Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 125
Filtrar
Más filtros

Intervalo de año de publicación
1.
Kidney Int ; 105(4): 791-798, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38367960

RESUMEN

Class 2 HLA and PLA2R1 alleles are exceptionally strong genetic risk factors for membranous nephropathy (MN), leading, through an unknown mechanism, to a targeted autoimmune response. Introgressed archaic haplotypes (introduced from an archaic human genome into the modern human genome) might influence phenotypes through gene dysregulation. Here, we investigated the genomic region surrounding the PLA2R1 gene. We reconstructed the phylogeny of Neanderthal and modern haplotypes in this region and calculated the probability of the observed clustering being the result of introgression or common descent. We imputed variants for the participants in our previous genome-wide association study and we compared the distribution of Neanderthal variants between MN cases and controls. The region associated with the lead MN risk locus in the PLA2R1 gene was confirmed and showed that, within a 507 kb region enriched in introgressed sequence, a stringently defined 105 kb haplotype, intersecting the coding regions for PLA2R1 and ITGB6, is inherited from Neanderthals. Thus, introgressed Neanderthal haplotypes overlapping PLA2R1 are differentially represented in MN cases and controls, with enrichment In controls suggesting a protective effect.


Asunto(s)
Glomerulonefritis Membranosa , Hombre de Neandertal , Humanos , Animales , Hombre de Neandertal/genética , Haplotipos , Glomerulonefritis Membranosa/genética , Genoma Humano , Estudio de Asociación del Genoma Completo , Receptores de Fosfolipasa A2/genética
2.
Am J Med Genet A ; 194(5): e63523, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38164622

RESUMEN

The FMR1 5' regulation gene region harbors a CGG trinucleotide repeat expansion (CGG-TRE) that causes Fragile X syndrome (FXS) when it expands to more than 200 repetitions. Ricaurte is a small village in southwestern Colombia, with an FXS prevalence of 1 in 38 men and 1 in 100 women (~100 times higher than the worldwide reported prevalence), defining Ricaurte as the largest FXS cluster in the world. In the present study, using next-generation sequencing of whole exome capture, we genotype 55 individuals from Ricaurte (49 with either full mutation or with premutation), four individuals from neighboring villages (with either the full mutation or with the premutation), and one unaffected woman, native of Ricaurte, who did not belong to any of the affected families. With advanced clustering and haplotype reconstruction, we modeled a common haplotype of 33 SNPs spanning 83,567,899 bp and harboring the FMR1 gene. This reconstructed haplotype was found in all the men from Ricaurte who carried the expansion, demonstrating that the genetic conglomerate of FXS in this population is due to a founder effect. The definition of this founder effect and its population outlining will allow a better prediction, follow-up, precise and personalized characterization of epidemiological parameters, better knowledge of the disease's natural history, and confident improvement of the clinical attention, life quality, and health interventions for this community.


Asunto(s)
Síndrome del Cromosoma X Frágil , Masculino , Humanos , Femenino , Síndrome del Cromosoma X Frágil/epidemiología , Síndrome del Cromosoma X Frágil/genética , Efecto Fundador , Epidemiología Molecular , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Expansión de Repetición de Trinucleótido , Mutación
3.
Am J Med Genet A ; 194(2): 218-225, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37795898

RESUMEN

Copy number variants (CNVs) remain a major etiological cause of neurodevelopmental delay and congenital malformations. Chromosomal microarray analysis (CMA) represents the gold standard for CNVs molecular characterization. We applied CMA throughout the patient's clinical diagnostic workup, as the patient's medical provider requested. We collected CMA results of 3380 patients enrolled for 5 years (2016-2021). We found 830 CNVs in 719 patients with potential clinical significance, that is, (i) pathogenic, (ii) likely pathogenic, and (iii) variants of uncertain significance (VUS), from which 10.6% (predominantly involving chromosomes 15 and 22) were most likely the final cause underpinning the patients' clinical phenotype. For those associated with neurodevelopmental phenotypes, the rate of pathogenic or likely pathogenic findings among the patients with CNVs was 60.75%. When considering epileptic phenotypes, it was 59%. Interestingly, our protocol identified two gains harbored in 17q21.31 and 9q34.3, internationally classified initially as VUS. However, because of their high frequency, we propose that these two VUS be reclassified as likely benign in this widely heterogeneous phenotypic population. These results support the diagnostic yield efficiency of CMA in characterizing CNVs to define the final molecular cause of genetic diseases in this cohort of Colombian patients, the most significant sample of patients from a Latino population, and define new benign polymorphic CNVs.


Asunto(s)
Aberraciones Cromosómicas , Cromosomas , Humanos , Análisis por Micromatrices , Cromosomas Humanos Par 15 , Variaciones en el Número de Copia de ADN/genética
4.
Alzheimers Dement ; 20(4): 2873-2885, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38450831

RESUMEN

INTRODUCTION: Rate of cognitive decline (RCD) in Alzheimer's disease (AD) determines the degree of impairment for patients and of burden for caretakers. We studied the association of RCD with genetic variants in AD. METHODS: RCD was evaluated in 62 familial AD (FAD) and 53 sporadic AD (SAD) cases, and analyzed by whole-exome sequencing for association with common exonic functional variants. Findings were validated in post mortem brain tissue. RESULTS: One hundred seventy-two gene variants in FAD, and 227 gene variants in SAD associated with RCD. In FAD, performance decline of the immediate recall of the Rey-Osterrieth figure test associated with 122 genetic variants. Olfactory receptor OR51B6 showed the highest number of associated variants. Its expression was detected in temporal cortex neurons. DISCUSSION: Impaired olfactory function has been associated with cognitive impairment in AD. Genetic variants in these or other genes could help to identify risk of faster memory decline in FAD and SAD patients.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Humanos , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Disfunción Cognitiva/genética , Disfunción Cognitiva/metabolismo , Encéfalo/metabolismo , Neuronas/metabolismo , Presenilina-1/genética , Presenilina-1/metabolismo , Mutación/genética
5.
Int J Mol Sci ; 24(22)2023 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-38003344

RESUMEN

Huntington's disease (HD) is a genetic disorder caused by a CAG trinucleotide expansion in the huntingtin (HTT) gene. Juan de Acosta, Atlántico, a city located on the Caribbean coast of Colombia, is home to the world's second-largest HD pedigree. Here, we include 291 descendants of this pedigree with at least one family member with HD. Blood samples were collected, and genomic DNA was extracted. We quantified the HTT CAG expansion using an amplicon sequencing protocol. The genetic heterogeneity was measured as the ratio of the mosaicism allele's read peak and the slippage ratio of the allele's read peak from our sequence data. The statistical and bioinformatic analyses were performed with a significance threshold of p < 0.05. We found that the average HTT CAG repeat length in all participants was 21.91 (SD = 8.92). Of the 291 participants, 33 (11.3%, 18 females) had a positive molecular diagnosis for HD. Most affected individuals were adults, and the most common primary and secondary alleles were 17/7 (CAG/CCG) and 17/10 (CAG/CCG), respectively. The mosaicism increased with age in the participants with HD, while the slippage analyses revealed differences by the HD allele type only for the secondary allele. The slippage tended to increase with the HTT CAG repeat length in the participants with HD, but the increase was not statistically significant. This study analyzed the genetic and molecular features of 291 participants, including 33 with HD. We found that the mosaicism increased with age in the participants with HD, particularly for the secondary allele. The most common haplotype was 17/7_17/10. The slippage for the secondary allele varied by the HD allele type, but there was no significant difference in the slippage by sex. Our findings offer valuable insights into HD and could have implications for future research and clinical management.


Asunto(s)
Enfermedad de Huntington , Adulto , Femenino , Humanos , Enfermedad de Huntington/genética , Enfermedad de Huntington/diagnóstico , Colombia , Alelos , ADN , Linaje , Proteína Huntingtina/genética , Expansión de Repetición de Trinucleótido
6.
Neurogenetics ; 23(4): 231-240, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36331689

RESUMEN

C-terminal binding proteins (CtBP1/2) are transcriptional coregulators that play a significant role during vertebrate neurodevelopment. This systematic review aims to identify case reports with genetic variants in CTBP1 and CTBP2 associated with brain development syndromes.We screened different databases (PubMed, Scopus, Google Scholar, LILACS) by systematically searching journals and checking reference lists and citations of background papers. We found fourteen cases (10 males) from five papers carrying two pathogenic, heterozygous variants in the CTBP1 gene (13 individuals carried the missense mutation c.991C T, p.Arg342Trp, and one subject carrying the 2-base pair deletion c.1315_1316delCA, p.Gln439ValfsTer84). These mutations were de novo in 13 cases and one case of maternal germinal mosaicism. Two variants are in the same domain of the protein: Pro-Leu-Asp-Leu-Ser (PLDLS) C terminal. Patients with these mutations exhibit a phenotype with intellectual disability, HADDTS syndrome (hypotonia, ataxia, developmental delay, and tooth enamel defects), and cerebellar volume loss. We did not identify reported cases associated with homozygous mutations harbored in CTBP1. We did not identify any report of neurodevelopment phenotypes associated with heterozygous or homozygous CTBP2 mutations. Due to CTBP2/RIBEYE being a gene with dual function, identifying and interpreting the potential pathogenic variants is challenging.Further, homozygous mutations in the CTBP2 gene may be lethal. The mechanisms involved in the pathogenesis of neurodevelopment due to variants of these proteins have not yet been elucidated, despite some functional evidence. Further studies should be conducted to understand these transcription factors and their interaction with each other and their partners.


Asunto(s)
Oxidorreductasas de Alcohol , Proteínas Co-Represoras , Hipotonía Muscular , Factores de Transcripción , Humanos , Oxidorreductasas de Alcohol/genética , Ataxia/genética , Proteínas Co-Represoras/genética , Hipotonía Muscular/genética , Mutación , Mutación Missense , Factores de Transcripción/genética
7.
Acta Neuropathol ; 141(2): 217-233, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33319314

RESUMEN

Presenilin-1 (PSEN1) mutations cause familial Alzheimer's disease (FAD) characterized by early age of onset (AoO). Examination of a large kindred harboring the PSEN1-E280A mutation reveals a range of AoO spanning 30 years. The pathophysiological drivers and clinical impact of AoO variation in this population are unknown. We examined brains of 23 patients focusing on generation and deposition of beta-amyloid (Aß) and Tau pathology profile. In 14 patients distributed at the extremes of AoO, we performed whole-exome capture to identify genotype-phenotype correlations. We also studied kinome activity, proteasome activity, and protein polyubiquitination in brain tissue, associating it with Tau phosphorylation profiles. PSEN1-E280A patients showed a bimodal distribution for AoO. Besides AoO, there were no clinical differences between analyzed groups. Despite the effect of mutant PSEN1 on production of Aß, there were no relevant differences between groups in generation and deposition of Aß. However, differences were found in hyperphosphorylated Tau (pTau) pathology, where early onset patients showed severe pathology with diffuse aggregation pattern associated with increased activation of stress kinases. In contrast, late-onset patients showed lesser pTau pathology and a distinctive kinase activity. Furthermore, we identified new protective genetic variants affecting ubiquitin-proteasome function in early onset patients, resulting in higher ubiquitin-dependent degradation of differentially phosphorylated Tau. In PSEN1-E280A carriers, altered γ-secretase activity and resulting Aß accumulation are prerequisites for early AoO. However, Tau hyperphosphorylation pattern, and its degradation by the proteasome, drastically influences disease onset in individuals with otherwise similar Aß pathology, hinting toward a multifactorial model of disease for FAD. In sporadic AD (SAD), a wide range of heterogeneity, also influenced by Tau pathology, has been identified. Thus, Tau-induced heterogeneity is a common feature in both AD variants, suggesting that a multi-target therapeutic approach should be used to treat AD.


Asunto(s)
Edad de Inicio , Enfermedad de Alzheimer/patología , Adulto , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/psicología , Precursor de Proteína beta-Amiloide/genética , Femenino , Genotipo , Heterocigoto , Humanos , Masculino , Persona de Mediana Edad , Modelos Neurológicos , Fenotipo , Fosforilación , Presenilina-1/genética , Complejo de la Endopetidasa Proteasomal , Ubiquitinación , Secuenciación del Exoma , Proteínas tau/genética
8.
Am J Hum Genet ; 98(4): 744-54, 2016 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-27018472

RESUMEN

Cleft palate (CP) is a common birth defect occurring in 1 in 2,500 live births. Approximately half of infants with CP have a syndromic form, exhibiting other physical and cognitive disabilities. The other half have nonsyndromic CP, and to date, few genes associated with risk for nonsyndromic CP have been characterized. To identify such risk factors, we performed a genome-wide association study of this disorder. We discovered a genome-wide significant association with a missense variant in GRHL3 (p.Thr454Met [c.1361C>T]; rs41268753; p = 4.08 × 10(-9)) and replicated the result in an independent sample of case and control subjects. In both the discovery and replication samples, rs41268753 conferred increased risk for CP (OR = 8.3, 95% CI 4.1-16.8; OR = 2.16, 95% CI 1.43-3.27, respectively). In luciferase transactivation assays, p.Thr454Met had about one-third of the activity of wild-type GRHL3, and in zebrafish embryos, perturbed periderm development. We conclude that this mutation is an etiologic variant for nonsyndromic CP and is one of few functional variants identified to date for nonsyndromic orofacial clefting. This finding advances our understanding of the genetic basis of craniofacial development and might ultimately lead to improvements in recurrence risk prediction, treatment, and prognosis.


Asunto(s)
Fisura del Paladar/genética , Proteínas de Unión al ADN/genética , Polimorfismo de Nucleótido Simple , Factores de Transcripción/genética , Animales , Estudios de Casos y Controles , Fisura del Paladar/diagnóstico , Modelos Animales de Enfermedad , Etnicidad/genética , Sitios Genéticos , Estudio de Asociación del Genoma Completo , Técnicas de Genotipaje , Humanos , Mutación Missense , Factores de Riesgo , Pez Cebra/embriología , Pez Cebra/genética
10.
Hum Mol Genet ; 25(13): 2862-2872, 2016 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-27033726

RESUMEN

Orofacial clefts (OFCs), which include non-syndromic cleft lip with or without cleft palate (CL/P), are among the most common birth defects in humans, affecting approximately 1 in 700 newborns. CL/P is phenotypically heterogeneous and has a complex etiology caused by genetic and environmental factors. Previous genome-wide association studies (GWASs) have identified at least 15 risk loci for CL/P. As these loci do not account for all of the genetic variance of CL/P, we hypothesized the existence of additional risk loci. We conducted a multiethnic GWAS in 6480 participants (823 unrelated cases, 1700 unrelated controls and 1319 case-parent trios) with European, Asian, African and Central and South American ancestry. Our GWAS revealed novel associations on 2p24 near FAM49A, a gene of unknown function (P = 4.22 × 10-8), and 19q13 near RHPN2, a gene involved in organizing the actin cytoskeleton (P = 4.17 × 10-8). Other regions reaching genome-wide significance were 1p36 (PAX7), 1p22 (ARHGAP29), 1q32 (IRF6), 8q24 and 17p13 (NTN1), all reported in previous GWASs. Stratification by ancestry group revealed a novel association with a region on 17q23 (P = 2.92 × 10-8) among individuals with European ancestry. This region included several promising candidates including TANC2, an oncogene required for development, and DCAF7, a scaffolding protein required for craniofacial development. In the Central and South American ancestry group, significant associations with loci previously identified in Asian or European ancestry groups reflected their admixed ancestry. In summary, we have identified novel CL/P risk loci and suggest new genes involved in craniofacial development, confirming the highly heterogeneous etiology of OFCs.


Asunto(s)
Labio Leporino/genética , Fisura del Paladar/genética , Pueblo Asiatico/genética , Población Negra/genética , Cromosomas Humanos Par 17/genética , Cromosomas Humanos Par 19/genética , Cromosomas Humanos Par 2/genética , Etnicidad , Femenino , Sitios Genéticos , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Polimorfismo de Nucleótido Simple/genética , Factores de Riesgo , Población Blanca/genética
11.
N Engl J Med ; 370(2): 129-38, 2014 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-24401050

RESUMEN

BACKGROUND: In renal Fanconi's syndrome, dysfunction in proximal tubular cells leads to renal losses of water, electrolytes, and low-molecular-weight nutrients. For most types of isolated Fanconi's syndrome, the genetic cause and underlying defect remain unknown. METHODS: We clinically and genetically characterized members of a five-generation black family with isolated autosomal dominant Fanconi's syndrome. We performed genomewide linkage analysis, gene sequencing, biochemical and cell-biologic investigations of renal proximal tubular cells, studies in knockout mice, and functional evaluations of mitochondria. Urine was studied with the use of proton nuclear magnetic resonance ((1)H-NMR) spectroscopy. RESULTS: We linked the phenotype of this family's Fanconi's syndrome to a single locus on chromosome 3q27, where a heterozygous missense mutation in EHHADH segregated with the disease. The p.E3K mutation created a new mitochondrial targeting motif in the N-terminal portion of EHHADH, an enzyme that is involved in peroxisomal oxidation of fatty acids and is expressed in the proximal tubule. Immunocytofluorescence studies showed mistargeting of the mutant EHHADH to mitochondria. Studies of proximal tubular cells revealed impaired mitochondrial oxidative phosphorylation and defects in the transport of fluids and a glucose analogue across the epithelium. (1)H-NMR spectroscopy showed elevated levels of mitochondrial metabolites in urine from affected family members. Ehhadh knockout mice showed no abnormalities in renal tubular cells, a finding that indicates a dominant negative nature of the mutation rather than haploinsufficiency. CONCLUSIONS: Mistargeting of peroxisomal EHHADH disrupts mitochondrial metabolism and leads to renal Fanconi's syndrome; this indicates a central role of mitochondria in proximal tubular function. The dominant negative effect of the mistargeted protein adds to the spectrum of monogenic mechanisms of Fanconi's syndrome. (Funded by the European Commission Seventh Framework Programme and others.).


Asunto(s)
Síndrome de Fanconi/genética , Túbulos Renales Proximales/metabolismo , Mitocondrias/metabolismo , Mutación Missense , Enzima Bifuncional Peroxisomal/genética , Secuencia de Aminoácidos , Animales , Población Negra , Cromosomas Humanos Par 3 , Modelos Animales de Enfermedad , Síndrome de Fanconi/etnología , Femenino , Ligamiento Genético , Humanos , Masculino , Ratones , Ratones Noqueados , Datos de Secuencia Molecular , Linaje , Enzima Bifuncional Peroxisomal/química , Enzima Bifuncional Peroxisomal/metabolismo , Fenotipo , Análisis de Secuencia de ADN
12.
J Child Psychol Psychiatry ; 58(6): 663-678, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28295312

RESUMEN

BACKGROUND: The Multimodal Treatment Study (MTA) began as a 14-month randomized clinical trial of behavioral and pharmacological treatments of 579 children (7-10 years of age) diagnosed with attention-deficit/hyperactivity disorder (ADHD)-combined type. It transitioned into an observational long-term follow-up of 515 cases consented for continuation and 289 classmates (258 without ADHD) added as a local normative comparison group (LNCG), with assessments 2-16 years after baseline. METHODS: Primary (symptom severity) and secondary (adult height) outcomes in adulthood were specified. Treatment was monitored to age 18, and naturalistic subgroups were formed based on three patterns of long-term use of stimulant medication (Consistent, Inconsistent, and Negligible). For the follow-up, hypothesis-generating analyses were performed on outcomes in early adulthood (at 25 years of age). Planned comparisons were used to estimate ADHD-LNCG differences reflecting persistence of symptoms and naturalistic subgroup differences reflecting benefit (symptom reduction) and cost (height suppression) associated with extended use of medication. RESULTS: For ratings of symptom severity, the ADHD-LNCG comparison was statistically significant for the parent/self-report average (0.51 ± 0.04, p < .0001, d = 1.11), documenting symptom persistence, and for the parent/self-report difference (0.21 ± 0.04, p < .0001, d = .60), documenting source discrepancy, but the comparisons of naturalistic subgroups reflecting medication effects were not significant. For adult height, the ADHD group was 1.29 ± 0.55 cm shorter than the LNCG (p < .01, d = .21), and the comparisons of the naturalistic subgroups were significant: the treated group with the Consistent or Inconsistent pattern was 2.55 ± 0.73 cm shorter than the subgroup with the Negligible pattern (p < .0005, d = .42), and within the treated group, the subgroup with the Consistent pattern was 2.36 ± 1.13 cm shorter than the subgroup with the Inconsistent pattern (p < .04, d = .38). CONCLUSIONS: In the MTA follow-up into adulthood, the ADHD group showed symptom persistence compared to local norms from the LNCG. Within naturalistic subgroups of ADHD cases, extended use of medication was associated with suppression of adult height but not with reduction of symptom severity.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad/fisiopatología , Trastorno por Déficit de Atención con Hiperactividad/terapia , Estatura/fisiología , Evaluación de Resultado en la Atención de Salud , Índice de Severidad de la Enfermedad , Adolescente , Adulto , Cuidados Posteriores , Trastorno por Déficit de Atención con Hiperactividad/tratamiento farmacológico , Niño , Terapia Combinada , Femenino , Estudios de Seguimiento , Humanos , Masculino , Adulto Joven
13.
J Autoimmun ; 72: 65-72, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27209085

RESUMEN

OBJECTIVES: Familial autoimmunity and polyautoimmunity represent extreme phenotypes ideal for identifying major genomic variants contributing to autoimmunity. Whole exome sequencing (WES) and linkage analysis are well suited for this purpose due to its strong resolution upon familial segregation patterns of functional protein coding and splice variants. The primary objective of this study was to identify potentially autoimmune causative variants using WES data from extreme pedigrees segregating polyautoimmunity phenotypes. METHODS: DNA of 47 individuals across 10 extreme pedigrees, ascertained from probands affected with polyautoimmunity and familial autoimmunity, were selected for WES. Variant calls were obtained through Genome Analysis Toolkit. Filtration and prioritization framework to identify mutation(s) were applied, and later implemented for genetic linkage analysis. Sanger sequencing corroborated variants with significant linkage. RESULTS: Novel and mostly rare variants harbored in SRA1, MLL4, ABCB8, DHX34 and PLAUR showed significant linkage (LOD scores are >3.0). The strongest signal was in SRA1, with a LOD score of 5.48. Network analyses indicated that SRA1, PLAUR and ABCB8 contribute to regulation of apoptotic processes. CONCLUSIONS: Novel and rare variants in genetic linkage with polyautoimmunity were identified throughout WES. Genes harboring these variants might be major players of autoimmunity.


Asunto(s)
Autoinmunidad/genética , Predisposición Genética a la Enfermedad/genética , Genómica/métodos , Mutación , Transportadoras de Casetes de Unión a ATP/genética , Secuencia de Bases , Proteínas Portadoras/genética , Proteínas de Unión al ADN/genética , Exoma/genética , Salud de la Familia , Femenino , Redes Reguladoras de Genes , N-Metiltransferasa de Histona-Lisina , Humanos , Escala de Lod , Masculino , Linaje , Fenotipo , ARN Helicasas/genética , Receptores del Activador de Plasminógeno Tipo Uroquinasa/genética , Análisis de Secuencia de ADN
14.
Neural Plast ; 2016: 9760314, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26949549

RESUMEN

We previously reported age of onset (AOO) modifier genes in the world's largest pedigree segregating early-onset Alzheimer's disease (AD), caused by the p.Glu280Ala (E280A) mutation in the PSEN1 gene. Here we report the results of a targeted analysis of functional exonic variants in those AOO modifier genes in sixty individuals with PSEN1 E280A AD who were whole-exome genotyped for ~250,000 variants. Standard quality control, filtering, and annotation for functional variants were applied, and common functional variants located in those previously reported as AOO modifier loci were selected. Multiloci linear mixed-effects models were used to test the association between these variants and AOO. An exonic missense mutation in the G72 (DAOA) gene (rs2391191, P = 1.94 × 10(-4), P FDR = 9.34 × 10(-3)) was found to modify AOO in PSEN1 E280A AD. Nominal associations of missense mutations in the CLUAP1 (rs9790, P = 7.63 × 10(-3), P FDR = 0.1832) and EXOC2 (rs17136239, P = 0.0325, P FDR = 0.391) genes were also found. Previous studies have linked polymorphisms in the DAOA gene with the occurrence of neuropsychiatric symptoms such as depression, apathy, aggression, delusions, hallucinations, and psychosis in AD. Our findings strongly suggest that this new conspicuous functional AOO modifier within the G72 (DAOA) gene could be pivotal for understanding the genetic basis of AD.


Asunto(s)
Enfermedad de Alzheimer/genética , Proteínas Portadoras/genética , Mutación Missense , Presenilina-1/genética , Edad de Inicio , Exones , Femenino , Predisposición Genética a la Enfermedad , Humanos , Péptidos y Proteínas de Señalización Intracelular , Masculino
15.
Am J Med Genet B Neuropsychiatr Genet ; 171(8): 1116-1130, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27573710

RESUMEN

The identification of mutations modifying the age of onset (AOO) in Alzheimer's disease (AD) is crucial for understanding the natural history of AD and, therefore, for early interventions. Patients with sporadic AD (sAD) from a genetic isolate in the extremes of the AOO distribution were whole-exome genotyped. Single- and multi-locus linear mixed-effects models were used to identify functional variants modifying AOO. A posteriori enrichment and bioinformatic analyses were applied to evaluate the non-random clustering of the associate variants to physiopathological pathways involved in AD. We identified more than 20 pathogenic, genome-wide statistically significant mutations of major modifier effect on the AOO. These variants are harbored in genes implicated in neuron apoptosis, neurogenesis, inflammatory processes linked to AD, oligodendrocyte differentiation, and memory processes. This set of new genes harboring these mutations could be of importance for prediction, follow-up and eventually as therapeutical targets of AD. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Edad de Inicio , Enfermedad de Alzheimer/genética , Anciano , Exoma , Femenino , Predisposición Genética a la Enfermedad/genética , Estudio de Asociación del Genoma Completo/métodos , Genotipo , Humanos , Masculino , Persona de Mediana Edad , Mutación
16.
J Transl Med ; 13: 173, 2015 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-26031516

RESUMEN

BACKGROUND: Multiple autoimmune syndrome (MAS), an extreme phenotype of autoimmune disorders, is a very well suited trait to tackle genomic variants of these conditions. Whole exome sequencing (WES) is a widely used strategy for detection of protein coding and splicing variants associated with inherited diseases. METHODS: The DNA of eight patients affected by MAS [all of whom presenting with Sjögren's syndrome (SS)], four patients affected by SS alone and 38 unaffected individuals, were subject to WES. Filters to identify novel and rare functional (pathogenic-deleterious) homozygous and/or compound heterozygous variants in these patients and controls were applied. Bioinformatics tools such as the Human gene connectome as well as pathway and network analysis were applied to test overrepresentation of genes harbouring these variants in critical pathways and networks involved in autoimmunity. RESULTS: Eleven novel and rare functional variants were identified in cases but not in controls, harboured in: MACF1, KIAA0754, DUSP12, ICA1, CELA1, LRP1/STAT6, GRIN3B, ANKLE1, TMEM161A, and FKRP. These were subsequently subject to network analysis and their functional relatedness to genes already associated with autoimmunity was evaluated. Notably, the LRP1/STAT6 novel mutation was homozygous in one MAS affected patient and heterozygous in another. LRP1/STAT6 disclosed the strongest plausibility for autoimmunity. LRP1/STAT6 are involved in extracellular and intracellular anti-inflammatory pathways that play key roles in maintaining the homeostasis of the immune system. Further; networks, pathways, and interaction analyses showed that LRP1 is functionally related to the HLA-B and IL10 genes and it has a substantial impact within immunological pathways and/or reaction to bacterial and other foreign proteins (phagocytosis, regulation of phospholipase A2 activity, negative regulation of apoptosis and response to lipopolysaccharides). Further, ICA1 and STAT6 were also closely related to AIRE and IRF5, two very well known autoimmunity genes. CONCLUSIONS: Novel and rare exonic mutations that may account for autoimmunity were identified. Among those, the LRP1/STAT6 novel mutation has the strongest case for being categorised as potentially causative of MAS given the presence of intriguing patterns of functional interaction with other major genes shaping autoimmunity.


Asunto(s)
Predisposición Genética a la Enfermedad , Genoma Humano , Mutación/genética , Síndrome de Sjögren/genética , Adulto , Anciano , Autoinmunidad/genética , Secuencia de Bases , Estudios de Casos y Controles , Conectoma , Femenino , Redes Reguladoras de Genes , Humanos , Persona de Mediana Edad , Fenotipo
17.
Neuroimmunomodulation ; 22(4): 263-73, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25633245

RESUMEN

OBJECTIVES: Caspase-1 (casp1), a key protease involved in the systemic inflammatory response syndrome (SIRS), controls the brain expression of a set of eight genes: Nos2 and Ptgs2 (nitric oxide synthase 2 and prostaglandin-endoperoxide synthase 2, two inducible enzymes), Cxcl1 and Cxcl10 (C-X-C motif chemokine ligand 1 and ligand 10), Tgtp and Gbp2 (T cell-specific GTPase 1 and guanylate-binding protein 2, two GTPases), Adamts1 (a disintegrin-like and metallopeptidase with thrombospondin type 1 motif, 1, a metalloprotease) and Il1rn (interleukin-1 receptor antagonist). Our objective was to ascertain whether casp1 also controlled the peripheral expression of these genes and, if so, to compare their central versus peripheral patterns of gene expression in immune and endocrine tissues during SIRS. METHODS: Wild-type (wt) and casp1 knockout (casp1(-/-)) mice were injected with either saline or a high dose of endotoxin/lipopolysaccharide (LPS; 800 µg/mice i.p.). Saline-injected mice were immediately euthanized after injection, whereas LPS-injected mice were sacrificed 6 and 12 h after LPS administration. Hippocampal, splenic and adrenal gene expressions were determined by real-time PCR. RESULTS: Overall, casp1(-/-) mice showed a lower inflammatory response than wt mice. The expression levels of powerful proinflammatory factors such as Nos2 and Ptgs2 was reduced in casp1(-/-) mice. Moreover, a hierarchical clustering analysis aimed at studying patterns of gene coexpression revealed large alterations in the hippocampal pattern of casp1(-/-) mice. Surprisingly, the expression of Adamts1 was increased in the hippocampus and adrenals of casp1(-/-) mice. CONCLUSIONS: The resilience of casp1(-/-) mice to SIRS lethality is associated with a lower inflammatory response, loss of hippocampal gene coexpression patterns, and increased hippocampal Adamts1 gene expression. The latter might be beneficial for casp1(-/-) mice, since ADAMTS1 is likely to play a role in neuronal plasticity. The mechanisms described here may help the development of either novel biomarkers or therapeutic targets against SIRS/sepsis.


Asunto(s)
Glándulas Suprarrenales/metabolismo , Caspasa 1/metabolismo , Expresión Génica , Hipocampo/metabolismo , Lipopolisacáridos/farmacología , Síndrome de Respuesta Inflamatoria Sistémica/metabolismo , Animales , Caspasa 1/deficiencia , Caspasa 1/genética , Modelos Animales de Enfermedad , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Bazo/metabolismo , Síndrome de Respuesta Inflamatoria Sistémica/inducido químicamente
18.
N Engl J Med ; 364(7): 616-26, 2011 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-21323541

RESUMEN

BACKGROUND: Idiopathic membranous nephropathy is a major cause of the nephrotic syndrome in adults, but its etiologic basis is not fully understood. We investigated the genetic basis of biopsy-proven cases of idiopathic membranous nephropathy in a white population. METHODS: We performed independent genomewide association studies of single-nucleotide polymorphisms (SNPs) in patients with idiopathic membranous nephropathy from three populations of white ancestry (75 French, 146 Dutch, and 335 British patients). The patients were compared with racially matched control subjects; population stratification and quality controls were carried out according to standard criteria. Associations were calculated by means of a chi-square basic allele test; the threshold for significance was adjusted for multiple comparisons (with the Bonferroni method). RESULTS: In a joint analysis of data from the 556 patients studied (398 men), we identified significant alleles at two genomic loci associated with idiopathic membranous nephropathy. Chromosome 2q24 contains the gene encoding M-type phospholipase A(2) receptor (PLA(2)R1) (SNP rs4664308, P=8.6×10(-29)), previously shown to be the target of an autoimmune response. Chromosome 6p21 contains the gene encoding HLA complex class II HLA-DQ alpha chain 1 (HLA-DQA1) (SNP rs2187668, P=8.0×10(-93)). The association with HLA-DQA1 was significant in all three populations (P=1.8×10(-9), P=5.6×10(-27), and P=5.2×10(-36) in the French, Dutch, and British groups, respectively). The odds ratio for idiopathic membranous nephropathy with homozygosity for both risk alleles was 78.5 (95% confidence interval, 34.6 to 178.2). CONCLUSIONS: An HLA-DQA1 allele on chromosome 6p21 is most closely associated with idiopathic membranous nephropathy in persons of white ancestry. This allele may facilitate an autoimmune response against targets such as variants of PLA2R1. Our findings suggest a basis for understanding this disease and illuminate how adaptive immunity is regulated by HLA.


Asunto(s)
Estudio de Asociación del Genoma Completo , Glomerulonefritis Membranosa/genética , Antígenos HLA-DQ/genética , Polimorfismo de Nucleótido Simple , Receptores de Fosfolipasa A2/genética , Alelos , Cromosomas Humanos Par 2 , Cromosomas Humanos Par 6 , Europa (Continente) , Femenino , Genotipo , Cadenas alfa de HLA-DQ , Humanos , Masculino , Oportunidad Relativa , Población Blanca/genética
20.
Alzheimers Dement ; 10(5): 552-61, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24239247

RESUMEN

BACKGROUND: Alzheimer's disease (AD) is the most common cause of dementia; the main risk factors are age and several recently identified genes. A major challenge for AD research is the early detection of subjects at risk. The aim of this study is to develop a predictive model using proton magnetic resonance spectroscopy (1H-MRS), a noninvasive technique that evaluates brain chemistry in vivo, for monitoring the clinical outcome of carriers of a fully penetrant mutation that causes AD. METHODS: We studied 75 subjects from the largest multigenerational pedigree in the world (∼5000 people) that segregates a unique form of early-onset Alzheimer's disease (EOAD) caused by a fully penetrant mutation in the Presenilin-1 gene (PSEN1 p.Glu280Ala [E280 A]). Forty-four subjects were carriers of the mutation, and 31 were noncarriers. Seventeen carriers had either mild cognitive impairment (MCI) or early-stage AD (collectively MCI-AD). In right and left parietal white mater and parasagittal parietal gray matter (RPPGM and LPPGM) of the posterior cingulate gyrus and precuneus, we measured levels of the brain metabolites N-acetylaspartate (NAA), inositol (Ins), choline (Cho), and glutamate-glutamine complex (Glx) relative to creatine (Cr) levels (NAA/Cr, Ins/Cr, Cho/Cr, and Glx/Cr, respectively) with two-dimensional 1H-MRS. Using advanced recursive partition analysis and random forest analysis, we built classificatory decision trees for both mutation carrier status and the presence of MCI-AD symptoms, fitting them to 1H-MRS data while controlling for age, educational level, and sex. RESULTS: We found that (1) the combination of LPPGM Cho/Cr<0.165 and RPPGM Glx/Cr>1.54 fully excluded carriers; (2) LPPGM Cho/Cr>0.165, RPPGM Glx/Cr<1.54, and left parietal white mater NAA/Cr>1.16 identified asymptomatic carriers with sensitivity of 97.7% and specificity of 77.4%; and (3) RPPGM NAA/Cr>1.05 defined asymptomatic subjects (independent of carrier status) with sensitivity of 100% and a specificity of 96.6%. CONCLUSIONS: Brain metabolites measured by 1H-MRS in the posterior cingulate gyrus and precuneus are optimally sensitive and specific potential noninvasive biomarkers of subclinical emergence of AD caused by the PSEN1 p.Glu280Ala (E280 A) mutation.


Asunto(s)
Enfermedad de Alzheimer/diagnóstico , Encéfalo/metabolismo , Heterocigoto , Mutación , Presenilina-1/genética , Espectroscopía de Protones por Resonancia Magnética/métodos , Enfermedad de Alzheimer/metabolismo , Disfunción Cognitiva/genética , Disfunción Cognitiva/metabolismo , Diagnóstico Precoz , Femenino , Humanos , Masculino , Modelos Neurológicos , Curva ROC , Sensibilidad y Especificidad , Procesamiento de Señales Asistido por Computador
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA