Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Cell ; 173(3): 735-748.e15, 2018 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-29677516

RESUMEN

Teneurins (TENs) are cell-surface adhesion proteins with critical roles in tissue development and axon guidance. Here, we report the 3.1-Å cryoelectron microscopy structure of the human TEN2 extracellular region (ECR), revealing a striking similarity to bacterial Tc-toxins. The ECR includes a large ß barrel that partially encapsulates a C-terminal domain, which emerges to the solvent through an opening in the mid-barrel region. An immunoglobulin (Ig)-like domain seals the bottom of the barrel while a ß propeller is attached in a perpendicular orientation. We further show that an alternatively spliced region within the ß propeller acts as a switch to regulate trans-cellular adhesion of TEN2 to latrophilin (LPHN), a transmembrane receptor known to mediate critical functions in the central nervous system. One splice variant activates trans-cellular signaling in a LPHN-dependent manner, whereas the other induces inhibitory postsynaptic differentiation. These results highlight the unusual structural organization of TENs giving rise to their multifarious functions.


Asunto(s)
Toxinas Bacterianas/química , Proteínas de la Membrana/química , Proteínas del Tejido Nervioso/química , Sinapsis/metabolismo , Empalme Alternativo , Secuencias de Aminoácidos , Animales , Axones , Adhesión Celular , Línea Celular , AMP Cíclico/metabolismo , Femenino , Células HEK293 , Hormonas/química , Humanos , Insectos , Proteínas de la Membrana/metabolismo , Ratones , Conformación Molecular , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Neuropéptidos/química , Unión Proteica , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Péptidos/química , Transducción de Señal
2.
EMBO Rep ; 24(6): e56728, 2023 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-37165720

RESUMEN

Teneurins are conserved cell adhesion molecules essential for embryogenesis and neural development in animals. Key to teneurin function is the ability of its extracellular region to form homophilic interactions in cis and/or in trans. However, our molecular understanding of teneurin homophilic interaction remains largely incomplete. Here, we showed that an extracellular fragment of Teneurin-m, the major teneurin homolog in flies, behaves as a homodimer in solution. The structure of Teneurin-m revealed that the transthyretin-related domain from one protomer and the ß-propeller domain from the other mediates Teneurin-m self-association, which is abolished by point mutation of conserved residues. Strikingly, this architecture generates an asymmetric oligomerization interface that enables expansion of Teneurin-m into long zipper arrays reminiscent of protocadherins. An alternatively spliced site that exists only in vertebrates and regulates homophilic interaction in mammalian teneurins overlaps with the fly Teneurin-m self-association interface. Our work provides a molecular understanding of teneurin homophilic interaction and sheds light on its role in teneurin function throughout evolution.


Asunto(s)
Dípteros , Animales , Dípteros/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Mamíferos/metabolismo
3.
Proc Natl Acad Sci U S A ; 114(38): 10095-10100, 2017 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-28874577

RESUMEN

Adhesion G protein-coupled receptors (aGPCRs) play critical roles in diverse biological processes, including neurodevelopment and cancer progression. aGPCRs are characterized by large and diverse extracellular regions (ECRs) that are autoproteolytically cleaved from their membrane-embedded signaling domains. Although ECRs regulate receptor function, it is not clear whether ECRs play a direct regulatory role in G-protein signaling or simply serve as a protective cap for the activating "Stachel" sequence. Here, we present a mechanistic analysis of ECR-mediated regulation of GPR56/ADGRG1, an aGPCR with two domains [pentraxin and laminin/neurexin/sex hormonebinding globulin-like (PLL) and G protein-coupled receptor autoproteolysis-inducing (GAIN)] in its ECR. We generated a panel of high-affinity monobodies directed to each of these domains, from which we identified activators and inhibitors of GPR56-mediated signaling. Surprisingly, these synthetic ligands modulated signaling of a GPR56 mutant defective in autoproteolysis and hence, in Stachel peptide exposure. These results provide compelling support for a ligand-induced and ECR-mediated mechanism that regulates aGPCR signaling in a transient and reversible manner, which occurs in addition to the Stachel-mediated activation.


Asunto(s)
Péptidos/química , Proteolisis , Receptores Acoplados a Proteínas G/química , Transducción de Señal , Animales , Línea Celular , Humanos , Péptidos/genética , Péptidos/metabolismo , Dominios Proteicos , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Spodoptera
4.
Pharmacol Rev ; 67(2): 338-67, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25713288

RESUMEN

The Adhesion family forms a large branch of the pharmacologically important superfamily of G protein-coupled receptors (GPCRs). As Adhesion GPCRs increasingly receive attention from a wide spectrum of biomedical fields, the Adhesion GPCR Consortium, together with the International Union of Basic and Clinical Pharmacology Committee on Receptor Nomenclature and Drug Classification, proposes a unified nomenclature for Adhesion GPCRs. The new names have ADGR as common dominator followed by a letter and a number to denote each subfamily and subtype, respectively. The new names, with old and alternative names within parentheses, are: ADGRA1 (GPR123), ADGRA2 (GPR124), ADGRA3 (GPR125), ADGRB1 (BAI1), ADGRB2 (BAI2), ADGRB3 (BAI3), ADGRC1 (CELSR1), ADGRC2 (CELSR2), ADGRC3 (CELSR3), ADGRD1 (GPR133), ADGRD2 (GPR144), ADGRE1 (EMR1, F4/80), ADGRE2 (EMR2), ADGRE3 (EMR3), ADGRE4 (EMR4), ADGRE5 (CD97), ADGRF1 (GPR110), ADGRF2 (GPR111), ADGRF3 (GPR113), ADGRF4 (GPR115), ADGRF5 (GPR116, Ig-Hepta), ADGRG1 (GPR56), ADGRG2 (GPR64, HE6), ADGRG3 (GPR97), ADGRG4 (GPR112), ADGRG5 (GPR114), ADGRG6 (GPR126), ADGRG7 (GPR128), ADGRL1 (latrophilin-1, CIRL-1, CL1), ADGRL2 (latrophilin-2, CIRL-2, CL2), ADGRL3 (latrophilin-3, CIRL-3, CL3), ADGRL4 (ELTD1, ETL), and ADGRV1 (VLGR1, GPR98). This review covers all major biologic aspects of Adhesion GPCRs, including evolutionary origins, interaction partners, signaling, expression, physiologic functions, and therapeutic potential.


Asunto(s)
Moléculas de Adhesión Celular/metabolismo , AMP Cíclico/fisiología , Modelos Moleculares , Receptores Acoplados a Proteínas G/metabolismo , Sistemas de Mensajero Secundario , Animales , Adhesión Celular , Moléculas de Adhesión Celular/química , Membrana Celular/enzimología , Membrana Celular/metabolismo , Movimiento Celular , Humanos , Agencias Internacionales , Ligandos , Farmacología/tendencias , Farmacología Clínica/tendencias , Isoformas de Proteínas/agonistas , Isoformas de Proteínas/química , Isoformas de Proteínas/clasificación , Isoformas de Proteínas/metabolismo , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/clasificación , Transducción de Señal , Sociedades Científicas , Terminología como Asunto
5.
EMBO J ; 31(6): 1364-78, 2012 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-22333914

RESUMEN

The G protein-coupled receptor (GPCR) Proteolysis Site (GPS) of cell-adhesion GPCRs and polycystic kidney disease (PKD) proteins constitutes a highly conserved autoproteolysis sequence, but its catalytic mechanism remains unknown. Here, we show that unexpectedly the ∼40-residue GPS motif represents an integral part of a much larger ∼320-residue domain that we termed GPCR-Autoproteolysis INducing (GAIN) domain. Crystal structures of GAIN domains from two distantly related cell-adhesion GPCRs revealed a conserved novel fold in which the GPS motif forms five ß-strands that are tightly integrated into the overall GAIN domain. The GAIN domain is evolutionarily conserved from tetrahymena to mammals, is the only extracellular domain shared by all human cell-adhesion GPCRs and PKD proteins, and is the locus of multiple human disease mutations. Functionally, the GAIN domain is both necessary and sufficient for autoproteolysis, suggesting an autoproteolytic mechanism whereby the overall GAIN domain fine-tunes the chemical environment in the GPS to catalyse peptide bond hydrolysis. Thus, the GAIN domain embodies a unique, evolutionarily ancient and widespread autoproteolytic fold whose function is likely relevant for GPCR signalling and for multiple human diseases.


Asunto(s)
Secuencia Conservada , Evolución Molecular , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/genética , Secuencia de Aminoácidos , Animales , Adhesión Celular/genética , Células Cultivadas , Células HEK293 , Humanos , Hidrólisis , Ratones , Modelos Moleculares , Datos de Secuencia Molecular , Mutación/genética , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Enfermedades Renales Poliquísticas/genética , Enfermedades Renales Poliquísticas/metabolismo , Pliegue de Proteína , Estructura Terciaria de Proteína , Proteolisis , Ratas , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Péptidos/genética , Receptores de Péptidos/metabolismo , Canales Catiónicos TRPP/genética , Canales Catiónicos TRPP/metabolismo
6.
Handb Exp Pharmacol ; 234: 67-82, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27832484

RESUMEN

Unlike conventional G-protein-coupled receptors (GPCRs), adhesion GPCRs (aGPCRs) have large extracellular regions that are autoproteolytically cleaved from their membrane-embedded seven-pass transmembrane helices. Autoproteolysis occurs within the conserved GPCR-Autoproteolysis INducing (GAIN) domain that is juxtaposed to the transmembrane domain and cleaves the last beta strand of the GAIN domain. The other domains of the extracellular region are variable and specific to each aGPCR and are likely involved in adhering to various ligands. Emerging evidence suggest that extracellular regions may modulate receptor function and that ligand binding to the extracellular regions may induce receptor activation via multiple mechanisms. Here, we summarize current knowledge about the structural understanding for the extracellular regions of aGPCRs and discuss their possible functional roles that emerge from the available structural information.


Asunto(s)
Adhesión Celular , Membrana Celular/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animales , Sitios de Unión , Humanos , Ligandos , Modelos Moleculares , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Procesamiento Proteico-Postraduccional , Proteolisis , Receptores Acoplados a Proteínas G/química , Transducción de Señal , Relación Estructura-Actividad
7.
J Neurosci ; 34(45): 15083-96, 2014 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-25378172

RESUMEN

Neurexins and neuroligins are synaptic cell-adhesion molecules that are essential for normal synapse specification and function and are thought to bind to each other trans-synaptically, but such interactions have not been demonstrated directly. Here, we generated neurexin-1ß and neuroligin-1 and neuroligin-2 fusion proteins containing complementary "split" GFP fragments positioned such that binding of neurexin-1ß to neuroligin-1 or neuroligin-2 allowed GFP reconstitution without dramatically changing their binding affinities. GFP fluorescence was only reconstituted from split-GFP-modified neurexin-1ß and neuroligin-1 if and after neurexin-1ß bound to its neuroligin partner; reassociation of the split-GFP components with each other did not mediate binding. Using trans-cellular reconstitution of GFP fluorescence from split-GFP-modified neurexin-1ß and neuroligins as an assay, we demonstrate that trans-synaptic neurexin/neuroligin binding indeed occurred when mouse hippocampal neurons formed synapses onto non-neuronal COS-7 cells expressing neuroligins or when mouse hippocampal neurons formed synapses with each other. This visualization of synapses by neurexin/neuroligin binding prompted us to refer to this approach as "SynView." Our data demonstrate that neurexin-1ß forms a trans-synaptic complex with neuroligin-1 and neuroligin-2 and that this interaction can be used to label synapses in a specific fashion in vivo.


Asunto(s)
Moléculas de Adhesión Celular Neuronal/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neurogénesis , Sinapsis/metabolismo , Animales , Células COS , Células Cultivadas , Chlorocebus aethiops , Células HEK293 , Hipocampo/citología , Hipocampo/crecimiento & desarrollo , Humanos , Ratones , Microscopía Fluorescente , Neuronas/citología , Neuronas/metabolismo , Unión Proteica
8.
bioRxiv ; 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38766069

RESUMEN

Adhesion G Protein-coupled receptors (aGPCRs) transduce extracellular adhesion signals into cytoplasmic signaling pathways. ADGRG6/GPR126 is an aGPCR critical for axon myelination, heart development and ear development; and is associated with developmental diseases and cancers. ADGRG6 has a large, alternatively-spliced, five-domain extracellular region (ECR) that samples different conformations and regulates receptor signaling. However, the molecular details of how the ECR regulates signaling are unclear. Herein, we studied the conformational dynamics of the conserved CUB domain which is located at the distal N-terminus of the ECR and is deleted in an alternatively-spliced isoform ( Δ CUB). We showed that the Δ CUB isoform has decreased signaling. Molecular dynamics simulations suggest that the CUB domain is involved in interdomain contacts to maintain a compact ECR conformation. A cancer-associated CUB domain mutant, C94Y, drastically perturbs the ECR conformation and results in elevated signaling, whereas another CUB mutant, Y96A, located near a conserved Ca 2+ -binding site, decreases signaling. Our results suggest an ECR-mediated mechanism for ADGRG6 regulation in which the CUB domain instructs conformational changes within the ECR to regulate receptor signaling.

9.
bioRxiv ; 2024 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-38328199

RESUMEN

Cadherin EGF Laminin G seven-pass G-type receptors (CELSRs or ADGRCs) are conserved adhesion G protein-coupled receptors which are essential for animal development. CELSRs have extracellular regions (ECRs) containing 23 adhesion domains which couple adhesion to intracellular signaling. However, molecular-level insight into CELSR function is sparsely available. We report the 4.3 Å cryo-EM reconstruction of the mCELSR1 ECR with 13 domains resolved in the structure. These domains form a compact module mediated by interdomain interactions with contact between the N- and C-terminal domains. We show the mCELSR1 ECR forms an extended species in the presence of Ca 2+ , which we propose represents the antiparallel cadherin repeat dimer. Using assays for adhesion and G protein-coupling, we assign the N-terminal CADH1-8 module as necessary for cell adhesion and we show the C-terminal CAHD9-GAIN module regulates signaling. Our work provides important molecular context to the literature on CELSR function and opens the door towards further mechanistic studies.

10.
bioRxiv ; 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38464178

RESUMEN

Adhesion G Protein-Coupled Receptors (aGPCRs) are key cell-adhesion molecules involved in numerous physiological functions. aGPCRs have large multi-domain extracellular regions (ECR) containing a conserved GAIN domain that precedes their seven-pass transmembrane domain (7TM). Ligand binding and mechanical force applied on the ECR regulate receptor function. However, how the ECR communicates with the 7TM remains elusive, because the relative orientation and dynamics of the ECR and 7TM within a holoreceptor is unclear. Here, we describe the cryo-EM reconstruction of an aGPCR, Latrophilin3/ADGRL3, and reveal that the GAIN domain adopts a parallel orientation to the membrane and has constrained movement. Single-molecule FRET experiments unveil three slow-exchanging FRET states of the ECR relative to the 7TM within the holoreceptor. GAIN-targeted antibodies, and cancer-associated mutations at the GAIN-7TM interface, alter FRET states, cryo-EM conformations, and receptor signaling. Altogether, this data demonstrates conformational and functional coupling between the ECR and 7TM, suggesting an ECR-mediated mechanism of aGPCR activation.

11.
EMBO J ; 28(20): 3244-55, 2009 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-19730411

RESUMEN

Postsynaptic neuroligins are thought to perform essential functions in synapse validation and synaptic transmission by binding to, and dimerizing, presynaptic alpha- and beta-neurexins. To test this hypothesis, we examined the functional effects of neuroligin-1 mutations that impair only alpha-neurexin binding, block both alpha- and beta-neurexin binding, or abolish neuroligin-1 dimerization. Abolishing alpha-neurexin binding abrogated neuroligin-induced generation of neuronal synapses onto transfected non-neuronal cells in the so-called artificial synapse-formation assay, even though beta-neurexin binding was retained. Thus, in this assay, neuroligin-1 induces apparent synapse formation by binding to presynaptic alpha-neurexins. In transfected neurons, however, neither alpha- nor beta-neurexin binding was essential for the ability of postsynaptic neuroligin-1 to dramatically increase synapse density, suggesting a neurexin-independent mechanism of synapse formation. Moreover, neuroligin-1 dimerization was not required for either the non-neuronal or the neuronal synapse-formation assay. Nevertheless, both alpha-neurexin binding and neuroligin-1 dimerization were essential for the increase in apparent synapse size that is induced by neuroligin-1 in transfected neurons. Thus, neuroligin-1 performs diverse synaptic functions by mechanisms that include as essential components of alpha-neurexin binding and neuroligin dimerization, but extend beyond these activities.


Asunto(s)
Proteínas de la Membrana/fisiología , Proteínas del Tejido Nervioso/fisiología , Sinapsis/fisiología , Animales , Células COS , Moléculas de Adhesión Celular Neuronal , Línea Celular , Chlorocebus aethiops , Electrofisiología , Humanos , Inmunohistoquímica , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Unión Proteica/genética , Unión Proteica/fisiología , Multimerización de Proteína/genética , Multimerización de Proteína/fisiología , Sinapsis/metabolismo
12.
bioRxiv ; 2023 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-37066404

RESUMEN

Adhesion GPCRs (aGPCRs) are a large GPCR class that direct diverse fundamental biological processes. One prominent mechanism for aGPCR agonism involves autoproteolytic cleavage, which generates an activating, membrane-proximal tethered agonist (TA). How universal this mechanism is for all aGPCRs is unclear. Here, we investigate G protein induction principles of aGPCRs using mammalian LPHN3 and CELSR1-3, members of two aGPCR families conserved from invertebrates to vertebrates. LPHNs and CELSRs mediate fundamental aspects of brain development, yet CELSR signaling mechanisms are unknown. We found that CELSR1 and CELSR3 are cleavage-deficient, while CELSR2 is efficiently cleaved. Despite differential autoproteolysis, CELSR1-3 all engage GαS, and CELSR1 or CELSR3 TA point mutants retain GαS coupling activity. CELSR2 autoproteolysis enhances GαS coupling, yet acute TA exposure alone is insufficient. These studies support that aGPCRs signal via multiple paradigms and provide insights into CELSR biological function.

13.
Cell Rep ; 42(6): 112552, 2023 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-37224017

RESUMEN

Adhesion G protein-coupled receptors (aGPCRs) are a large GPCR class that direct diverse fundamental biological processes. One prominent mechanism for aGPCR agonism involves autoproteolytic cleavage, which generates an activating, membrane-proximal tethered agonist (TA). How universal this mechanism is for all aGPCRs is unclear. Here, we investigate G protein induction principles of aGPCRs using mammalian latrophilin 3 (LPHN3) and cadherin EGF LAG-repeat 7-transmembrane receptors 1-3 (CELSR1-3), members of two aGPCR families conserved from invertebrates to vertebrates. LPHNs and CELSRs mediate fundamental aspects of brain development, yet CELSR signaling mechanisms are unknown. We find that CELSR1 and CELSR3 are cleavage deficient, while CELSR2 is efficiently cleaved. Despite differential autoproteolysis, CELSR1-3 all engage GαS, and CELSR1 or CELSR3 TA point mutants retain GαS coupling activity. CELSR2 autoproteolysis enhances GαS coupling, yet acute TA exposure alone is insufficient. These studies support that aGPCRs signal via multiple paradigms and provide insights into CELSR biological function.


Asunto(s)
Cadherinas , Receptores Acoplados a Proteínas G , Animales , Humanos , Cadherinas/genética , Cadherinas/metabolismo , Adhesión Celular , Proteínas de Unión al GTP/metabolismo , Mamíferos/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Relación Estructura-Actividad , Células HEK293
14.
Nat Commun ; 14(1): 635, 2023 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-36746957

RESUMEN

Adhesion G protein-coupled receptors (aGPCRs) are cell-surface proteins with large extracellular regions that bind to multiple ligands to regulate key biological functions including neurodevelopment and organogenesis. Modulating a single function of a specific aGPCR isoform while affecting no other function and no other receptor is not trivial. Here, we engineered an antibody, termed LK30, that binds to the extracellular region of the aGPCR ADGRL3, and specifically acts as an agonist for ADGRL3 but not for its isoform, ADGRL1. The LK30/ADGRL3 complex structure revealed that the LK30 binding site on ADGRL3 overlaps with the binding site for an ADGRL3 ligand - teneurin. In cellular-adhesion assays, LK30 specifically broke the trans-cellular interaction of ADGRL3 with teneurin, but not with another ADGRL3 ligand - FLRT3. Our work provides proof of concept for the modulation of isoform- and ligand-specific aGPCR functions using unique tools, and thus establishes a foundation for the development of fine-tuned aGPCR-targeted therapeutics.


Asunto(s)
Receptores Acoplados a Proteínas G , Ligandos , Receptores Acoplados a Proteínas G/metabolismo , Adhesión Celular , Sitios de Unión , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
15.
Neuron ; 56(6): 992-1003, 2007 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-18093522

RESUMEN

Neurexins and neuroligins provide trans-synaptic connectivity by the Ca2+-dependent interaction of their alternatively spliced extracellular domains. Neuroligins specify synapses in an activity-dependent manner, presumably by binding to neurexins. Here, we present the crystal structures of neuroligin-1 in isolation and in complex with neurexin-1 beta. Neuroligin-1 forms a constitutive dimer, and two neurexin-1 beta monomers bind to two identical surfaces on the opposite faces of the neuroligin-1 dimer to form a heterotetramer. The neuroligin-1/neurexin-1 beta complex exhibits a nanomolar affinity and includes a large binding interface that contains bound Ca2+. Alternatively spliced sites in neurexin-1 beta and in neuroligin-1 are positioned nearby the binding interface, explaining how they regulate the interaction. Structure-based mutations of neuroligin-1 at the interface disrupt binding to neurexin-1 beta, but not the folding of neuroligin-1 and confirm the validity of the binding interface of the neuroligin-1/neurexin-1 beta complex. Our results provide molecular insights for understanding the role of cell-adhesion proteins in synapse function.


Asunto(s)
Calcio/metabolismo , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/metabolismo , Sinapsis/fisiología , Empalme Alternativo , Secuencia de Aminoácidos , Animales , Moléculas de Adhesión Celular Neuronal , Células Cultivadas , Cristalografía/métodos , Modelos Biológicos , Modelos Moleculares , Datos de Secuencia Molecular , Unión Proteica , Conformación Proteica , Pliegue de Proteína , Ratas , Proteínas Recombinantes , Análisis Espectral/métodos , Resonancia por Plasmón de Superficie
16.
Trends Cell Biol ; 16(7): 339-50, 2006 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-16698267

RESUMEN

SNARE proteins and synaptotagmin are key components of the complex machinery that controls Ca(2+)-triggered neurotransmitter release but their mechanisms of action are under debate. Recent research has shed light on which biochemical and/or biophysical properties underlie SNARE and synaptotagmin function. SNARE proteins most likely have a role in membrane fusion owing to their ability to bring the synaptic vesicle and plasma membranes together and to perturb lipid bilayers through their transmembrane regions. Synaptotagmin acts as a Ca(2+) sensor and might cooperate with the SNAREs in accelerating fusion by binding simultaneously to the two membranes. However, recent research has strongly challenged the validity of models proposing that the SNAREs (with or without synaptotagmin) constitute "minimal membrane fusion machineries" and has emphasized the essential nature of other proteins for exocytosis. Understanding the functions of these proteins will be crucial to reach a faithful description of the mechanisms of membrane fusion and neurotransmitter release.


Asunto(s)
Neurotransmisores/metabolismo , Proteínas SNARE/fisiología , Sinaptotagminas/fisiología , Animales , Calcio/metabolismo , Membrana Celular/metabolismo , Fusión de Membrana/fisiología , Fosfolípidos/metabolismo , Proteínas SNARE/química , Vesículas Sinápticas/metabolismo
17.
Nat Struct Mol Biol ; 13(3): 209-17, 2006 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-16491093

RESUMEN

Synaptotagmin acts as a Ca(2+) sensor in neurotransmitter release through its two C(2) domains. Ca(2+)-dependent phospholipid binding is key for synaptotagmin function, but it is unclear how this activity cooperates with the SNARE complex involved in release or why Ca(2+) binding to the C(2)B domain is more crucial for release than Ca(2+) binding to the C(2)A domain. Here we show that Ca(2+) induces high-affinity simultaneous binding of synaptotagmin to two membranes, bringing them into close proximity. The synaptotagmin C(2)B domain is sufficient for this ability, which arises from the abundance of basic residues around its surface. We propose a model wherein synaptotagmin cooperates with the SNAREs in bringing the synaptic vesicle and plasma membranes together and accelerates membrane fusion through the highly positive electrostatic potential of its C(2)B domain.


Asunto(s)
Calcio/farmacología , Fusión de Membrana/efectos de los fármacos , Fosfolípidos/metabolismo , Sinaptotagminas/metabolismo , Animales , Sitios de Unión , Calcio/metabolismo , Liposomas/química , Liposomas/metabolismo , Modelos Biológicos , Modelos Moleculares , Docilidad , Unión Proteica/efectos de los fármacos , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Ratas , Espectrometría de Fluorescencia , Vesículas Sinápticas/efectos de los fármacos , Vesículas Sinápticas/metabolismo , Sinaptotagminas/química
18.
Structure ; 16(10): 1588-97, 2008 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-18940613

RESUMEN

Botulinum neurotoxin serotype A is the most lethal of all known toxins. Here, we report the crystal structure, along with SAR data, of the zinc metalloprotease domain of BoNT/A bound to a potent peptidomimetic inhibitor (K(i)=41 nM) that resembles the local sequence of the SNAP-25 substrate. Surprisingly, the inhibitor adopts a helical conformation around the cleavage site, in contrast to the extended conformation of the native substrate. The backbone of the inhibitor's P1 residue displaces the putative catalytic water molecule and concomitantly interacts with the "proton shuttle" E224. This mechanism of inhibition is aided by residue contacts in the conserved S1' pocket of the substrate binding cleft and by the induction of new hydrophobic pockets, which are not present in the apo form, especially for the P2' residue of the inhibitor. Our inhibitor is specific for BoNT/A as it does not inhibit other BoNT serotypes or thermolysin.


Asunto(s)
Toxinas Botulínicas Tipo A/antagonistas & inhibidores , Fragmentos de Péptidos/química , Fragmentos de Péptidos/farmacología , Proteína 25 Asociada a Sinaptosomas/química , Secuencia de Aminoácidos , Sitios de Unión , Biomimética , Toxinas Botulínicas Tipo A/química , Toxinas Botulínicas Tipo A/metabolismo , Evaluación Preclínica de Medicamentos , Modelos Biológicos , Modelos Moleculares , Datos de Secuencia Molecular , Fragmentos de Péptidos/metabolismo , Unión Proteica , Conformación Proteica , Especificidad por Sustrato , Proteína 25 Asociada a Sinaptosomas/metabolismo
19.
Sci Rep ; 10(1): 16912, 2020 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-33037308

RESUMEN

Blocking the interaction between cell-surface receptors and their ligands is a proven therapeutic strategy. Adhesion G protein-coupled receptors (aGPCRs) are key cell-surface receptors that regulate numerous pathophysiological processes, and their large extracellular regions (ECRs) mediate ligand binding and function. The aGPCR GPR56/ADGRG1 regulates central nervous system myelination and melanoma progression by interacting with its ligand, tissue transglutaminase 2 (TG2), but the molecular basis for this interaction is largely undefined. Here, we show that the C-terminal portion of TG2 directly interacted with the GPR56 ECR with high-nanomolar affinity, and used site-directed mutagenesis to identify a patch of conserved residues on the pentraxin/laminin-neurexin-sex-hormone-binding-globulin-like (PLL) domain of GPR56 as the TG2 binding site. Importantly, we also show that the GPR56-TG2 interaction was blocked by previously-reported synthetic proteins, termed monobodies, that bind the GPR56 ECR in a domain- and species-specific manner. This work provides unique tools to modulate aGPCR-ligand binding and establishes a foundation for the development of aGPCR-targeted therapeutics.


Asunto(s)
Adhesión Celular/fisiología , Proteínas de Unión al GTP/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transglutaminasas/metabolismo , Animales , Sitios de Unión/fisiología , Células Cultivadas , Células HEK293 , Humanos , Insectos , Ligandos , Mamíferos/metabolismo , Unión Proteica/fisiología , Dominios Proteicos/fisiología , Proteína Glutamina Gamma Glutamiltransferasa 2 , Transducción de Señal/fisiología
20.
Nat Commun ; 11(1): 2140, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32358586

RESUMEN

The trans-synaptic interaction of the cell-adhesion molecules teneurins (TENs) with latrophilins (LPHNs/ADGRLs) promotes excitatory synapse formation when LPHNs simultaneously interact with FLRTs. Insertion of a short alternatively-spliced region within TENs abolishes the TEN-LPHN interaction and switches TEN function to specify inhibitory synapses. How alternative-splicing regulates TEN-LPHN interaction remains unclear. Here, we report the 2.9 Å resolution cryo-EM structure of the TEN2-LPHN3 complex, and describe the trimeric TEN2-LPHN3-FLRT3 complex. The structure reveals that the N-terminal lectin domain of LPHN3 binds to the TEN2 barrel at a site far away from the alternatively spliced region. Alternative-splicing regulates the TEN2-LPHN3 interaction by hindering access to the LPHN-binding surface rather than altering it. Strikingly, mutagenesis of the LPHN-binding surface of TEN2 abolishes the LPHN3 interaction and impairs excitatory but not inhibitory synapse formation. These results suggest that a multi-level coincident binding mechanism mediated by a cryptic adhesion complex between TENs and LPHNs regulates synapse specificity.


Asunto(s)
Proteínas de la Membrana/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Sinapsis/metabolismo , Empalme Alternativo/genética , Empalme Alternativo/fisiología , Sitios de Unión/genética , Células HEK293 , Humanos , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Mutación/genética , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/genética , Unión Proteica/genética , Estructura Secundaria de Proteína , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/genética , Receptores de Péptidos/química , Receptores de Péptidos/genética , Receptores de Péptidos/metabolismo , Sinapsis/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA