RESUMEN
BACKGROUND: Porcine enzootic pneumonia is a worldwide problem in swine production. The infected host demonstrates a respiratory disease whose etiologic agent is Mycoplasma hyopneumoniae (Mhp). A total of 266 lung samples with Mycoplasma-like lesions were collected from two slaughterhouses. We analyzed the genetic profile of Mhp field samples using 16 genes that encode proteins involved in the mechanisms of bacterial pathogenesis and/or the immune responses of the host. Bioinformatic analyses were performed to classify the Mhp field samples based on their similarity according to the presence of the studied genes. RESULTS: Our results showed variations in the frequency of the 16 studied genes among different Mhp field samples. It was also noted that samples from the same farm were genetically different from each other and samples from different regions could be genetically similar, which is evidence of the presence of different genetic profiles among the Mhp field strains that circulate in Brazilian swine herds. CONCLUSION: This work demonstrated the genetic diversity of several Mhp field strains based on 16 selected genes related to virulence and/or immune response in Brazil. Our findings demonstrate the difference between Mhp field strains could influence the virulence, and we hypothesize that the most frequent genes in Mhp field strains could possibly be used as vaccine candidates. Based on our results, we suspect that Mhp genetic variability may be associated with the frequency of genes among the field strains and we have demonstrated that some Mhp field samples could not have many important genes described in the literature.
Asunto(s)
Proteínas Bacterianas/genética , Variación Genética , Mycoplasma hyopneumoniae/genética , Neumonía Porcina por Mycoplasma/microbiología , Mataderos , Animales , Antígenos Bacterianos/genética , Brasil , Evolución Molecular , Mycoplasma hyopneumoniae/inmunología , Mycoplasma hyopneumoniae/patogenicidad , Análisis de Secuencia de ADN/métodos , Porcinos , Factores de Virulencia/genéticaRESUMEN
Following publication of the original article [1], we have been notified that two of the author names were incomplete or incorrect.
RESUMEN
Bovine alphaherpesvirus 1 (BoHV-1) is a pathogen causing respiratory and reproductive clinical signs in cattle. Infected animals may develop rhinotracheitis, vulvovaginitis, balanoposthitis, and abortion. Viral latency is generally established in neuronal ganglia simultaneously to a decrease in both genes or genome expression and viral replication. Under stressful conditions, infection is reactivated leading to viral replication and the manifestation of clinical signs. In this study, we evaluated both viral reactivation and apoptosis in trigeminal ganglia cells as BoHV-1 progressed from the latent to the acute phase of infection after dexamethasone administration in experimentally infected calves. To test ganglia cell death as a consequence of BoHV-1 infection, we stained the BoHV-1 samples with TUNEL after the viral shedding by the calves. RT-qPCR of apoptotic genes was also performed, showing the upregulation of the caspase 8 gene in the trigeminal ganglia from cattle experimentally infected with BoHV-1. These results showed the occurrence of apoptosis in ganglion cells of calves infected by BoHV-1.
Asunto(s)
Apoptosis , Enfermedades de los Bovinos , Infecciones por Herpesviridae , Herpesvirus Bovino 1 , Animales , Bovinos , Enfermedades de los Bovinos/virología , Infecciones por Herpesviridae/veterinaria , Herpesvirus Bovino 1/genética , Herpesvirus Bovino 1/fisiología , Activación Viral , Latencia del Virus , Replicación ViralRESUMEN
Picobirnavirus (PBV) is a small two-segmented double-stranded RNA (dsRNA) virus that has been identified in diarrheic feces of a large range of animal hosts, including humans. For this reason, PBV has been recognized as an opportunistic agent of gastrointestinal disease. Even under these circumstances, there is a lack of studies regarding this pathogen. Not outstanding, in Brazil, the single description of the PBV occurrence in pigs was provided in the 1980s. Hence, this study aimed to verify the PBV occurrence in Brazilian swine farms and to perform molecular characterization of the identified strains. High genetic variability was found in the analyzed sequences. Further studies comprehending the infection of swine by PBV in Brazilian herds should be performed to provide more accurate information on its epidemiology and to discuss the role of the virus in gastrointestinal diseases.