additionally, laborious studies concerning the enzymatic reactions involved have allowed for understanding the capability of frataxin to modulate Fe-S cluster assembly function. Remarkably, frataxin biological function depends on its interaction with some proteins to form a supercomplex, among them NFS1 desulfurase and ISCU, the scaffolding protein. By combining multiple experimental tools including high resolution techniques like NMR and X-ray, but also SAXS, crosslinking and mass-spectrometry, it was possible to build a reliable model of the structure of the desulfurase supercomplex NFS1/ACP-ISD11/ISCU/frataxin. In this chapter, we explore these issues showing how the scientific view concerning frataxin structure-function relationships has evolved over the last years.


Asunto(s)
Proteínas de Unión a Hierro/química , Proteínas de Unión a Hierro/metabolismo , Ataxia de Friedreich/genética , Humanos , Proteínas de Unión a Hierro/genética , Dispersión del Ángulo Pequeño , Relación Estructura-Actividad , Difracción de Rayos X , Frataxina
7.
Biochemistry ; 58(26): 2883-2892, 2019 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-31243994

RESUMEN

Interferon response suppression by the respiratory syncytial virus relies on two unique nonstructural proteins, NS1 and NS2, that interact with cellular partners through high-order complexes. We hypothesized that two conserved proline residues, P81 and P67, participate in the conformational change leading to oligomerization. We found that the molecular dynamics of NS1 show a highly mobile C-terminal helix, which becomes rigid upon in silico replacement of P81. A soluble oligomerization pathway into regular spherical structures at low ionic strengths competes with an aggregation pathway at high ionic strengths with an increase in temperature. P81A requires higher temperatures to oligomerize and has a small positive effect on aggregation, while P67A is largely prone to aggregation. Chemical denaturation shows a first transition, involving a high fluorescence and ellipticity change corresponding to both a conformational change and substantial effects on the environment of its single tryptophan, that is strongly destabilized by P67A but stabilized by P81A. The subsequent global cooperative unfolding corresponding to the main ß-sheet core is not affected by the proline mutations. Thus, a clear link exists between the effect of P81 and P67 on the stability of the first transition and oligomerization/aggregation. Interestingly, both P67 and P81 are located far away in space and sequence from the C-terminal helix, indicating a marked global structural dynamics. This provides a mechanism for modulating the oligomerization of NS1 by unfolding of a weak helix that exposes hydrophobic surfaces, linked to the participation of NS1 in multiprotein complexes.


Asunto(s)
Interferones/inmunología , Prolina/química , Infecciones por Virus Sincitial Respiratorio/virología , Virus Sincitial Respiratorio Humano/química , Proteínas no Estructurales Virales/química , Humanos , Isomerismo , Modelos Moleculares , Prolina/inmunología , Conformación Proteica , Conformación Proteica en Hélice alfa , Multimerización de Proteína , Desplegamiento Proteico , Infecciones por Virus Sincitial Respiratorio/inmunología , Virus Sincitial Respiratorio Humano/inmunología , Proteínas no Estructurales Virales/inmunología
8.
J Struct Biol ; 197(3): 201-209, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-27810564

RESUMEN

The Pfam PF04536 TPM_phosphatase family is a broadly conserved family of domains found across prokaryotes, plants and invertebrates. Despite having a similar protein fold, members of this family have been implicated in diverse cellular processes and found in varied subcellular localizations. Very recently, the biochemical characterization of two evolutionary divergent TPM domains has shown that they are able to hydrolyze phosphate groups from different substrates. However, there are still incorrect functional annotations and uncertain relationships between the structure and function of this family of domains. BA41 is an uncharacterized single-pass transmembrane protein from the Antarctic psychrotolerant bacterium Bizionia argentinensis with a predicted compact extracytoplasmic TPM domain and a C-terminal cytoplasmic low complexity region. To shed light on the structural properties that enable TPM domains to adopt divergent roles, we here accomplish a comprehensive structural and functional characterization of the central TPM domain of BA41 (BA41-TPM). Contrary to its predicted function as a beta-propeller methanol dehydrogenase, light scattering and crystallographic studies showed that BA41-TPM behaves as a globular monomeric protein and adopts a conserved Rossmann fold, typically observed in other TPM domain structures. Although the crystal structure reveals the conservation of residues involved in substrate binding, no putative catalytic or intramolecular metal ions were detected. Most important, however, extensive biochemical studies demonstrated that BA41-TPM has hydrolase activity against ADP, ATP, and other di- and triphosphate nucleotides and shares properties of cold-adapted enzymes. The role of BA41 in extracellular ATP-mediated signaling pathways and its occurrence in environmental and pathogenic microorganisms is discussed.


Asunto(s)
Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/metabolismo , Apirasa/química , Apirasa/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Frío , Cristalografía por Rayos X , Estructura Terciaria de Proteína
9.
Arch Biochem Biophys ; 636: 123-137, 2017 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-29097312

RESUMEN

Human frataxin (FXN) is a highly conserved mitochondrial protein involved in iron homeostasis and activation of the iron-sulfur cluster assembly. FXN deficiency causes the neurodegenerative disease Friedreich's Ataxia. Here, we investigated the effect of alterations in loop-1, a stretch presumably essential for FXN function, on the conformational stability and dynamics of the native state. We generated four loop-1 variants, carrying substitutions, insertions and deletions. All of them were stable and well-folded proteins. Fast local motions (ps-ns) and slower long-range conformational dynamics (µs-ms) were altered in some mutants as judged by NMR. Particularly, loop-1 modifications impact on the dynamics of a distant region that includes residues from the ß-sheet, helix α1 and the C-terminal. Remarkably, all the mutants retain the ability to activate cysteine desulfurase, even when two of them exhibit a strong decrease in iron binding, revealing a differential sensitivity of these functional features to loop-1 perturbation. Consequently, we found that even for a small and relatively rigid protein, engineering a loop segment enables to alter conformational dynamics through a long-range effect, preserving the native-state structure and important aspects of function.


Asunto(s)
Proteínas de Unión a Hierro/química , Simulación de Dinámica Molecular , Humanos , Proteínas de Unión a Hierro/genética , Proteínas de Unión a Hierro/metabolismo , Mutación , Estructura Secundaria de Proteína , Relación Estructura-Actividad , Frataxina
10.
Proteins ; 82(11): 3062-78, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25116514

RESUMEN

The structure of the BA42 protein belonging to the Antarctic flavobacterium Bizionia argentinensis was determined by nuclear magnetic resonance and X-ray crystallography. This is the first structure of a member of the PF04536 family comprised of a stand-alone TPM domain. The structure reveals a new topological variant of the four ß-strands constituting the central ß-sheet of the αßα architecture and a double metal binding site stabilizing a pair of crossing loops, not observed in previous structures of proteins belonging to this family. BA42 shows differences in structure and dynamics in the presence or absence of bound metals. The affinity for divalent metal ions is close to that observed in proteins that modulate their activity as a function of metal concentration, anticipating a possible role for BA42.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Flavobacteriaceae/química , Secuencia de Aminoácidos , Animales , Regiones Antárticas , Proteínas Bacterianas/genética , Sitios de Unión , Calcio/metabolismo , Dicroismo Circular , Cristalografía por Rayos X , Metales/química , Metales/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Resonancia Magnética Nuclear Biomolecular , Conformación Proteica , Estabilidad Proteica , Estructura Terciaria de Proteína , Homología de Secuencia de Aminoácido
11.
Biomol NMR Assign ; 17(2): 229-233, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37542635

RESUMEN

The InterPro family IPR007621 TPM_phosphatase is a widely conserved family of protein domains found in prokaryotes, plants and invertebrates. Despite similar predicted protein folding, members of this family are involved in different cellular processes. In recent years, the structural and biochemical characterization of evolutionarily divergent TPM domains has shown their ability to hydrolyze phosphate groups of different substrates. However, there are still inaccurate functional annotations and uncertain relationships between the structure and function of this domain family. We here report the 1H, 13C, and 15N backbone and sidechain resonances of the TPM domain of a predicted TPM domain-containing protein of the thermophilic bacterium Rhodothermus marinus. These data will lay the groundwork for future NMR-based investigations, contributing to a thorough comprehension of the intricate aspects governing the interplay between structure and function of TPM domains. Additionally, they will unlock opportunities to explore dynamic structural changes, providing valuable insights into the molecular mechanisms underlying the evolutionary adaptations to extreme environmental conditions within this protein family.


Asunto(s)
Rhodothermus , Resonancia Magnética Nuclear Biomolecular , Espectroscopía de Resonancia Magnética , Dominios Proteicos
12.
PLoS One ; 18(10): e0292949, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37831681

RESUMEN

Aging is characterized by a gradual decline in physiological integrity, which impairs functionality and increases susceptibility to mortality. Dietary restriction, mimicking nutrient scarcity without causing malnutrition, is an intervention known to decelerate the aging process. While various hypotheses have been proposed to elucidate how dietary restriction influences aging, the underlying mechanisms remain incompletely understood. This project aimed to investigate the role of the primary regulator of the general amino acid control (GAAC) pathway, the transcription factor Gcn4, in the aging process of S. cerevisiae cells. Under conditions of amino acid deprivation, which activate Gcn4, the deletion of GCN4 led to a diverse array of physiological changes in the cells. Notably, the absence of Gcn4 resulted in heightened mitochondrial activity, likely contributing to the observed increase in reactive oxygen species (ROS) accumulation. Furthermore, these mutant gcn4Δ cells exhibited reduced ethanol production despite maintaining similar glucose consumption rates, suggesting a pivotal role for Gcn4 in regulating the Crabtree effect. Additionally, there was a marked reduction in trehalose, the storage carbohydrate, within the mutant cells compared to the wild-type strain. The intracellular content of free amino acids also exhibited disparities between the wild-type and GCN4-deficient strains. Taken together, our findings indicate that the absence of GCN4 disrupts cellular homeostasis, triggering significant alterations in interconnected intracellular metabolic pathways. These disruptions have far-reaching metabolic consequences that ultimately culminate in a shortened lifespan.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Longevidad , Biosíntesis de Proteínas , Aminoácidos/metabolismo , Regulación Fúngica de la Expresión Génica , Proteínas Fúngicas/genética
13.
ACS Chem Biol ; 18(7): 1534-1547, 2023 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-37410592

RESUMEN

The mitochondrial cysteine desulfurase NFS1 is an essential PLP-dependent enzyme involved in iron-sulfur cluster assembly. The enzyme catalyzes the desulfurization of the l-Cys substrate, producing a persulfide and l-Ala as products. In this study, we set the measurement of the product l-Ala by NMR in vitro by means of 1H NMR spectra acquisition. This methodology provided us with the possibility of monitoring the reaction in both fixed-time and real-time experiments, with high sensitivity and accuracy. By studying I452A, W454A, Q456A, and H457A NFS1 variants, we found that the C-terminal stretch (CTS) of the enzyme is critical for function. Specifically, mutation of the extremely conserved position W454 resulted in highly decreased activity. Additionally, we worked on two singular variants: "GGG" and C158A. In the former, the catalytic Cys-loop was altered by including two Gly residues to increase the flexibility of this loop. This variant had significantly impaired activity, indicating that the Cys-loop motions are fine-tuned in the wild-type enzyme. In turn, for C158A, we found an unanticipated increase in l-Cys desulfurase activity. Furthermore, we carried out molecular dynamics simulations of the supercomplex dedicated to iron-sulfur cluster biosynthesis, which includes NFS1, ACP, ISD11, ISCU2, and FXN subunits. We identified CTS as a key element that established interactions with ISCU2 and FXN concurrently; we found specific interactions that are established when FXN is present, reinforcing the idea that FXN not only forms part of the iron-sulfur cluster assembly site but also modulates the internal motions of ISCU2.


Asunto(s)
Proteínas Hierro-Azufre , Humanos , Proteínas Hierro-Azufre/química , Liasas de Carbono-Azufre/metabolismo , Azufre/química , Hierro/química , Proteínas de Unión a Hierro/química , Proteínas de Unión a Hierro/genética
14.
J Mol Biol ; 435(16): 168153, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37210029

RESUMEN

Viral factories of liquid-like nature serve as sites for transcription and replication in most viruses. The respiratory syncytial virus factories include replication proteins, brought together by the phosphoprotein (P) RNA polymerase cofactor, present across non-segmented negative stranded RNA viruses. Homotypic liquid-liquid phase separation of RSV-P is governed by an α-helical molten globule domain, and strongly self-downmodulated by adjacent sequences. Condensation of P with the nucleoprotein N is stoichiometrically tuned, defining aggregate-droplet and droplet-dissolution boundaries. Time course analysis show small N-P nuclei gradually coalescing into large granules in transfected cells. This behavior is recapitulated in infection, with small puncta evolving to large viral factories, strongly suggesting that P-N nucleation-condensation sequentially drives viral factories. Thus, the tendency of P to undergo phase separation is moderate and latent in the full-length protein but unleashed in the presence of N or when neighboring disordered sequences are deleted. This, together with its capacity to rescue nucleoprotein-RNA aggregates suggests a role as a "solvent-protein".


Asunto(s)
Nucleoproteínas , Virus Sincitial Respiratorio Humano , Compartimentos de Replicación Viral , Proteínas Estructurales Virales , ARN Polimerasas Dirigidas por ADN/metabolismo , Nucleoproteínas/metabolismo , Virus Sincitial Respiratorio Humano/metabolismo , Virus Sincitial Respiratorio Humano/fisiología , Compartimentos de Replicación Viral/metabolismo , Replicación Viral , Proteínas Estructurales Virales/metabolismo , Humanos
15.
Biochemistry ; 51(11): 2169-71, 2012 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-22385109

RESUMEN

2-Cys peroxiredoxins (2-Cys Prxs) are ubiquitous enzymes that have been implicated in peroxide-mediated signaling of markedly different processes, such as cancer and photosynthesis. A highly conserved C-terminal extension of eukaryotic homologues modulates both the overoxidation of cysteines and the formation of oligomers. Here, we reveal that the plant counterpart regulates the self-polymerization of 2-Cys Prx triggered by ATP and Mg(2+). This feature is of particular importance under oxidative stress because the interaction of ATP with 2-Cys Prx rapidly integrates nonredox chemistry of signaling pathways into a network hub governed by multiple redox transformations at cysteine residues.


Asunto(s)
Adenosina Trifosfato/metabolismo , Cloroplastos/química , Cisteína/genética , Peroxirredoxinas/química , Proteínas de Plantas/química , Adenosina Trifosfato/química , Sitios de Unión , Cisteína/metabolismo , Oxidación-Reducción , Estrés Oxidativo , Peroxirredoxinas/metabolismo , Proteínas de Plantas/metabolismo , Transducción de Señal
16.
J Biol Chem ; 286(26): 23441-51, 2011 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-21525006

RESUMEN

2-Cys peroxiredoxins (2-Cys Prxs) are ubiquitous peroxidases with important roles in cellular antioxidant defense and hydrogen peroxide-mediated signaling. Post-translational modifications of conserved cysteines cause the transition from low to high molecular weight oligomers, triggering the functional change from peroxidase to molecular chaperone. However, it remains unclear how non-covalent interactions of 2-Cys Prx with metabolites modulate the quaternary structure. Here, we disclose that ATP and Mg(2+) (ATP/Mg) promote the self-polymerization of chloroplast 2-Cys Prx (polypeptide 23.5 kDa) into soluble higher order assemblies (>2 MDa) that proceed to insoluble aggregates beyond 5 mM ATP. Remarkably, the withdrawal of ATP or Mg(2+) brings soluble oligomers and insoluble aggregates back to the native conformation without compromising the associated functions. As confirmed by transmission electron microscopy, ATP/Mg drive the toroid-like decamers (diameter 13 nm) to the formation of large sphere-like particles (diameter ∼30 nm). Circular dichroism studies on ATP-labeled 2-Cys Prx reveal that ATP/Mg enhance the proportion of ß-sheets with the concurrent decrease in the content of α-helices. In line with this observation, the formation of insoluble aggregates is strongly prevented by 2,2,2-trifluoroethanol, a cosolvent employed to induce α-helical conformations. We further find that the response of self-polymerization to ATP/Mg departs abruptly from that of the associated peroxidase and chaperone activities when two highly conserved residues, Arg(129) and Arg(152), are mutated. Collectively, our data uncover that non-covalent interactions of ATP/Mg with 2-Cys Prx modulate dynamically the quaternary structure, thereby coupling the non-redox chemistry of cell energy with redox transformations at cysteine residues.


Asunto(s)
Adenosina Trifosfato/química , Cloroplastos/enzimología , Magnesio/química , Peroxirredoxinas/química , Proteínas de Plantas/química , Multimerización de Proteína , Adenosina Trifosfato/genética , Adenosina Trifosfato/metabolismo , Cloroplastos/genética , Dicroismo Circular , Magnesio/metabolismo , Peroxirredoxinas/genética , Peroxirredoxinas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estructura Cuaternaria de Proteína , Estructura Secundaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
17.
Front Microbiol ; 13: 987756, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36118216

RESUMEN

The MerR family is a group of transcriptional activators with conserved N-terminal helix-turn-helix DNA binding domains and variable C-terminal effector binding regions. In most MerR proteins the effector binding domain (EBD) contains a cysteine center suited for metal binding and mediates the response to environmental stimuli, such as oxidative stress, heavy metals or antibiotics. We here present a novel transcriptional regulator classified in the MerR superfamily that lacks an EBD domain and has neither conserved metal binding sites nor cysteine residues. This regulator from the psychrotolerant bacteria Bizionia argentinensis JUB59 is involved in iron homeostasis and was named MliR (MerR-like iron responsive Regulator). In silico analysis revealed that homologs of the MliR protein are widely distributed among different bacterial species. Deletion of the mliR gene led to decreased cell growth, increased cell adhesion and filamentation. Genome-wide transcriptomic analysis showed that genes associated with iron homeostasis were downregulated in mliR-deletion mutant. Through nuclear magnetic resonance-based metabolomics, ICP-MS, fluorescence microscopy and biochemical analysis we evaluated metabolic and phenotypic changes associated with mliR deletion. This work provides the first evidence of a MerR-family regulator involved in iron homeostasis and contributes to expanding our current knowledge on relevant metabolic pathways and cell remodeling mechanisms underlying in the adaptive response to iron availability in bacteria.

18.
Dalton Trans ; 51(46): 17587-17601, 2022 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-36345601

RESUMEN

In this work, we have designed and generated a Fe(III)-binding protein with thiol oxidoreductase activity. The consensus iron-binding motif EExxED from the frataxin protein family was grafted on a model peptide and on the surface of thioredoxin (TRX) from E. coli. We investigated metal interactions with a family of peptides containing the motif EExxED or altered versions obtained by removing negatively charged residues: EExxEx, xExxED, and xExxEx. The interaction of the metal ion with the peptides was studied by circular dichroism, and our results indicated that the motif EExxED retained its functional properties and also that this motif is able to bind Ga(III) and Al(III). The interaction of the grafted TRX with iron(III) was investigated by NMR, showing that the motif was functional in the context of the protein structure, and also the binding of two equivalents of Fe(III) per TRX molecule was stable in a non-chelating neutral buffer. Protein conformation, stability, and enzymatic activity were studied by applying experimental and computational approaches. Interestingly, the thiol oxidoreductase activity was modulated by interaction with Ga(III), a Fe(III) mimetic ion. Furthermore, the design of functional proteins with both functions, oxidoreductase activity and metal-ion binding ability, should consider the reorganisation of the electrostatic network. Similarly, studying the crosstalk and electrostatic balance among different metal-binding sites may be critical.


Asunto(s)
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/química , Hierro/química , Proteínas de Escherichia coli/química , Sitios de Unión , Tiorredoxinas/química , Tiorredoxinas/metabolismo , Compuestos de Sulfhidrilo/química , Oxidorreductasas/metabolismo
19.
Front Mol Biosci ; 9: 1067296, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36685284

RESUMEN

Introduction: The metabolic routes altered in Alzheimer's disease (AD) brain are poorly understood. As the metabolic pathways are evolutionarily conserved, the metabolic profiles carried out in animal models of AD could be directly translated into human studies. Methods: We performed untargeted Nuclear Magnetic Resonance metabolomics in hippocampus of McGill-R-Thy1-APP transgenic (Tg) rats, a model of AD-like cerebral amyloidosis and the translational potential of these findings was assessed by targeted Gas Chromatography-Electron Impact-Mass Spectrometry in plasma of participants in the German longitudinal cohort AgeCoDe. Results: In rat hippocampus 26 metabolites were identified. Of these 26 metabolites, nine showed differences between rat genotypes that were nominally significant. Two of them presented partial least square-discriminant analysis (PLS-DA) loadings with the larger absolute weights and the highest Variable Importance in Projection (VIP) scores and were specifically assigned to nicotinamide adenine dinucleotide (NAD) and nicotinamide (Nam). NAD levels were significantly decreased in Tg rat brains as compared to controls. In agreement with these results, plasma of AD patients showed significantly reduced levels of Nam in respect to cognitively normal participants. In addition, high plasma levels of Nam showed a 27% risk reduction of progressing to AD dementia within the following 2.5 years, this hazard ratio is lost afterwards. Discussion: To our knowledge, this is the first report showing that a decrease of Nam plasma levels is observed couple of years before conversion to AD, thereby suggesting its potential use as biomarker for AD progression.

20.
Plant Physiol Biochem ; 155: 560-569, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32846391

RESUMEN

Cadmium (Cd) is a metal known to generate oxidative stress in plants and may be particularly harmful during germination. Herein, the growth and metabolic rearrangements of maize embryo axes subjected during the imbibition stage to Cd ions and other two well-known oxidative stressors, methyl viologen (MV) and hydrogen peroxide (H2O2), were assessed for 48 h. Similar decreases in embryo's length were detected for all stressed axes up to 48 h of imbibition. By this time, treated embryos revealed greater accumulation of reactive oxygen species (ROS) and increased levels of carbonylated and ubiquitinated proteins. The proteolytic activities were intensely enhanced in the treated axes, particularly at 48 h of imbibition, and several antioxidant enzymes were induced in most cases. NMR spectroscopy followed by principal component analysis (PCA) and hierarchical cluster analysis (HCA) showed that a large proportion of polar metabolites, mainly amino acids and organic acids, were decreased under stress conditions, while carbohydrates were increased at 48 h of imbibition, with significant increases in glucose and raffinose for treated embryos relatively to controls. We demonstrated that maize embryo axes were capable of shifting their metabolism to improve their antioxidant defense system, at the expense of their growth. Under these adverse conditions, proteolysis seems to play a key role by providing free amino acids needed for the de novo synthesis of defense-related proteins.


Asunto(s)
Estrés Oxidativo , Agua/fisiología , Zea mays/metabolismo , Antioxidantes , Germinación , Peróxido de Hidrógeno , Oxidación-Reducción , Especies Reactivas de Oxígeno/metabolismo , Semillas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA