Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Mol Cell ; 81(21): 4377-4397.e12, 2021 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-34478647

RESUMEN

Structural heterogeneity of nucleosomes in functional chromosomes is unknown. Here, we devise the template-, reference- and selection-free (TRSF) cryo-EM pipeline to simultaneously reconstruct cryo-EM structures of protein complexes from interphase or metaphase chromosomes. The reconstructed interphase and metaphase nucleosome structures are on average indistinguishable from canonical nucleosome structures, despite DNA sequence heterogeneity, cell-cycle-specific posttranslational modifications, and interacting proteins. Nucleosome structures determined by a decoy-classifying method and structure variability analyses reveal the nucleosome structural variations in linker DNA, histone tails, and nucleosome core particle configurations, suggesting that the opening of linker DNA, which is correlated with H2A C-terminal tail positioning, is suppressed in chromosomes. High-resolution (3.4-3.5 Å) nucleosome structures indicate DNA-sequence-independent stabilization of superhelical locations ±0-1 and ±3.5-4.5. The linker histone H1.8 preferentially binds to metaphase chromatin, from which chromatosome cryo-EM structures with H1.8 at the on-dyad position are reconstituted. This study presents the structural characteristics of nucleosomes in chromosomes.


Asunto(s)
Cromosomas/química , Interfase , Metafase , Nucleosomas/metabolismo , Animales , Comunicación Celular , Ciclo Celular , División Celular , Cromatina/química , Simulación por Computador , Microscopía por Crioelectrón , ADN/química , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Nucleosomas/química , Conformación Proteica , Dominios Proteicos , Procesamiento Proteico-Postraduccional , Xenopus
2.
EMBO J ; 40(5): e105671, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33463726

RESUMEN

The CENP-A nucleosome is a key structure for kinetochore assembly. Once the CENP-A nucleosome is established in the centromere, additional proteins recognize the CENP-A nucleosome to form a kinetochore. CENP-C and CENP-N are CENP-A binding proteins. We previously demonstrated that vertebrate CENP-C binding to the CENP-A nucleosome is regulated by CDK1-mediated CENP-C phosphorylation. However, it is still unknown how the phosphorylation of CENP-C regulates its binding to CENP-A. It is also not completely understood how and whether CENP-C and CENP-N act together on the CENP-A nucleosome. Here, using cryo-electron microscopy (cryo-EM) in combination with biochemical approaches, we reveal a stable CENP-A nucleosome-binding mode of CENP-C through unique regions. The chicken CENP-C structure bound to the CENP-A nucleosome is stabilized by an intramolecular link through the phosphorylated CENP-C residue. The stable CENP-A-CENP-C complex excludes CENP-N from the CENP-A nucleosome. These findings provide mechanistic insights into the dynamic kinetochore assembly regulated by CDK1-mediated CENP-C phosphorylation.


Asunto(s)
Proteína A Centromérica/metabolismo , Centrómero/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Microscopía por Crioelectrón/métodos , Cinetocoros/metabolismo , Nucleosomas/metabolismo , Animales , Centrómero/ultraestructura , Proteína A Centromérica/ultraestructura , Pollos , Proteínas Cromosómicas no Histona/ultraestructura , Cinetocoros/ultraestructura , Modelos Moleculares , Nucleosomas/ultraestructura , Fosforilación , Conformación Proteica
3.
J Am Chem Soc ; 145(29): 15963-15970, 2023 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-37452763

RESUMEN

A nonribosomal peptide-synthesizing molecular machine, RimK, adds l-glutamic acids to the C-terminus of ribosomal protein S6 (RpsF) in vivo and synthesizes poly-α-glutamates in vitro. However, the mechanism of the successive glutamate addition, which is fueled by ATP, remains unclear. Here, we investigate the successive peptide-synthesizing mechanism of RimK via the molecular dynamics (MD) simulation of glutamate binding. We first show that RimK adopts three stable structural states with respect to the ATP-binding loop and the triphosphate chain of the bound ATP. We then show that a glutamate in solution preferentially binds to a positively charged belt-like region of RimK and the bound glutamate exhibits Brownian motion along the belt. The binding-energy landscape shows that the open-to-closed transition of the ATP-binding loop and the bent-to-straight transition of the triphosphate chain of ATP can function as an electrostatic ratchet that guides the bound glutamate to the active site. We then show the binding site of the second glutamate, which allows us to infer the ligation mechanism. Consistent with MD results, the crystal structure of RimK we obtained in the presence of RpsF presents an electron density that is presumed to correspond to the C-terminus of RpsF. We finally propose a mechanism for the successive peptide synthesis by RimK and discuss its similarity to other molecular machines.


Asunto(s)
Ácido Glutámico , Péptidos , Ácido Glutámico/metabolismo , Electricidad Estática , Adenosina Trifosfato/química
4.
Proc Natl Acad Sci U S A ; 117(33): 19661-19663, 2020 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-32747537

RESUMEN

The structural unit of eukaryotic chromatin is a nucleosome, comprising two histone H2A-H2B heterodimers and one histone (H3-H4)2 tetramer, wrapped around by ∼146 bp of DNA. The N-terminal flexible histone tails stick out from the histone core and have extensive posttranslational modifications, causing epigenetic changes of chromatin. Although crystal and cryogenic electron microscopy structures of nucleosomes are available, the flexible tail structures remain elusive. Using NMR, we have examined the dynamics of histone H3 tails in nucleosomes containing unmodified and tetra-acetylated H4 tails. In unmodified nucleosome, the H3 tail adopts a dynamic equilibrium structure between DNA-contact and reduced-contact states. In acetylated H4 nucleosome, however, the H3 tail equilibrium shifts to a mainly DNA-contact state with a minor reduced-contact state. The acetylated H4 tail is dynamically released from its own DNA-contact state to a reduced-contact state, while the H3 tail DNA-contact state becomes major. Notably, H3 K14 in the acetylated H4 nucleosome is much more accessible to acetyltransferase Gcn5 relative to unmodified nucleosome, possibly due to the formation of a favorable H3 tail conformation for Gcn5. In summary, each histone tail adopts a characteristic dynamic state but regulates one other, probably creating a histone tail network even on a nucleosome.


Asunto(s)
Histonas/química , Histonas/metabolismo , Nucleosomas/metabolismo , Acetilación , Secuencias de Aminoácidos , ADN/genética , ADN/metabolismo , Histonas/genética , Humanos , Conformación de Ácido Nucleico , Nucleosomas/genética
5.
Genes Cells ; 25(8): 538-546, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32500630

RESUMEN

Nucleosome positioning and stability affect gene regulation in eukaryotic chromatin. Histone H2A.Z is an evolutionally conserved histone variant that forms mobile and unstable nucleosomes in vivo and in vitro. In the present study, we reconstituted nucleosomes containing human H2A.Z.1 mutants, in which the N-terminal or C-terminal half of H2A.Z.1 was replaced by the corresponding canonical H2A region. We found that the N-terminal portion of H2A.Z.1 is involved in flexible nucleosome positioning, whereas the C-terminal portion leads to weak H2A.Z.1-H2B association in the nucleosome. These results indicate that the N-terminal and C-terminal portions are independently responsible for the H2A.Z.1 nucleosome characteristics.


Asunto(s)
Histonas/genética , Histonas/metabolismo , Nucleosomas/metabolismo , Cromatina/metabolismo , Ensamble y Desensamble de Cromatina/fisiología , Histonas/fisiología , Humanos , Modelos Moleculares , Nucleosomas/genética , Nucleosomas/fisiología , Unión Proteica , Conformación Proteica
6.
Biochem Biophys Res Commun ; 526(3): 580-585, 2020 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-32247611

RESUMEN

The α-glucosyl transfer enzyme XgtA is a novel type α-Glucosidase (EC 3.2.1.20) produced by Xanthomonas campestris WU-9701. One of the unique properties of XgtA is that it shows extremely high α-glucosylation activity toward alcoholic and phenolic -OH groups in compounds using maltose as an α-glucosyl donor and allows for the synthesis of various useful α-glucosides with high yields. XgtA shows no hydrolytic activity toward sucrose and no α-glucosylation activity toward saccharides to produce oligosaccharides. In this report, the crystal structure of XgtA was solved at 1.72 Å resolution. The crystal belonged to space group P22121, with unit-cell parameters a = 73.07, b = 83.48, and c = 180.79 Å. The ß→α loop 4 of XgtA, which is proximal to the catalytic center, formed a unique structure that is not observed in XgtA homologs. Furthermore, XgtA was found to contain unique amino acid residues around its catalytic center. The unique structure of XgtA provides an insight into the mechanism for the regulation of substrate specificity in this enzyme.


Asunto(s)
Xanthomonas campestris/enzimología , alfa-Glucosidasas/química , Dominio Catalítico , Cristalografía por Rayos X , Hidrólisis , Modelos Moleculares , Conformación Proteica , Especificidad por Sustrato , Xanthomonas campestris/química
7.
Nucleic Acids Res ; 46(19): 10007-10018, 2018 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-30053102

RESUMEN

Mutations of the Glu76 residue of canonical histone H2B are frequently found in cancer cells. However, it is quite mysterious how a single amino acid substitution in one of the multiple H2B genes affects cell fate. Here we found that the H2B E76K mutation, in which Glu76 is replaced by Lys (E76K), distorted the interface between H2B and H4 in the nucleosome, as revealed by the crystal structure and induced nucleosome instability in vivo and in vitro. Exogenous production of the H2B E76K mutant robustly enhanced the colony formation ability of the expressing cells, indicating that the H2B E76K mutant has the potential to promote oncogenic transformation in the presence of wild-type H2B. We found that other cancer-associated mutations of histones, H3.1 E97K and H2A.Z.1 R80C, also induced nucleosome instability. Interestingly, like the H2B E76K mutant, the H3.1 E97K mutant was minimally incorporated into chromatin in cells, but it enhanced the colony formation ability. In contrast, the H2A.Z.1 R80C mutant was incorporated into chromatin in cells, and had minor effects on the colony formation ability of the cells. These characteristics of histones with cancer-associated mutations may provide important information toward understanding how the mutations promote cancer progression.


Asunto(s)
Histonas/química , Neoplasias/genética , Nucleosomas/genética , Cromatina/genética , Histonas/genética , Humanos , Mutación , Nucleosomas/química , Pliegue de Proteína
8.
Biochemistry ; 56(16): 2184-2196, 2017 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-28374988

RESUMEN

Non-allelic histone variants are considered as epigenetic factors that regulate genomic DNA functions in eukaryotic chromosomes. In this study, we identified three new human histone H3 variants (named H3.6, H3.7, and H3.8), which were previously annotated as pseudogenes. H3.6 and H3.8 conserve the H3.3-specific amino acid residues, but H3.7 shares the specific amino acid residues with H3.1. We successfully reconstituted the nucleosome containing H3.6 in vitro and determined its crystal structure. In the H3.6 nucleosome, the H3.6-specific Val62 residue hydrophobically contacts the cognate H4 molecule, but its contact area is smaller than that of the corresponding H3.3 Ile62 residue. The thermal stability assay revealed that the H3.6 nucleosome is substantially unstable, as compared to the H3.3 nucleosome. Interestingly, mutational analysis demonstrated that the H3.6 Val62 residue is fully responsible for the H3.6 nucleosome instability, probably because of the weakened hydrophobic interaction with H4. We also reconstituted the nucleosome containing H3.8, but its thermal stability was quite low. In contrast, purified H3.7 failed to form nucleosomes in vitro. The identification and characterization of these novel human histone H3 variants provide important new insights into understanding the epigenetic regulation of the human genome.


Asunto(s)
Histonas/química , Isoformas de Proteínas/química , Cromatina/metabolismo , Cristalografía por Rayos X , Histonas/genética , Histonas/metabolismo , Humanos , Conformación Proteica
9.
J Am Chem Soc ; 139(22): 7568-7576, 2017 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-28534629

RESUMEN

Posttranslational modifications (PTMs) of histones play an important role in the complex regulatory mechanisms governing gene transcription, and their dysregulation can cause diseases such as cancer. The lack of methods for site-selectively modifying native chromatin, however, limits our understanding of the functional roles of a specific histone PTM, not as a single mark, but in the intertwined PTM network. Here, we report a synthetic catalyst DMAP-SH (DSH), which activates chemically stable thioesters (including acetyl-CoA) under physiological conditions and transfers various acyl groups to the proximate amino groups. Our data suggest that DSH, conjugated with a nucleosome ligand, such as pyrrole-imidazole-polyamide and LANA (latency-associated nuclear antigen)-peptide, promotes both natural (including acetylation, butyrylation, malonylation, and ubiquitination) and non-natural (azido- and phosphoryl labeling) PTMs on histones in recombinant nucleosomes and/or in native chromatin, at lysine residues close to the DSH moiety. To investigate the validity of our method, we used LANA-DSH to promote histone H2B lysine-120 (K120) acylation, the function of which is largely unknown. H2BK120 acetylation and malonylation modulated higher-order chromatin structures by reducing internucleosomal interactions, and this modulation was further enhanced by histone tail acetylation. This approach, therefore, may have versatile applications for dissecting the regulatory mechanisms underlying chromatin function.


Asunto(s)
Cromatina/química , Histonas/química , Procesamiento Proteico-Postraduccional , Acetilación , Catálisis , Modelos Moleculares , Estereoisomerismo
10.
Nucleic Acids Res ; 43(10): 4909-22, 2015 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-25916850

RESUMEN

CENP-A and CENP-B are major components of centromeric chromatin. CENP-A is the histone H3 variant, which forms the centromere-specific nucleosome. CENP-B specifically binds to the CENP-B box DNA sequence on the centromere-specific repetitive DNA. In the present study, we found that the CENP-A nucleosome more stably retains human CENP-B than the H3.1 nucleosome in vitro. Specifically, CENP-B forms a stable complex with the CENP-A nucleosome, when the CENP-B box sequence is located at the proximal edge of the nucleosome. Surprisingly, the CENP-B binding was weaker when the CENP-B box sequence was located in the distal linker region of the nucleosome. This difference in CENP-B binding, depending on the CENP-B box location, was not observed with the H3.1 nucleosome. Consistently, we found that the DNA-binding domain of CENP-B specifically interacted with the CENP-A-H4 complex, but not with the H3.1-H4 complex, in vitro. These results suggested that CENP-B forms a more stable complex with the CENP-A nucleosome through specific interactions with CENP-A, if the CENP-B box is located proximal to the CENP-A nucleosome. Our in vivo assay also revealed that CENP-B binding in the vicinity of the CENP-A nucleosome substantially stabilizes the CENP-A nucleosome on alphoid DNA in human cells.


Asunto(s)
Autoantígenos/metabolismo , Proteína B del Centrómero/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Nucleosomas/metabolismo , Autoantígenos/química , Línea Celular Tumoral , Centrómero/química , Proteína A Centromérica , Proteínas Cromosómicas no Histona/química , ADN/química , ADN/metabolismo , Histonas/metabolismo , Humanos , Dominios y Motivos de Interacción de Proteínas
11.
Methods ; 70(2-3): 119-26, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25220913

RESUMEN

Nucleosomes are extremely stable histone-DNA complexes that form the building blocks of chromatin, which accommodates genomic DNA within the nucleus. The dynamic properties of chromatin play essential roles in regulating genomic DNA functions, such as DNA replication, recombination, repair, and transcription. Histones are the protein components of nucleosomes, and their diverse modifications and variants increase the versatility of nucleosome structures and their dynamics in chromatin. Therefore, a technique to evaluate the physical properties of nucleosomes would facilitate functional studies of the various nucleosomes. In this report, we describe a convenient assay for evaluating the thermal stability of nucleosomes in vitro.


Asunto(s)
Histonas/química , Microscopía Fluorescente/métodos , Nucleosomas/química , Histonas/metabolismo , Modelos Químicos , Modelos Moleculares , Nucleosomas/metabolismo , Temperatura
12.
Biophys J ; 106(10): 2206-13, 2014 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-24853749

RESUMEN

Nucleosomes containing a human histone variant, H2A.B, in an aqueous solution were analyzed by small-angle neutron scattering utilizing a contrast variation technique. Comparisons with the canonical H2A nucleosome structure revealed that the DNA termini of the H2A.B nucleosome are detached from the histone core surface, and flexibly expanded toward the solvent. In contrast, the histone tails are compacted in H2A.B nucleosomes compared to those in canonical H2A nucleosomes, suggesting that they bind to the surface of the histone core and/or DNA. Therefore, the histone tail dynamics may function to regulate the flexibility of the DNA termini in the nucleosomes.


Asunto(s)
Histonas/química , Histonas/metabolismo , Nucleosomas/metabolismo , Humanos , Rotación
13.
bioRxiv ; 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38328033

RESUMEN

Cryo-EM single-particle analyses typically require target macromolecule concentration at 0.05~5.0 mg/ml, which is often difficult to achieve. Here, we devise Magnetic Isolation and Concentration (MagIC)-cryo-EM, a technique enabling direct structural analysis of targets captured on magnetic beads, thereby reducing the targets' concentration requirement to < 0.0005 mg/ml. Adapting MagIC-cryo-EM to a Chromatin Immunoprecipitation protocol, we characterized structural variations of the linker histone H1.8-associated nucleosomes that were isolated from interphase and metaphase chromosomes in Xenopus egg extract. Combining Duplicated Selection To Exclude Rubbish particles (DuSTER), a particle curation method that removes low signal-to-noise ratio particles, we also resolved the 3D cryo-EM structures of H1.8-bound nucleoplasmin NPM2 isolated from interphase chromosomes and revealed distinct open and closed structural variants. Our study demonstrates the utility of MagIC-cryo-EM for structural analysis of scarce macromolecules in heterogeneous samples and provides structural insights into the cell cycle-regulation of H1.8 association to nucleosomes.

14.
Acta Crystallogr D Biol Crystallogr ; 69(Pt 12): 2431-9, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24311584

RESUMEN

The histone H2A.Z variant is widely conserved among eukaryotes. Two isoforms, H2A.Z.1 and H2A.Z.2, have been identified in vertebrates and may have distinct functions in cell growth and gene expression. However, no structural differences between H2A.Z.1 and H2A.Z.2 have been reported. In the present study, the crystal structures of nucleosomes containing human H2A.Z.1 and H2A.Z.2 were determined. The structures of the L1 loop regions were found to clearly differ between H2A.Z.1 and H2A.Z.2, although their amino-acid sequences in this region are identical. This structural polymorphism may have been induced by a substitution that evolutionally occurred at the position of amino acid 38 and by the flexible nature of the L1 loops of H2A.Z.1 and H2A.Z.2. It was also found that in living cells nucleosomal H2A.Z.1 exchanges more rapidly than H2A.Z.2. A mutational analysis revealed that the amino-acid difference at position 38 is at least partially responsible for the distinctive dynamics of H2A.Z.1 and H2A.Z.2. These findings provide important new information for understanding the differences in the regulation and functions of H2A.Z.1 and H2A.Z.2 in cells.


Asunto(s)
Histonas/química , Secuencia de Aminoácidos , Cristalografía por Rayos X , Análisis Mutacional de ADN , Recuperación de Fluorescencia tras Fotoblanqueo , Células HeLa , Histonas/genética , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , Nucleosomas/química , Nucleosomas/genética , Conformación Proteica , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Alineación de Secuencia
15.
Appl Environ Microbiol ; 79(16): 5023-9, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23770908

RESUMEN

Functional peptides are expected to be beneficial compounds that improve our quality of life. To address the growing need for functional peptides, we have examined peptide synthesis by using microbial enzymes. l-Amino acid ligase (Lal) catalyzes the condensation of unprotected amino acids in an ATP-dependent manner and is applicable to fermentative production. Hence, Lal is a promising enzyme to achieve cost-effective synthesis. To obtain a Lal with novel substrate specificity, we focused on the putative Lal involved in the biosynthesis of the dipeptidic phytotoxin designated tabtoxin. The tabS gene was cloned from Pseudomonas syringae NBRC14081 and overexpressed in Escherichia coli cells. The recombinant TabS protein produced showed the broadest substrate specificity of any known Lal; it detected 136 of 231 combinations of amino acid substrates when dipeptide synthesis was examined. In addition, some new substrate specificities were identified and unusual amino acids, e.g., l-pipecolic acid, hydroxy-l-proline, and ß-alanine, were found to be acceptable substrates. Furthermore, kinetic analysis and monitoring of the reactions over a short time revealed that TabS showed distinct substrate selectivity at the N and C termini, which made it possible to specifically synthesize a peptide without by-products such as homopeptides and heteropeptides with the reverse sequence. TabS specifically synthesized the following functional peptides, including their precursors: l-arginyl-l-phenylalanine (antihypertensive effect; yield, 62%), l-leucyl-l-isoleucine (antidepressive effect; yield, 77%), l-glutaminyl-l-tryptophan (precursor of l-glutamyl-l-tryptophan, which has antiangiogenic activity; yield, 54%), l-leucyl-l-serine (enhances saltiness; yield, 83%), and l-glutaminyl-l-threonine (precursor of l-glutamyl-l-threonine, which enhances saltiness; yield, 96%). Furthermore, our results also provide new insights into tabtoxin biosynthesis.


Asunto(s)
Azetidinas/química , Dipéptidos/genética , Pseudomonas syringae/genética , Azetidinas/metabolismo , Clonación Molecular , ADN Bacteriano/genética , ADN Bacteriano/metabolismo , Dipéptidos/química , Dipéptidos/metabolismo , Escherichia coli/genética , Cinética , Ligasas/química , Ligasas/genética , Ligasas/metabolismo , Datos de Secuencia Molecular , Familia de Multigenes , Sistemas de Lectura Abierta , Reacción en Cadena de la Polimerasa , Pseudomonas syringae/química , Pseudomonas syringae/enzimología , Pseudomonas syringae/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Análisis de Secuencia de ADN , Análisis de Secuencia de Proteína , Especificidad por Sustrato
16.
Biochemistry ; 51(15): 3302-9, 2012 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-22448809

RESUMEN

Genomic DNA is packaged into chromatin in eukaryotes, and the nucleosome is the fundamental unit of chromatin. The canonical nucleosome is the octasome, which is composed of two H2A/H2B dimers and two H3/H4 dimers. During transcription elongation, one of the H2A/H2B dimers is removed from the octasome. The depletion of the H2A/H2B dimer is also suggested to occur during DNA replication and repair. The remaining histone components are believed to maintain a nucleosomal structure called a "hexasome", which is probably important for the regulation of gene expression, DNA replication, and repair in chromatin. However, hexasomes are currently poorly understood, due to the lack of in vivo and in vitro studies. Biochemical and structural studies of hexasomes have been hampered by the difficulty of preparing purified hexasomes. In the present study, we successfully reconstituted hexasomes, using recombinant human histones. A micrococcal nuclease treatment and in vitro reconstitution assays revealed that the hexasome tightly wraps approximately 110 base-pairs of DNA, about 40 base-pairs shorter than the length of the DNA wrapped within the canonical nucleosome. A small-angle X-ray scattering analysis revealed that the global structure of the hexasome is similar to that of the canonical nucleosome. Our studies suggest that octasomes can be converted into hexasomes by the eviction of one of the H2A/H2B dimers, and the release of about 40 base-pairs of DNA, without involving large structural changes in the nucleosome core particle.


Asunto(s)
Histonas/química , Nucleosomas/química , Cromatina/química , Cromatina/metabolismo , ADN/química , ADN/metabolismo , Replicación del ADN , Electroforesis en Gel de Poliacrilamida , Histonas/metabolismo , Humanos , Nucleosomas/metabolismo , Conformación Proteica , Multimerización de Proteína , Relación Estructura-Actividad
17.
J Mol Biol ; 434(5): 167413, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-34942166

RESUMEN

Alpha-2-Macroglobulin (A2M) is the critical pan-protease inhibitor of the innate immune system. When proteases cleave the A2M bait region, global structural transformation of the A2M tetramer is triggered to entrap the protease. The structural basis behind the cleavage-induced transformation and the protease entrapment remains unclear. Here, we report cryo-EM structures of native- and intermediate-forms of the Xenopus laevis egg A2M homolog (A2Moo or ovomacroglobulin) tetramer at 3.7-4.1 Å and 6.4 Å resolution, respectively. In the native A2Moo tetramer, two pairs of dimers arrange into a cross-like configuration with four 60 Å-wide bait-exposing grooves. Each bait in the native form threads into an aperture formed by three macroglobulin domains (MG2, MG3, MG6). The bait is released from the narrowed aperture in the induced protomer of the intermediate form. We propose that the intact bait region works as a "latch-lock" to block futile A2M transformation until its protease-mediated cleavage.


Asunto(s)
Proteolisis , Factores de Transcripción , Proteínas de Xenopus , alfa-Macroglobulinas , Microscopía por Crioelectrón , Péptido Hidrolasas/química , Conformación Proteica , Multimerización de Proteína , Factores de Transcripción/química , Proteínas de Xenopus/química , alfa-Macroglobulinas/química
18.
iScience ; 25(3): 103937, 2022 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-35265811

RESUMEN

The nucleosome core particle (NCP) comprises a histone octamer, wrapped around by ∼146-bp DNA, while the nucleosome additionally contains linker DNA. We previously showed that, in the nucleosome, H4 N-tail acetylation enhances H3 N-tail acetylation by altering their mutual dynamics. Here, we have evaluated the roles of linker DNA and/or linker histone on H3 N-tail dynamics and acetylation by using the NCP and the chromatosome (i.e., linker histone H1.4-bound nucleosome). In contrast to the nucleosome, H3 N-tail acetylation and dynamics are greatly suppressed in the NCP regardless of H4 N-tail acetylation because the H3 N-tail is strongly bound between two DNA gyres. In the chromatosome, the asymmetric H3 N-tail adopts two conformations: one contacts two DNA gyres, as in the NCP; and one contacts linker DNA, as in the nucleosome. However, the rate of H3 N-tail acetylation is similar in the chromatosome and nucleosome. Thus, linker DNA and linker histone both regulate H3-tail dynamics and acetylation.

19.
20.
Appl Environ Microbiol ; 77(6): 2019-25, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21278279

RESUMEN

Poly-L-α-amino acids have various applications because of their biodegradable properties and biocompatibility. Microorganisms contain several enzymes that catalyze the polymerization of L-amino acids in an ATP-dependent manner, but the products from these reactions contain amide linkages at the side residues of amino acids: e.g., poly-γ-glutamic acid, poly-ε-lysine, and cyanophycin. In this study, we found a novel catalytic activity of RimK, a ribosomal protein S6-modifying enzyme derived from Escherichia coli K-12. This enzyme catalyzed poly-α-glutamic acid synthesis from unprotected L-glutamic acid (Glu) by hydrolyzing ATP to ADP and phosphate. RimK synthesized poly-α-glutamic acid of various lengths; matrix-assisted laser desorption ionization-time of flight-mass spectrometry showed that a 46-mer of Glu (maximum length) was synthesized at pH 9. Interestingly, the lengths of polymers changed with changing pH. RimK also exhibited 86% activity after incubation at 55°C for 15 min, thus showing thermal stability. Furthermore, peptide elongation seemed to be catalyzed at the C terminus in a stepwise manner. Although RimK showed strict substrate specificity toward Glu, it also used, to a small extent, other amino acids as C-terminal substrates and synthesized heteropeptides. In addition, RimK-catalyzed modification of ribosomal protein S6 was confirmed. The number of Glu residues added to the protein varied with pH and was largest at pH 9.5.


Asunto(s)
Escherichia coli K12/enzimología , Proteínas de Escherichia coli/metabolismo , Ácido Glutámico/química , Péptidos/química , Péptidos/síntesis química , Polilisina/síntesis química , Catálisis , Concentración de Iones de Hidrógeno , Espectroscopía de Resonancia Magnética , Datos de Secuencia Molecular , Polilisina/química , Espectrometría de Masa por Ionización de Electrospray , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA