Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
Más filtros

Intervalo de año de publicación
1.
Mol Cell ; 80(6): 1039-1054.e6, 2020 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-33301732

RESUMEN

Eukaryotic SMC complexes, cohesin, condensin, and Smc5/6, use ATP hydrolysis to power a plethora of functions requiring organization and restructuring of eukaryotic chromosomes in interphase and during mitosis. The Smc5/6 mechanism of action and its activity on DNA are largely unknown. Here we purified the budding yeast Smc5/6 holocomplex and characterized its core biochemical and biophysical activities. Purified Smc5/6 exhibits DNA-dependent ATP hydrolysis and SUMO E3 ligase activity. We show that Smc5/6 binds DNA topologically with affinity for supercoiled and catenated DNA templates. Employing single-molecule assays to analyze the functional and dynamic characteristics of Smc5/6 bound to DNA, we show that Smc5/6 locks DNA plectonemes and can compact DNA in an ATP-dependent manner. These results demonstrate that the Smc5/6 complex recognizes DNA tertiary structures involving juxtaposed helices and might modulate DNA topology by plectoneme stabilization and local compaction.


Asunto(s)
Proteínas de Ciclo Celular/genética , Complejos Multiproteicos/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Adenosina Trifosfatasas/genética , Fenómenos Biofísicos , Proteínas de Ciclo Celular/ultraestructura , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/ultraestructura , Proteínas de Unión al ADN/genética , Humanos , Interfase/genética , Mitosis/genética , Complejos Multiproteicos/ultraestructura , Saccharomyces cerevisiae/ultraestructura , Proteínas de Saccharomyces cerevisiae/ultraestructura , Sumoilación/genética , Cohesinas
2.
EMBO J ; 42(3): e111913, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36533296

RESUMEN

Condensin, an SMC (structural maintenance of chromosomes) protein complex, extrudes DNA loops using an ATP-dependent mechanism that remains to be elucidated. Here, we show how condensin activity alters the topology of the interacting DNA. High condensin concentrations restrain positive DNA supercoils. However, in experimental conditions of DNA loop extrusion, condensin restrains negative supercoils. Namely, following ATP-mediated loading onto DNA, each condensin complex constrains a DNA linking number difference (∆Lk) of -0.4. This ∆Lk increases to -0.8 during ATP binding and resets to -0.4 upon ATP hydrolysis. These changes in DNA topology do not involve DNA unwinding, do not spread outside the condensin-DNA complex and can occur in the absence of the condensin subunit Ycg1. These findings indicate that during ATP binding, a short DNA domain delimited by condensin is pinched into a negatively supercoiled loop. We propose that this loop is the feeding segment of DNA that is subsequently merged to enlarge an extruding loop. Such a "pinch and merge" mechanism implies that two DNA-binding sites produce the feeding loop, while a third site, plausibly involving Ycg1, might anchor the extruding loop.


Asunto(s)
Cromosomas , ADN Superhelicoidal , ADN/metabolismo , Adenosina Trifosfato/metabolismo , Proteínas de Ciclo Celular/metabolismo
3.
Annu Rev Genet ; 52: 89-107, 2018 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-30476445

RESUMEN

Smc5 and Smc6, together with the kleisin Nse4, form the heart of the enigmatic and poorly understood Smc5/6 complex, which is frequently viewed as a cousin of cohesin and condensin with functions in DNA repair. As novel functions for cohesin and condensin complexes in the organization of long-range chromatin architecture have recently emerged, new unsuspected roles for Smc5/6 have also surfaced. Here, I aim to provide a comprehensive overview of our current knowledge of the Smc5/6 complex, including its long-established function in genome stability, its multiple roles in DNA repair, and its recently discovered connection to the transcription inhibition of hepatitis B virus genomes. In addition, I summarize new research that is beginning to tease out the molecular details of Smc5/6 structure and function, knowledge that will illuminate the nuclear activities of Smc5/6 in the stability and dynamics of eukaryotic genomes.


Asunto(s)
Proteínas de Ciclo Celular/genética , Complejos Multiproteicos/genética , Proteínas de Schizosaccharomyces pombe/genética , Relación Estructura-Actividad , Proteínas Portadoras/genética , Núcleo Celular/genética , Roturas del ADN de Doble Cadena , Reparación del ADN/genética , Eucariontes/genética , Humanos , Recombinación Genética/genética , Schizosaccharomyces/genética
4.
Mol Cell ; 64(1): 134-147, 2016 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-27716481

RESUMEN

Sister chromatid intertwines (SCIs), or catenanes, are topological links between replicated chromatids that interfere with chromosome segregation. The formation of SCIs is thought to be a consequence of fork swiveling during DNA replication, and their removal is thought to occur because of the intrinsic feature of type II topoisomerases (Top2) to simplify DNA topology. Here, we report that SCIs are also formed independently of DNA replication during G2/M by Top2-dependent concatenation of cohesed chromatids due to their physical proximity. We demonstrate that, in contrast to G2/M, Top2 removes SCIs from cohesed chromatids at the anaphase onset. Importantly, SCI removal in anaphase requires condensin and coincides with the hyperactivation of condensin DNA supercoiling activity. This is consistent with the longstanding proposal that condensin provides a bias in Top2 function toward decatenation. A comprehensive model for the formation and resolution of toxic SCI entanglements on eukaryotic genomes is proposed.


Asunto(s)
Adenosina Trifosfatasas/genética , Cromosomas Fúngicos/metabolismo , Replicación del ADN , ADN-Topoisomerasas de Tipo II/genética , ADN de Hongos/genética , Proteínas de Unión al ADN/genética , Complejos Multiproteicos/genética , Saccharomyces cerevisiae/genética , Adenosina Trifosfatasas/metabolismo , Anafase , Cromátides/metabolismo , Cromátides/ultraestructura , Segregación Cromosómica , Cromosomas Fúngicos/ultraestructura , ADN-Topoisomerasas de Tipo II/metabolismo , ADN de Hongos/metabolismo , Proteínas de Unión al ADN/metabolismo , Puntos de Control de la Fase G2 del Ciclo Celular , Expresión Génica , Complejos Multiproteicos/metabolismo , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/ultraestructura
5.
Genes Dev ; 30(11): 1339-56, 2016 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-27298337

RESUMEN

The RecQ helicase Sgs1 plays critical roles during DNA repair by homologous recombination, from end resection to Holliday junction (HJ) dissolution. Sgs1 has both pro- and anti-recombinogenic roles, and therefore its activity must be tightly regulated. However, the controls involved in recruitment and activation of Sgs1 at damaged sites are unknown. Here we show a two-step role for Smc5/6 in recruiting and activating Sgs1 through SUMOylation. First, auto-SUMOylation of Smc5/6 subunits leads to recruitment of Sgs1 as part of the STR (Sgs1-Top3-Rmi1) complex, mediated by two SUMO-interacting motifs (SIMs) on Sgs1 that specifically recognize SUMOylated Smc5/6. Second, Smc5/6-dependent SUMOylation of Sgs1 and Top3 is required for the efficient function of STR. Sgs1 mutants impaired in recognition of SUMOylated Smc5/6 (sgs1-SIMΔ) or SUMO-dead alleles (sgs1-KR) exhibit unprocessed HJs at damaged replication forks, increased crossover frequencies during double-strand break repair, and severe impairment in DNA end resection. Smc5/6 is a key regulator of Sgs1's recombination functions.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , ADN Cruciforme/metabolismo , RecQ Helicasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Secuencias de Aminoácidos , Intercambio Genético , Daño del ADN/genética , Reparación del ADN por Unión de Extremidades/genética , Mutación , RecQ Helicasas/genética , Recombinación Genética/genética , Proteína SUMO-1/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Sumoilación
6.
Cell ; 132(3): 422-33, 2008 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-18237772

RESUMEN

Cohesins mediate sister chromatid cohesion, which is essential for chromosome segregation and postreplicative DNA repair. In addition, cohesins appear to regulate gene expression and enhancer-promoter interactions. These noncanonical functions remained unexplained because knowledge of cohesin-binding sites and functional interactors in metazoans was lacking. We show that the distribution of cohesins on mammalian chromosome arms is not driven by transcriptional activity, in contrast to S. cerevisiae. Instead, mammalian cohesins occupy a subset of DNase I hypersensitive sites, many of which contain sequence motifs resembling the consensus for CTCF, a DNA-binding protein with enhancer blocking function and boundary-element activity. We find cohesins at most CTCF sites and show that CTCF is required for cohesin localization to these sites. Recruitment by CTCF suggests a rationale for noncanonical cohesin functions and, because CTCF binding is sensitive to DNA methylation, allows cohesin positioning to integrate DNA sequence and epigenetic state.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Cromosomas de los Mamíferos/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Represoras/metabolismo , Animales , Secuencia de Bases , Factor de Unión a CCCTC , Diferenciación Celular , Línea Celular , Ensamble y Desensamble de Cromatina , Inmunoprecipitación de Cromatina , Citocinas/genética , Desoxirribonucleasa I/metabolismo , Expresión Génica , Humanos , Ratones , Ratones Transgénicos , Linfocitos T/citología , Linfocitos T/metabolismo , Cohesinas
7.
Nucleic Acids Res ; 47(20): 10706-10727, 2019 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-31544936

RESUMEN

The role of Rad53 in response to a DNA lesion is central for the accurate orchestration of the DNA damage response. Rad53 activation relies on its phosphorylation by Mec1 and its own autophosphorylation in a manner dependent on the adaptor Rad9. While the mechanism behind Rad53 activation has been well documented, less is known about the processes that counteract its activity along the repair of a DNA adduct. Here, we describe that PP4 phosphatase is required to avoid Rad53 hyper-phosphorylation during the repair of a double-strand break, a process that impacts on the phosphorylation status of multiple factors involved in the DNA damage response. PP4-dependent Rad53 dephosphorylation stimulates DNA end resection by relieving the negative effect that Rad9 exerts over the Sgs1/Dna2 exonuclease complex. Consequently, elimination of PP4 activity affects resection and repair by single-strand annealing, defects that are bypassed by reducing Rad53 hyperphosphorylation. These results confirm that Rad53 phosphorylation is controlled by PP4 during the repair of a DNA lesion and demonstrate that the attenuation of its kinase activity during the initial steps of the repair process is essential to efficiently enhance recombinational DNA repair pathways that depend on long-range resection for their success.


Asunto(s)
Roturas del ADN de Doble Cadena , Fosfoproteínas Fosfatasas/metabolismo , Reparación del ADN por Recombinación , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Replicación del ADN , ADN de Hongos/metabolismo , Fosforilación , Fosfoserina/metabolismo
8.
Nature ; 493(7431): 250-4, 2013 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-23178808

RESUMEN

DNA double-strand break repair is critical for cell viability and involves highly coordinated pathways to restore DNA integrity at the lesion. An early event during homology-dependent repair is resection of the break to generate progressively longer 3' single-strand tails that are used to identify suitable templates for repair. Sister chromatids provide near-perfect sequence homology and are therefore the preferred templates during homologous recombination. To provide a bias for the use of sisters as donors, cohesin--the complex that tethers sister chromatids together--is recruited to the break to enforce physical proximity. Here we show that DNA breaks promote dissociation of cohesin loaded during the previous S phase in budding yeast, and that damage-induced dissociation of cohesin requires separase, the protease that dissolves cohesion in anaphase. Moreover, a separase-resistant allele of the gene coding for the α-kleisin subunit of cohesin, Mcd1 (also known as Scc1), reduces double-strand break resection and compromises the efficiency of repair even when loaded during DNA damage. We conclude that post-replicative DNA repair involves cohesin dissociation by separase to promote accessibility to repair factors during the coordinated cellular response to restore DNA integrity.


Asunto(s)
Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/química , Proteínas Cromosómicas no Histona/metabolismo , Reparación del ADN , Replicación del ADN , Endopeptidasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiología , Alelos , Anafase , Proteínas de Ciclo Celular/genética , Inmunoprecipitación de Cromatina , Proteínas Cromosómicas no Histona/genética , Roturas del ADN de Doble Cadena , Fase G2 , Metafase , Unión Proteica , Estabilidad Proteica , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Fase S , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Separasa , Cohesinas
9.
Mol Cell ; 44(1): 5-6, 2011 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-21981913

RESUMEN

In this issue of Molecular Cell, Farcas et al. (2011) demonstrate that intertwining between sister chromatids at metaphase is much more significant than previously thought and, remarkably, show that it depends on cohesin.

10.
Curr Genet ; 63(3): 381-388, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27664093

RESUMEN

The family of RecQ helicases is evolutionary conserved from bacteria to humans and play key roles in genome stability. The budding yeast RecQ helicase Sgs1 has been implicated in several key processes during the repair of DNA damage by homologous recombination as part of the STR complex (Sgs1-Top3-Rmi1). Limited information on how is Sgs1 recruited and regulated at sites of damage is available. Recently, we and others have uncover a direct link between the Smc5/6 complex and Sgs1. Most roles of Sgs1 during recombination, including DNA end resection, Holiday junction dissolution, and crossover suppression, are regulated through Mms21-dependent SUMOylation. Smc5/6 first acts as a recruiting platform for STR and then SUMOylates STR components to regulate their function. Importantly, the assembly of STR is totally independent of Smc5/6. Here, we provide a brief overview of STR regulation by Smc5/6.


Asunto(s)
Recombinación Homóloga/genética , RecQ Helicasas/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Proteínas de Ciclo Celular/genética , Daño del ADN/genética , Proteínas de Unión al ADN/genética , Inestabilidad Genómica , Complejos Multiproteicos/genética , Proteína SUMO-1/genética , Sumoilación/genética
11.
Nature ; 476(7361): 467-71, 2011 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-21832993

RESUMEN

Cohesin enables post-replicative DNA repair and chromosome segregation by holding sister chromatids together from the time of DNA replication in S phase until mitosis. There is growing evidence that cohesin also forms long-range chromosomal cis-interactions and may regulate gene expression in association with CTCF, mediator or tissue-specific transcription factors. Human cohesinopathies such as Cornelia de Lange syndrome are thought to result from impaired non-canonical cohesin functions, but a clear distinction between the cell-division-related and cell-division-independent functions of cohesion--as exemplified in Drosophila--has not been demonstrated in vertebrate systems. To address this, here we deleted the cohesin locus Rad21 in mouse thymocytes at a time in development when these cells stop cycling and rearrange their T-cell receptor (TCR) α locus (Tcra). Rad21-deficient thymocytes had a normal lifespan and retained the ability to differentiate, albeit with reduced efficiency. Loss of Rad21 led to defective chromatin architecture at the Tcra locus, where cohesion-binding sites flank the TEA promoter and the Eα enhancer, and demarcate Tcra from interspersed Tcrd elements and neighbouring housekeeping genes. Cohesin was required for long-range promoter-enhancer interactions, Tcra transcription, H3K4me3 histone modifications that recruit the recombination machinery and Tcra rearrangement. Provision of pre-rearranged TCR transgenes largely rescued thymocyte differentiation, demonstrating that among thousands of potential target genes across the genome, defective Tcra rearrangement was limiting for the differentiation of cohesin-deficient thymocytes. These findings firmly establish a cell-division-independent role for cohesin in Tcra locus rearrangement and provide a comprehensive account of the mechanisms by which cohesin enables cellular differentiation in a well-characterized mammalian system.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Diferenciación Celular , Proteínas Cromosómicas no Histona/metabolismo , Reordenamiento Génico de Linfocito T , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Receptores de Antígenos de Linfocitos T alfa-beta/genética , Receptores de Antígenos de Linfocitos T alfa-beta/metabolismo , Timo/citología , Animales , Proteínas de Ciclo Celular/genética , Proteínas Cromosómicas no Histona/deficiencia , Proteínas Cromosómicas no Histona/genética , Proteínas de Unión al ADN , Regulación de la Expresión Génica , Reordenamiento Génico de Linfocito T/genética , Genes RAG-1/genética , Ratones , Proteínas Nucleares/deficiencia , Proteínas Nucleares/genética , Fosfoproteínas/deficiencia , Fosfoproteínas/genética , Recombinasas/metabolismo , Timo/metabolismo , Transcripción Genética , Cohesinas
13.
Trends Genet ; 28(3): 110-7, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22236810

RESUMEN

The compaction of chromatin that occurs when cells enter mitosis is probably the most iconic process of dividing cells. Mitotic chromosomal compaction or 'condensation' is functionally linked to resolution of chromosomal intertwines, transcriptional shut-off and complete segregation of chromosomes. At present, understanding of the molecular events required to convert interphase chromatin into mitotic chromosomes is limited. Here, we review recent advances in the field, focusing on potential chromosomal compaction mechanisms and their importance to chromosome segregation. We propose a model of how metaphase chromosomes could be shaped based on the enzymatic activities of condensin and topoisomerase II in overwinding and relaxation of the DNA fiber during mitosis. We suggest that condensin overwinding is an important requirement for intertwine resolution by topoisomerase II and, together with the inhibition of transcription, contributes to cytological mitotic chromosome appearance or 'condensation'.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Cromosomas , ADN-Topoisomerasas de Tipo II/metabolismo , Proteínas de Unión al ADN/metabolismo , Complejos Multiproteicos/metabolismo , Animales , Humanos , Metafase , Mitosis , Modelos Genéticos
14.
Nature ; 458(7235): 219-22, 2009 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-19158678

RESUMEN

Chromosome condensation and the global repression of gene transcription are features of mitosis in most eukaryotes. The logic behind this phenomenon is that chromosome condensation prevents the activity of RNA polymerases. In budding yeast, however, transcription was proposed to be continuous during mitosis. Here we show that Cdc14, a protein phosphatase required for nucleolar segregation and mitotic exit, inhibits transcription of yeast ribosomal genes (rDNA) during anaphase. The phosphatase activity of Cdc14 is required for RNA polymerase I (Pol I) inhibition in vitro and in vivo. Moreover Cdc14-dependent inhibition involves nucleolar exclusion of Pol I subunits. We demonstrate that transcription inhibition is necessary for complete chromosome disjunction, because ribosomal RNA (rRNA) transcripts block condensin binding to rDNA, and show that bypassing the role of Cdc14 in nucleolar segregation requires in vivo degradation of nascent transcripts. Our results show that transcription interferes with chromosome condensation, not the reverse. We conclude that budding yeast, like most eukaryotes, inhibit Pol I transcription before segregation as a prerequisite for chromosome condensation and faithful genome separation.


Asunto(s)
Anafase/fisiología , Proteínas de Ciclo Celular/metabolismo , Proteínas Tirosina Fosfatasas/metabolismo , ARN Polimerasa I/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiología , Transcripción Genética/fisiología , Adenosina Trifosfatasas/metabolismo , Segregación Cromosómica , Proteínas de Unión al ADN/metabolismo , Complejos Multiproteicos/metabolismo , Unión Proteica/fisiología , ARN de Hongos/metabolismo , ARN Ribosómico/metabolismo , Saccharomyces cerevisiae/metabolismo
15.
PLoS Genet ; 8(2): e1002509, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22363215

RESUMEN

The resolution of chromosomes during anaphase is a key step in mitosis. Failure to disjoin chromatids compromises the fidelity of chromosome inheritance and generates aneuploidy and chromosome rearrangements, conditions linked to cancer development. Inactivation of topoisomerase II, condensin, or separase leads to gross chromosome nondisjunction. However, the fate of cells when one or a few chromosomes fail to separate has not been determined. Here, we describe a genetic system to induce mitotic progression in the presence of nondisjunction in yeast chromosome XII right arm (cXIIr), which allows the characterisation of the cellular fate of the progeny. Surprisingly, we find that the execution of karyokinesis and cytokinesis is timely and produces severing of cXIIr on or near the repetitive ribosomal gene array. Consequently, one end of the broken chromatid finishes up in each of the new daughter cells, generating a novel type of one-ended double-strand break. Importantly, both daughter cells enter a new cycle and the damage is not detected until the next G2, when cells arrest in a Rad9-dependent manner. Cytologically, we observed the accumulation of damage foci containing RPA/Rad52 proteins but failed to detect Mre11, indicating that cells attempt to repair both chromosome arms through a MRX-independent recombinational pathway. Finally, we analysed several surviving colonies arising after just one cell cycle with cXIIr nondisjunction. We found that aberrant forms of the chromosome were recovered, especially when RAD52 was deleted. Our results demonstrate that, in yeast cells, the Rad9-DNA damage checkpoint plays an important role responding to compromised genome integrity caused by mitotic nondisjunction.


Asunto(s)
Cromosomas Fúngicos , Daño del ADN , Puntos de Control de la Fase G2 del Ciclo Celular , Mitosis/genética , Saccharomyces cerevisiae/genética , Genoma Fúngico , Proteína Recombinante y Reparadora de ADN Rad52/genética
16.
Nat Cell Biol ; 9(8): 923-31, 2007 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-17643116

RESUMEN

Homologous recombination (HR) is crucial for maintaining genome integrity by repairing DNA double-strand breaks (DSBs) and rescuing collapsed replication forks. In contrast, uncontrolled HR can lead to chromosome translocations, loss of heterozygosity, and deletion of repetitive sequences. Controlled HR is particularly important for the preservation of repetitive sequences of the ribosomal gene (rDNA) cluster. Here we show that recombinational repair of a DSB in rDNA in Saccharomyces cerevisiae involves the transient relocalization of the lesion to associate with the recombination machinery at an extranucleolar site. The nucleolar exclusion of Rad52 recombination foci entails Mre11 and Smc5-Smc6 complexes and depends on Rad52 SUMO (small ubiquitin-related modifier) modification. Remarkably, mutations that abrogate these activities result in the formation of Rad52 foci within the nucleolus and cause rDNA hyperrecombination and the excision of extrachromosomal rDNA circles. Our study also suggests a key role of sumoylation for nucleolar dynamics, perhaps in the compartmentalization of nuclear activities.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Reparación del ADN , Proteína Recombinante y Reparadora de ADN Rad52/metabolismo , Recombinación Genética , Ribosomas/genética , Proteína SUMO-1/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Ciclo Celular/genética , Nucléolo Celular/metabolismo , Daño del ADN , ADN Ribosómico/genética , ADN Ribosómico/metabolismo , Proteína Recombinante y Reparadora de ADN Rad52/genética , Proteína SUMO-1/genética , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
17.
Nat Cell Biol ; 8(9): 1032-4, 2006 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16892052

RESUMEN

DNA double-strand breaks (DSB) can arise during DNA replication, or after exposure to DNA-damaging agents, and their correct repair is fundamental for cell survival and genomic stability. Here, we show that the Smc5-Smc6 complex is recruited to DSBs de novo to support their repair by homologous recombination between sister chromatids. In addition, we demonstrate that Smc5-Smc6 is necessary to suppress gross chromosomal rearrangements. Our findings show that the Smc5-Smc6 complex is essential for genome stability as it promotes repair of DSBs by error-free sister-chromatid recombination (SCR), thereby suppressing inappropriate non-sister recombination events.


Asunto(s)
Proteínas de Ciclo Celular/fisiología , Daño del ADN , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/fisiología , Intercambio de Cromátides Hermanas , ADN/metabolismo , Desoxirribonucleasas de Localización Especificada Tipo II/metabolismo , Inestabilidad Genómica , Saccharomyces cerevisiae/genética
18.
Nat Cell Biol ; 7(4): 412-9, 2005 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-15793567

RESUMEN

Structure chromosome (SMC) proteins organize the core of cohesin, condensin and Smc5-Smc6 complexes. The Smc5-Smc6 complex is required for DNA repair, as well as having another essential but enigmatic function. Here, we generated conditional mutants of SMC5 and SMC6 in budding yeast, in which the essential function was affected. We show that mutant smc5-6 and smc6-9 cells undergo an aberrant mitosis in which chromosome segregation of repetitive regions is impaired; this leads to DNA damage and RAD9-dependent activation of the Rad53 protein kinase. Consistent with a requirement for the segregation of repetitive regions, Smc5 and Smc6 proteins are enriched at ribosomal DNA (rDNA) and at some telomeres. We show that, following Smc5-Smc6 inactivation, metaphase-arrested cells show increased levels of X-shaped DNA (Holliday junctions) at the rDNA locus. Furthermore, deletion of RAD52 partially suppresses the temperature sensitivity of smc5-6 and smc6-9 mutants. We also present evidence showing that the rDNA segregation defects of smc5/smc6 mutants are mechanistically different from those previously observed for condensin mutants. These results point towards a role for the Smc5-Smc6 complex in preventing the formation of sister chromatid junctions, thereby ensuring the correct partitioning of chromosomes during anaphase.


Asunto(s)
Proteínas de Ciclo Celular/fisiología , Segregación Cromosómica/fisiología , Secuencias Repetitivas de Ácidos Nucleicos/fisiología , Proteínas de Saccharomyces cerevisiae/fisiología , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Cromatina/genética , Cromatina/fisiología , Proteínas Cromosómicas no Histona , Segregación Cromosómica/genética , Cromosomas/genética , Reparación del ADN/genética , Reparación del ADN/fisiología , ADN Ribosómico/genética , ADN Ribosómico/fisiología , Proteínas Fúngicas , Mutación , Proteínas Nucleares/genética , Proteínas Nucleares/fisiología , Secuencias Repetitivas de Ácidos Nucleicos/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Factores de Tiempo , Cohesinas
19.
Nucleic Acids Res ; 38(19): 6502-12, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20571088

RESUMEN

Mitotic chromosome segregation requires the removal of physical connections between sister chromatids. In addition to cohesin and topological entrapments, sister chromatid separation can be prevented by the presence of chromosome junctions or ongoing DNA replication. We will collectively refer to them as DNA-mediated linkages. Although this type of structures has been documented in different DNA replication and repair mutants, there is no known essential mechanism ensuring their timely removal before mitosis. Here, we show that the dissolution of these connections is an active process that requires the Smc5/6 complex, together with Mms21, its associated SUMO-ligase. Failure to remove DNA-mediated linkages causes gross chromosome missegregation in anaphase. Moreover, we show that Smc5/6 is capable to dissolve them in metaphase-arrested cells, thus restoring chromosome resolution and segregation. We propose that Smc5/6 has an essential role in the removal of DNA-mediated linkages to prevent chromosome missegregation and aneuploidy.


Asunto(s)
Proteínas de Ciclo Celular/fisiología , Cromátides/metabolismo , Segregación Cromosómica , Proteínas de Saccharomyces cerevisiae/fisiología , Proteínas de Ciclo Celular/genética , Cromátides/química , Replicación del ADN/efectos de los fármacos , ADN de Hongos/química , ADN de Hongos/metabolismo , Genoma Fúngico/efectos de los fármacos , Metilmetanosulfonato/toxicidad , Mutación , Proteínas de Saccharomyces cerevisiae/genética
20.
Elife ; 112022 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-36196991

RESUMEN

Chromosome segregation requires both the separation of sister chromatids and the sustained condensation of chromatids during anaphase. In yeast cells, cohesin is not only required for sister chromatid cohesion but also plays a major role determining the structure of individual chromatids in metaphase. Separase cleavage is thought to remove all cohesin complexes from chromosomes to initiate anaphase. It is thus not clear how the length and organisation of segregating chromatids is maintained during anaphase in the absence of cohesin. Here, we show that degradation of cohesin at the anaphase onset causes aberrant chromatid segregation. Hi-C analysis on segregating chromatids demonstrates that cohesin depletion causes loss of intrachromatid organisation. Surprisingly, tobacco etch virus (TEV)-mediated cleavage of cohesin does not dramatically disrupt chromatid organisation in anaphase, explaining why bulk segregation is achieved. In addition, we identified a small pool of cohesin complexes bound to telophase chromosomes in wild-type cells and show that they play a role in the organisation of centromeric regions. Our data demonstrates that in yeast cells cohesin function is not over in metaphase, but extends to the anaphase period when chromatids are segregating.


Asunto(s)
Proteínas de Ciclo Celular , Cromatina , Proteínas Cromosómicas no Histona , Saccharomyces cerevisiae , Anafase/genética , Cromátides , Cromatina/química , Cromatina/metabolismo , Saccharomyces cerevisiae/genética , Separasa/genética , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Cohesinas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA