Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 194
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 177(4): 821-836.e16, 2019 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-30982602

RESUMEN

Whole-genome-sequencing (WGS) of human tumors has revealed distinct mutation patterns that hint at the causative origins of cancer. We examined mutational signatures in 324 WGS human-induced pluripotent stem cells exposed to 79 known or suspected environmental carcinogens. Forty-one yielded characteristic substitution mutational signatures. Some were similar to signatures found in human tumors. Additionally, six agents produced double-substitution signatures and eight produced indel signatures. Investigating mutation asymmetries across genome topography revealed fully functional mismatch and transcription-coupled repair pathways. DNA damage induced by environmental mutagens can be resolved by disparate repair and/or replicative pathways, resulting in an assortment of signature outcomes even for a single agent. This compendium of experimentally induced mutational signatures permits further exploration of roles of environmental agents in cancer etiology and underscores how human stem cell DNA is directly vulnerable to environmental agents. VIDEO ABSTRACT.


Asunto(s)
Carcinógenos Ambientales/clasificación , Neoplasias/genética , Carcinógenos Ambientales/efectos adversos , Daño del ADN/genética , Análisis Mutacional de ADN/métodos , Reparación del ADN/genética , Replicación del ADN , Perfil Genético , Genoma Humano/genética , Humanos , Mutación INDEL/genética , Mutagénesis , Mutación/genética , Células Madre Pluripotentes/metabolismo , Secuenciación Completa del Genoma/métodos
2.
Chem Res Toxicol ; 37(2): 234-247, 2024 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-38232180

RESUMEN

Human tissue three-dimensional (3D) organoid cultures have the potential to reproduce in vitro the physiological properties and cellular architecture of the organs from which they are derived. The ability of organoid cultures derived from human stomach, liver, kidney, and colon to metabolically activate three dietary carcinogens, aflatoxin B1 (AFB1), aristolochic acid I (AAI), and 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), was investigated. In each case, the response of a target tissue (liver for AFB1; kidney for AAI; colon for PhIP) was compared with that of a nontarget tissue (gastric). After treatment cell viabilities were measured, DNA damage response (DDR) was determined by Western blotting for p-p53, p21, p-CHK2, and γ-H2AX, and DNA adduct formation was quantified by mass spectrometry. Induction of the key xenobiotic-metabolizing enzymes (XMEs) CYP1A1, CYP1A2, CYP3A4, and NQO1 was assessed by qRT-PCR. We found that organoids from different tissues can activate AAI, AFB1, and PhIP. In some cases, this metabolic potential varied between tissues and between different cultures of the same tissue. Similarly, variations in the levels of expression of XMEs were observed. At comparable levels of cytotoxicity, organoids derived from tissues that are considered targets for these carcinogens had higher levels of adduct formation than a nontarget tissue.


Asunto(s)
Aductos de ADN , Neoplasias , Humanos , Carcinógenos/toxicidad , Carcinógenos/metabolismo , Hígado/metabolismo , Organoides/metabolismo
3.
Mutagenesis ; 37(2): 143-154, 2022 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-34147034

RESUMEN

Advances in three-dimensional (3D) cell culture technology have led to the development of more biologically and physiologically relevant models to study organ development, disease, toxicology and drug screening. Organoids have been derived from many mammalian tissues, both normal and tumour, from adult stem cells and from pluripotent stem cells. Tissue organoids can retain many of the cell types and much of the structure and function of the organ of origin. Organoids derived from pluripotent stem cells display increased complexity compared with organoids derived from adult stem cells. It has been shown that organoids express many functional xenobiotic-metabolising enzymes including cytochrome P450s (CYPs). This has benefitted the drug development field in facilitating pre-clinical testing of more personalised treatments and in developing large toxicity and efficacy screens for a range of compounds. In the field of environmental and genetic toxicology, treatment of organoids with various compounds has generated responses that are close to those obtained in primary tissues and in vivo models, demonstrating the biological relevance of these in vitro multicellular 3D systems. Toxicological investigations of compounds in different tissue organoids have produced promising results indicating that organoids will refine future studies on the effects of environmental exposures and carcinogenic risk to humans. With further development and standardised procedures, advancing our understanding on the metabolic capabilities of organoids will help to validate their use to investigate the modes of action of environmental carcinogens.


Asunto(s)
Organoides , Células Madre Pluripotentes , Animales , Carcinogénesis , Técnicas de Cultivo de Célula , Humanos , Mamíferos , Modelos Biológicos
4.
Int J Mol Sci ; 24(1)2022 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-36614051

RESUMEN

Organoids are 3D cultures that to some extent reproduce the structure, composition and function of the mammalian tissues from which they derive, thereby creating in vitro systems with more in vivo-like characteristics than 2D monocultures. Here, the ability of human organoids derived from normal gastric, pancreas, liver, colon and kidney tissues to metabolise the environmental carcinogen benzo[a]pyrene (BaP) was investigated. While organoids from the different tissues showed varied cytotoxic responses to BaP, with gastric and colon organoids being the most susceptible, the xenobiotic-metabolising enzyme (XME) genes, CYP1A1 and NQO1, were highly upregulated in all organoid types, with kidney organoids having the highest levels. Furthermore, the presence of two key metabolites, BaP-t-7,8-dihydrodiol and BaP-tetrol-l-1, was detected in all organoid types, confirming their ability to metabolise BaP. BaP bioactivation was confirmed both by the activation of the DNA damage response pathway (induction of p-p53, pCHK2, p21 and γ-H2AX) and by DNA adduct formation. Overall, pancreatic and undifferentiated liver organoids formed the highest levels of DNA adducts. Colon organoids had the lowest responses in DNA adduct and metabolite formation, as well as XME expression. Additionally, high-throughput RT-qPCR explored differences in gene expression between organoid types after BaP treatment. The results demonstrate the potential usefulness of organoids for studying environmental carcinogenesis and genetic toxicology.


Asunto(s)
Benzo(a)pireno , Aductos de ADN , Organoides , Humanos , Activación Metabólica , Benzo(a)pireno/toxicidad , Citocromo P-450 CYP1A1/metabolismo , Aductos de ADN/metabolismo , Hígado/metabolismo , Organoides/efectos de los fármacos , Organoides/metabolismo
5.
Mutagenesis ; 36(1): 63-74, 2021 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-31816077

RESUMEN

In vitro genotoxicity assays utilising human skin models are becoming important tools for the safety assessment of chemicals whose primary exposure is via the dermal route. In order to explore metabolic competency and inducibility of CYP450 activating enzymes, 3D reconstructed human skin tissues were topically treated with 2-acetylaminofluorene (2-AAF) and its genotoxic metabolites, N-hydroxy-2-acetylaminofluorene (N-OH-2-AAF) and N-hydroxy-2-aminofluorene (N-OH-2-AF), which primarily cause DNA damage by forming DNA adducts. 2-AAF did not increase DNA damage measured in the reconstructed skin micronucleus (RSMN) assay when administered in multiple applications at 24 h intervals but was detected in the skin comet assay in the presence of the DNA polymerase inhibitor aphidicolin (APC). Similarly, no increase was found with N-OH-2-AAF in the RSMN assay after multiple treatments whereas a single 3 h exposure to N-OH-2-AAF caused a large dose-related increase in the skin comet assay. A significant increase in the RSMN assay was only obtained with the highly reactive N-OH-2-AF metabolite after multiple treatments over 72 h, whereas N-OH-2-AF caused a strong increase after a single 3 h exposure in the skin comet assay. In support of these results, DNA adduct formation, measured by the 32P-postlabelling assay, was examined. Adduct levels after 2-AAF treatment for 3 h were minimal but increased >10-fold after multiple exposures over 48 h, suggesting that enzyme(s) that metabolise 2-AAF are induced in the skin models. As expected, a single 3 h exposure to N-OH-2-AAF and N-OH-2-AF resulted in adduct levels that were at least 10-fold greater than those after multiple exposures to 2-AAF despite ~100-fold lower tested concentrations. Our results demonstrate that DNA damage caused by 2-AAF metabolites is more efficiently detected in the skin comet assay than the RSMN assay and after multiple exposures and enzyme induction, 2-AAF-induced DNA damage can be detected in the APC-modified comet assay.


Asunto(s)
2-Acetilaminofluoreno/efectos adversos , Aductos de ADN , Daño del ADN , Pruebas de Micronúcleos/métodos , Mutágenos/efectos adversos , Piel/patología , Carcinógenos/farmacología , Fluorenos/efectos adversos , Humanos , Hidroxiacetilamino Fluoreno/efectos adversos , Piel/efectos de los fármacos , Piel/metabolismo
6.
Arch Toxicol ; 95(3): 1055-1069, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33420596

RESUMEN

Benzo[a]pyrene (BaP) is bioactivated in most organisms by the cytochrome P450 (CYP) enzymes, mainly CYP1A1, ultimately resulting in the reactive metabolite BaP-7,8-dihydrodiol-9,10-epoxide (BPDE) capable of covalently binding to DNA and forming adducts. This step has been defined as the key process in cancer initiation in humans. However, limited knowledge is available about the consequences of BaP exposure in organisms lacking this classical CYP1A1 pathway, one example is the model nematode Caenorhabditis elegans. The aim of this study was to define the genotoxic potential of BaP in C. elegans and to advance our understanding of xenobiotic processing in the absence of the CYP1A1 pathway. Exposure to high concentrations of BaP (0-40 µM) significantly affected life cycle endpoints of C. elegans, which were manifested by a reduced reproductive output and shortened life span. An optimised comet assay revealed that DNA damage increased in a dose-dependent manner; however, no bulky DNA adducts (dG-N2-BPDE) were observed by 32P-postlabelling. Global transcriptomic analysis by RNA-Seq identified responsive transcript families, most prominently members of the cyp-35 and UDP-glucuronosyltransferases (UGTs) enzyme families, both of which are linked to xenobiotic metabolism. Strains harbouring mutations in the cyp-35A2 and cyp-35A3 genes were notably less prone to BaP-mediated toxicity, and BaP led to longevity in cyp-35A5 mutants. In summary, BaP induces transcriptional, genotoxic and phenotypic responses in C. elegans, despite the absence of the classical CYP1A1 bioactivation pathway. This provides first evidence that parallel pathways are implicated in BaP metabolism in C. elegans and this seems to be mediated via the cyp-35 pathway.


Asunto(s)
Benzo(a)pireno/toxicidad , Caenorhabditis elegans/efectos de los fármacos , Daño del ADN/efectos de los fármacos , Mutágenos/toxicidad , Animales , Benzo(a)pireno/administración & dosificación , Benzo(a)pireno/metabolismo , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Ensayo Cometa , Citocromo P-450 CYP1A1/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Pruebas de Mutagenicidad , Mutágenos/administración & dosificación
7.
Int J Mol Sci ; 22(19)2021 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-34638820

RESUMEN

The plant extract aristolochic acid (AA), containing aristolochic acids I (AAI) and II (AAII) as major components, causes aristolochic acid nephropathy (AAN) and Balkan endemic nephropathy (BEN), unique renal diseases associated with upper urothelial cancer. Recently (Chemical Research in Toxicology 33(11), 2804-2818, 2020), we showed that the in vivo metabolism of AAI and AAII in Wistar rats is influenced by their co-exposure (i.e., AAI/AAII mixture). Using the same rat model, we investigated how exposure to the AAI/AAII mixture can influence AAI and AAII DNA adduct formation (i.e., AA-mediated genotoxicity). Using 32P-postlabelling, we found that AA-DNA adduct formation was increased in the livers and kidneys of rats treated with AAI/AAII mixture compared to rats treated with AAI or AAII alone. Measuring the activity of enzymes involved in AA metabolism, we showed that enhanced AA-DNA adduct formation might be caused partially by both decreased AAI detoxification as a result of hepatic CYP2C11 inhibition during treatment with AAI/AAII mixture and by hepatic or renal NQO1 induction, the key enzyme predominantly activating AA to DNA adducts. Moreover, our results indicate that AAII might act as an inhibitor of AAI detoxification in vivo. Consequently, higher amounts of AAI might remain in liver and kidney tissues, which can be reductively activated, resulting in enhanced AAI DNA adduct formation. Collectively, these results indicate that AAII present in the plant extract AA enhances the genotoxic properties of AAI (i.e., AAI DNA adduct formation). As patients suffering from AAN and BEN are always exposed to the plant extract (i.e., AAI/AAII mixture), our findings are crucial to better understanding host factors critical for AAN- and BEN-associated urothelial malignancy.


Asunto(s)
Ácidos Aristolóquicos/toxicidad , Carcinogénesis , Carcinógenos/toxicidad , Aductos de ADN/metabolismo , ADN de Neoplasias/metabolismo , Animales , Carcinogénesis/inducido químicamente , Carcinogénesis/metabolismo , Masculino , Ratas , Ratas Wistar
8.
Mutagenesis ; 35(6): 453-463, 2020 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-33399867

RESUMEN

Chemicals in commerce or under development must be assessed for genotoxicity; assessment is generally conducted using validated assays (e.g. Tk mouse lymphoma assay) as part of a regulatory process. Currently, the MutaMouse FE1 cell mutagenicity assay is undergoing validation for eventual use as a standard in vitro mammalian mutagenicity assay. FE1 cells have been shown to be metabolically competent with respect to some cytochrome P450 (CYP) isozymes; for instance, they can convert the human carcinogen benzo[a]pyrene into its proximate mutagenic metabolite. However, some contradictory results have been noted for other genotoxic carcinogens that require two-step metabolic activation (e.g. 2-acetylaminofluorene and 2-amino-3-methylimidazo[4,5-f]quinoxaline). Here, we examined three known or suspected human carcinogens, namely acrylamide, 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) and 4-aminobiphenyl (4-ABP), together with their proximate metabolites (i.e. glycidamide, N-OH-PhIP and N-OH-4-ABP), to aid in the validation of the FE1 cell mutagenicity assay. Assessments of the parent compounds were conducted both in the presence and absence of an exogenous metabolic activation mixture S9; assessments of the metabolites were in the absence of S9. The most potent compound was N-OH-PhIP -S9, which elicited a mutant frequency (MF) level 5.3-fold over background at 5 µM. There was a 4.3-fold increase for PhIP +S9 at 5 µM, a 1.7-fold increase for glycidamide -S9 at 3.5 mM and a 1.5-fold increase for acrylamide +S9 at 4 mM. Acrylamide -S9 elicited a marginal 1.4-fold MF increase at 8 mM. Treatment with PhIP -S9, 4-ABP ±S9 and N-OH-4-ABP -S9 failed to elicit significant increases in lacZ MF with any of the treatment conditions tested. Gene expression of key CYP isozymes was quantified by RT-qPCR. Cyp1a1, 1a2 and 1b1 are required to metabolise PhIP and 4-ABP. Results showed that treatment with both compounds induced expression of Cyp1a1 and Cyp1b1 but not Cyp1a2. Cyp2e1, which catalyses the bioactivation of acrylamide to glycidamide, was not induced after acrylamide treatment. Overall, our results confirm that the FE1 cell mutagenicity assay has the potential for use alongside other, more traditional in vitro mutagenicity assays.


Asunto(s)
Carcinógenos Ambientales/farmacología , Células Epiteliales/efectos de los fármacos , Pulmón/efectos de los fármacos , Mutagénesis/efectos de los fármacos , Acrilamida/metabolismo , Acrilamida/farmacología , Acrilamida/toxicidad , Animales , Carcinógenos Ambientales/metabolismo , Carcinógenos Ambientales/toxicidad , Línea Celular , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1A2/genética , Citocromo P-450 CYP1B1/genética , Citocromo P-450 CYP2E1/genética , Células Epiteliales/patología , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Imidazoles/metabolismo , Imidazoles/farmacología , Imidazoles/toxicidad , Pulmón/patología , Metaboloma/efectos de los fármacos , Ratones , Mutagénesis/genética , Pruebas de Mutagenicidad , Quinoxalinas/metabolismo , Quinoxalinas/farmacología , Quinoxalinas/toxicidad
9.
Arch Toxicol ; 94(12): 4173-4196, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32886187

RESUMEN

Acrylamide is a suspected human carcinogen formed during high-temperature cooking of starch-rich foods. It is metabolised by cytochrome P450 2E1 to its reactive metabolite glycidamide, which forms pre-mutagenic DNA adducts. Using the human TP53 knock-in (Hupki) mouse embryo fibroblasts (HUFs) immortalisation assay (HIMA), acrylamide- and glycidamide-induced mutagenesis was studied in the tumour suppressor gene TP53. Selected immortalised HUF clones were also subjected to next-generation sequencing to determine mutations across the whole genome. The TP53-mutant frequency after glycidamide exposure (1.1 mM for 24 h, n = 198) was 9% compared with 0% in cultures treated with acrylamide [1.5 (n = 24) or 3 mM (n = 6) for 48 h] and untreated vehicle (water) controls (n = 36). Most glycidamide-induced mutations occurred at adenines with A > T/T > A and A > G/T > C mutations being the most common types. Mutations induced by glycidamide occurred at specific TP53 codons that have also been found to be mutated in human tumours (i.e., breast, ovary, colorectal, and lung) previously associated with acrylamide exposure. The spectrum of TP53 mutations was further reflected by the mutations detected by whole-genome sequencing (WGS) and a distinct WGS mutational signature was found in HUF clones treated with glycidamide that was again characterised by A > G/T > C and A > T/T > A mutations. The WGS mutational signature showed similarities with COSMIC mutational signatures SBS3 and 25 previously found in human tumours (e.g., breast and ovary), while the adenine component was similar to COSMIC SBS4 found mostly in smokers' lung cancer. In contrast, in acrylamide-treated HUF clones, only culture-related background WGS mutational signatures were observed. In summary, the results of the present study suggest that glycidamide may be involved in the development of breast, ovarian, and lung cancer.


Asunto(s)
Acrilamida/toxicidad , Compuestos Epoxi/toxicidad , Fibroblastos/efectos de los fármacos , Mutagénesis , Mutágenos/toxicidad , Proteína p53 Supresora de Tumor/genética , Animales , Línea Celular , Análisis Mutacional de ADN , Fibroblastos/metabolismo , Fibroblastos/patología , Regulación de la Expresión Génica , Técnicas de Sustitución del Gen , Humanos , Ratones , Proteína p53 Supresora de Tumor/metabolismo , Secuenciación Completa del Genoma
10.
Electrophoresis ; 40(11): 1535-1539, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30767246

RESUMEN

Methylating substances alter DNA by forming N3-methylthymidine (N3mT), a mutagenic base modification. To develop a sensitive analytical method for the detection of N3mT in DNA based on capillary electrophoresis with laser-induced fluorescence detection (CE-LIF), we synthesized the N3mT-3'-phosphate as a chemical standard. The limit of detection was 1.9 amol of N3mT, which corresponds to one molecule of N3mT per 1000 normal nucleotides or 0.1%. With this method, we demonstrated that the carcinogenic nitrosamine N'-nitrosonornicotine (NNN) induced N3mT in the human lung cancer cell line A549. Treatment with NNN also caused an elevated degree of 5-hydroxymethylcytidine (5hmdC) in DNA, while the methylation degree (i.e. 5-methylcytidine; 5mdC) stayed constant. According to our data, NNN could, via yet unknown mechanisms, play a role in the formation of N3mT as well as 5hmdC. In this study we have developed a new sensitive analytical method using CE-LIF for the simultaneous detection of the three DNA modifications, 5mdC, 5hmdC and N3mT.


Asunto(s)
Electroforesis Capilar/métodos , Neoplasias/patología , Nitrosaminas/farmacología , Timidina/análogos & derivados , Células A549 , Citidina/análogos & derivados , Citidina/análisis , Fluorescencia , Humanos , Neoplasias/química , Timidina/análisis
11.
Toxicol Appl Pharmacol ; 366: 64-74, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30685480

RESUMEN

The anticancer drug ellipticine exerts its genotoxic effects after metabolic activation by cytochrome P450 (CYP) enzymes. The present study has examined the role of cytochrome P450 oxidoreductase (POR) and cytochrome b5 (Cyb5), electron donors to P450 enzymes, in the CYP-mediated metabolism and disposition of ellipticine in vivo. We used Hepatic Reductase Null (HRN) and Hepatic Cytochrome b5/P450 Reductase Null (HBRN) mice. HRN mice have POR deleted specifically in hepatocytes; HBRN mice also have Cyb5 deleted in the liver. Mice were treated once with 10 mg/kg body weight ellipticine (n = 4/group) for 24 h. Ellipticine-DNA adduct levels measured by 32P-postlabelling were significantly lower in HRN and HBRN livers than in wild-type (WT) livers; however no significant difference was observed between HRN and HBRN livers. Ellipticine-DNA adduct formation in WT, HRN and HBRN livers correlated with Cyp1a and Cyp3a enzyme activities measured in hepatic microsomes in the presence of NADPH confirming the importance of P450 enzymes in the bioactivation of ellipticine in vivo. Hepatic microsomal fractions were also utilised in incubations with ellipticine and DNA in the presence of NADPH, cofactor for POR, and NADH, cofactor for Cyb5 reductase (Cyb5R), to examine ellipticine-DNA adduct formation. With NADPH adduct formation decreased as electron donors were lost which correlated with the formation of the reactive metabolites 12- and 13-hydroxy-ellipticine in hepatic microsomes. No difference in adduct formation was observed in the presence of NADH. Our study demonstrates that Cyb5 contributes to the P450-mediated bioactivation of ellipticine in vitro, but not in vivo.


Asunto(s)
Antineoplásicos/metabolismo , Citocromo-B(5) Reductasa/deficiencia , Citocromos b5/deficiencia , Elipticinas/metabolismo , Hepatocitos/enzimología , Hígado/enzimología , Activación Metabólica , Animales , Antineoplásicos/farmacología , Hidrocarburo de Aril Hidroxilasas/metabolismo , Citocromo P-450 CYP3A , Sistema Enzimático del Citocromo P-450/metabolismo , Citocromo-B(5) Reductasa/genética , Citocromos b5/genética , Aductos de ADN/metabolismo , Elipticinas/farmacología , Genotipo , Ratones Endogámicos C57BL , Ratones Noqueados , Microsomas Hepáticos/enzimología , NADPH-Ferrihemoproteína Reductasa/metabolismo , Fenotipo
12.
Mutagenesis ; 34(5-6): 413-420, 2019 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-31612222

RESUMEN

The environmental carcinogen benzo[a]pyrene (BaP) is presumed to exert its genotoxic effects after metabolic activation by cytochrome P450 (CYP) enzymes. However, studies using the Hepatic Reductase Null (HRN) mouse model, in which cytochrome P450 oxidoreductase (POR), the electron donor to CYP enzymes, is deleted specifically in hepatocytes, have shown that loss of hepatic POR-mediated CYP function leads to greater BaP-DNA adduct formation in livers of these mice than in wild-type (WT) mice. Here, we used CRISPR/Cas9 technology to knockout (KO) POR expression in mouse hepatoma Hepa1c1c7 cells to create an in vitro model that can mimic the HRN mouse model. Western blotting confirmed the deletion of POR in POR KO Hepa1c1c7 cells whereas expression of other components of the mixed-function oxidase system including cytochrome b5 (Cyb5) and NADH:cytochrome b5 reductase (which can also serve as electron donors to CYP enzymes), and CYP1A1 was similar in BaP-exposed WT and POR KO Hepa1c1c7 cells. BaP exposure caused cytotoxicity in WT Hepa1c1c7 cells but not in POR KO Hepa1c1c7 cells. In contrast, CYP-catalysed BaP-DNA adduct levels were ~10-fold higher in POR KO Hepa1c1c7 cells than in WT Hepa1c1c7 cells, in concordance with the presence of higher levels of BaP metabolite (e.g. BaP-7,8-dihydrodiol) in the medium of cultured BaP-exposed POR KO Hepa1c1c7 cells. As was seen in the HRN mouse model, these results suggest that Cyb5 contributes to the bioactivation of BaP in POR KO Hepa1c1c7 cells. These results indicate that CYP enzymes may play a more important role in the detoxication of BaP, as opposed to its bioactivation.


Asunto(s)
Benzo(a)pireno/efectos adversos , Sistema Enzimático del Citocromo P-450/genética , Aductos de ADN/efectos de los fármacos , Daño del ADN/genética , Oxidorreductasas/genética , Activación Metabólica/efectos de los fármacos , Animales , Línea Celular Tumoral , Aductos de ADN/efectos adversos , Aductos de ADN/genética , Daño del ADN/efectos de los fármacos , Hepatocitos/efectos de los fármacos , Hígado/efectos de los fármacos , Ratones , Ratones Noqueados , Microsomas Hepáticos/efectos de los fármacos
13.
Occup Environ Med ; 76(1): 10-16, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30425118

RESUMEN

OBJECTIVES: This study aimed to assess the biological impact of occupational exposure to diesel exhaust (DE) including DE particles (DEP) from heavy-duty diesel-powered equipment in Norwegian tunnel finishing workers (TFW). METHODS: TFW (n=69) and referents (n=69) were investigated for bulky DNA adducts (by 32P-postlabelling) and expression of microRNAs (miRNAs) (by small RNA sequencing) in peripheral blood mononuclear cells (PBMC), as well as circulating free arachidonic acid (AA) and eicosanoid profiles in plasma (by liquid chromatography-tandem mass spectrometry). RESULTS: PBMC from TFW showed significantly higher levels of DNA adducts compared with referents. Levels of DNA adducts were also related to smoking habits. Seventeen miRNAs were significantly deregulated in TFW. Several of these miRNAs are related to carcinogenesis, apoptosis and antioxidant effects. Analysis of putative miRNA-gene targets revealed deregulation of pathways associated with cancer, alterations in lipid molecules, steroid biosynthesis and cell cycle. Plasma profiles showed higher levels of free AA and 15-hydroxyeicosatetraenoic acid, and lower levels of prostaglandin D2 and 9-hydroxyoctadecadienoic acid in TFW compared with referents. CONCLUSION: Occupational exposure to DE/DEP is associated with biological alterations in TFW potentially affecting lung homoeostasis, carcinogenesis, inflammation status and the cardiovascular system. Of particular importance is the finding that tunnel finishing work is associated with an increased level of DNA adducts formation in PBMC.


Asunto(s)
Industria de la Construcción , Aductos de ADN/sangre , Lípidos/sangre , MicroARNs/sangre , Exposición Profesional/efectos adversos , Emisiones de Vehículos/toxicidad , Adulto , Contaminantes Ocupacionales del Aire/análisis , Biomarcadores/sangre , Estudios Transversales , Humanos , Exposición por Inhalación/análisis , Leucocitos Mononucleares/química , Modelos Lineales , Masculino , Persona de Mediana Edad , Noruega
14.
Arch Toxicol ; 93(11): 3345-3366, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31602497

RESUMEN

Exposure to aristolochic acid (AA) is associated with human nephropathy and urothelial cancer. The tumour suppressor TP53 is a critical gene in carcinogenesis and frequently mutated in AA-induced urothelial tumours. We investigated the impact of p53 on AAI-induced nephrotoxicity and DNA damage in vivo by treating Trp53(+/+), Trp53(+/-) and Trp53(-/-) mice with 3.5 mg/kg body weight (bw) AAI daily for 2 or 6 days. Renal histopathology showed a gradient of intensity in proximal tubular injury from Trp53(+/+) to Trp53(-/-) mice, especially after 6 days. The observed renal injury was supported by nuclear magnetic resonance (NMR)-based metabonomic measurements, where a consistent Trp53 genotype-dependent trend was observed for urinary metabolites that indicate aminoaciduria (i.e. alanine), lactic aciduria (i.e. lactate) and glycosuria (i.e. glucose). However, Trp53 genotype had no impact on AAI-DNA adduct levels, as measured by 32P-postlabelling, in either target (kidney and bladder) or non-target (liver) tissues, indicating that the underlying mechanisms of p53-related AAI-induced nephrotoxicity cannot be explained by differences in AAI genotoxicity. Performing gas chromatography-mass spectrometry (GC-MS) on kidney tissues showed metabolic pathways affected by AAI treatment, but again Trp53 status did not clearly impact on such metabolic profiles. We also cultured primary mouse embryonic fibroblasts (MEFs) derived from Trp53(+/+), Trp53(+/-) and Trp53(-/-) mice and exposed them to AAI in vitro (50 µM for up to 48 h). We found that Trp53 genotype impacted on the expression of NAD(P)H:quinone oxidoreductase (Nqo1), a key enzyme involved in AAI bioactivation. Nqo1 induction was highest in Trp53(+/+) MEFs and lowest in Trp53(-/-) MEFs; and it correlated with AAI-DNA adduct formation, with lowest adduct levels being observed in AAI-exposed Trp53(-/-) MEFs. Overall, our results clearly demonstrate that p53 status impacts on AAI-induced renal injury, but the underlying mechanism(s) involved remain to be further explored. Despite the impact of p53 on AAI bioactivation and DNA damage in vitro, such effects were not observed in vivo.


Asunto(s)
Ácidos Aristolóquicos/toxicidad , Daño del ADN , Fibroblastos/efectos de los fármacos , Túbulos Renales Proximales/efectos de los fármacos , Mutágenos/toxicidad , Proteína p53 Supresora de Tumor/genética , Animales , Ácidos Aristolóquicos/metabolismo , Células Cultivadas , Citocromo P-450 CYP1A1/genética , Fibroblastos/metabolismo , Fibroblastos/patología , Expresión Génica/efectos de los fármacos , Pruebas de Función Renal , Túbulos Renales Proximales/metabolismo , Túbulos Renales Proximales/patología , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Mutágenos/metabolismo , NAD(P)H Deshidrogenasa (Quinona)/genética
15.
Int J Mol Sci ; 20(24)2019 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-31817608

RESUMEN

Exposure to aristolochic acid (AA) is linked to kidney disease and urothelial cancer in humans. The major carcinogenic component of the AA plant extract is aristolochic acid I (AAI). The tumour suppressor p53 is frequently mutated in AA-induced tumours. We previously showed that p53 protects from AAI-induced renal proximal tubular injury, but the underlying mechanism(s) involved remain to be further explored. In the present study, we investigated the impact of p53 on AAI-induced gene expression by treating Trp53(+/+), Trp53(+/-), and Trp53(-/-) mice with 3.5 mg/kg body weight (bw) AAI daily for six days. The Clariom™ S Assay microarray was used to elucidate gene expression profiles in mouse kidneys after AAI treatment. Analyses in Qlucore Omics Explorer showed that gene expression in AAI-exposed kidneys is treatment-dependent. However, gene expression profiles did not segregate in a clear-cut manner according to Trp53 genotype, hence further investigations were performed by pathway analysis with MetaCore™. Several pathways were significantly altered to varying degrees for AAI-exposed kidneys. Apoptotic pathways were modulated in Trp53(+/+) kidneys; whereas oncogenic and pro-survival pathways were significantly altered for Trp53(+/-) and Trp53(-/-) kidneys, respectively. Alterations of biological processes by AAI in mouse kidneys could explain the mechanisms by which p53 protects from or p53 loss drives AAI-induced renal injury in vivo.


Asunto(s)
Ácidos Aristolóquicos/farmacología , Proteína p53 Supresora de Tumor/metabolismo , Animales , Genotipo , Riñón/efectos de los fármacos , Riñón/metabolismo , Masculino , Ratones , Proteómica/métodos , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Proteína p53 Supresora de Tumor/genética
16.
Carcinogenesis ; 39(7): 851-859, 2018 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-29726902

RESUMEN

Many chemical carcinogens require metabolic activation via xenobiotic-metabolizing enzymes in order to exert their genotoxic effects. Evidence from numerous in-vitro studies, utilizing reconstituted systems, microsomal fractions and cultured cells, implicates cytochrome P450 enzymes as being the predominant enzymes responsible for the metabolic activation of many procarcinogens. With the development of targeted gene disruption methodologies, knockout mouse models have been generated that allow investigation of the in-vivo roles of P450 enzymes in the metabolic activation of carcinogens. This review covers studies in which five procarcinogens representing different chemical classes, benzo[a]pyrene, 4-aminobiphenyl (4-ABP), 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine, 2-amino-9H-pyrido[2,3-b]indole and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone, have been administered to different P450 knockout mouse models. Paradoxically, while in-vitro studies using subcellular fractions enriched with P450 enzymes and their cofactors have been widely used to determine the pathways of activation of carcinogens, there is evidence from the in-vivo studies of cases where these same enzyme systems appear to have a more predominant role in carcinogen detoxication rather than activation.


Asunto(s)
Carcinógenos/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Inactivación Metabólica/fisiología , Animales , Benzo(a)pireno/metabolismo , Butanonas/metabolismo , Humanos , Transducción de Señal/fisiología
17.
Mol Carcinog ; 57(5): 606-618, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29323757

RESUMEN

Extra-hepatic metabolism of xenobiotics by epithelial tissues has evolved as a self-defence mechanism but has potential to contribute to the local activation of carcinogens. Bladder epithelium (urothelium) is bathed in excreted urinary toxicants and pro-carcinogens. This study reveals how differentiation affects cytochrome P450 (CYP) activity and the role of NADPH:P450 oxidoreductase (POR). CYP1A1 and CYP1B1 transcripts were inducible in normal human urothelial (NHU) cells maintained in both undifferentiated and functional barrier-forming differentiated states in vitro. However, ethoxyresorufin O-deethylation (EROD) activity, the generation of reactive BaP metabolites and BaP-DNA adducts, were predominantly detected in differentiated NHU cell cultures. This gain-of-function was attributable to the expression of POR, an essential electron donor for all CYPs, which was significantly upregulated as part of urothelial differentiation. Immunohistology of muscle-invasive bladder cancer (MIBC) revealed significant overall suppression of POR expression. Stratification of MIBC biopsies into "luminal" and "basal" groups, based on GATA3 and cytokeratin 5/6 labeling, showed POR over-expression by a subgroup of the differentiated luminal tumors. In bladder cancer cell lines, CYP1-activity was undetectable/low in basal PORlo T24 and SCaBER cells and higher in the luminal POR over-expressing RT4 and RT112 cells than in differentiated NHU cells, indicating that CYP-function is related to differentiation status in bladder cancers. This study establishes POR as a predictive biomarker of metabolic potential. This has implications in bladder carcinogenesis for the hepatic versus local activation of carcinogens and as a functional predictor of the potential for MIBC to respond to prodrug therapies.


Asunto(s)
Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1B1/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Neoplasias de la Vejiga Urinaria/metabolismo , Anciano , Anciano de 80 o más Años , Diferenciación Celular , Línea Celular Tumoral , Regulación hacia Abajo , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , Persona de Mediana Edad , Análisis de Matrices Tisulares , Neoplasias de la Vejiga Urinaria/genética , Urotelio/citología , Urotelio/metabolismo , Xenobióticos/farmacología
18.
Chem Res Toxicol ; 31(11): 1277-1288, 2018 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-30406992

RESUMEN

3-Nitrobenzanthrone (3-NBA) is a potent mutagen and suspected human carcinogen detected in diesel exhaust particulate and ambient air pollution. It requires metabolic activation via nitroreduction to promote DNA adduct formation and tumorigenesis. NAD(P)H:quinone oxidoreductase 1 (NQO1) has been previously implicated as the major nitroreductase responsible for 3-NBA activation, but it has recently been reported that human aldo-keto reductase 1C3 (AKR1C3) displays nitroreductase activity toward the chemotherapeutic agent PR-104A. We sought to determine whether AKR1C isoforms could display nitroreductase activity toward other nitrated compounds and bioactivate 3-NBA. Using discontinuous enzymatic assays monitored by UV-HPLC, we determined that AKR1C1-1C3 catalyze three successive two-electron nitroreductions toward 3-NBA to form the reduced product 3-aminobenzanthrone (3-ABA). Evidence of the nitroso- and hydroxylamino- intermediates were obtained by UPLC-HRMS. Km, kcat, and kcat/ Km values were determined for recombinant AKR1C and NQO1 and compared. We found that AKR1C1, AKR1C3, and NQO1 have very similar apparent catalytic efficiencies (8 vs 7 min-1 mM-1) despite the higher kcat of NQO1 (0.058 vs 0.012 min-1). AKR1C1-1C3 possess a Km much lower than that of NQO1, which suggests that they may be more important than NQO1 at the low concentrations of 3-NBA to which humans are exposed. Given that inhalation represents the primary source of 3-NBA exposure, we chose to evaluate the relative importance of AKR1C1-1C3 and NQO1 in human lung epithelial cell lines. Our data suggest that the combined activities of AKR1C1-1C3 and NQO1 contribute equally to the reduction of 3-NBA in A549 and HBEC3-KT cell lines and together represent approximately 50% of the intracellular nitroreductase activity toward 3-NBA. These findings have significant implications for the metabolism of nitrated polycyclic aromatic hydrocarbons and suggest that the hitherto unrecognized nitroreductase activity of AKR1C enzymes should be further investigated.


Asunto(s)
Contaminantes Atmosféricos/metabolismo , Miembro C3 de la Familia 1 de las Aldo-Ceto Reductasas/metabolismo , Benzo(a)Antracenos/metabolismo , Células A549 , Activación Metabólica , Contaminantes Atmosféricos/análisis , Miembro C3 de la Familia 1 de las Aldo-Ceto Reductasas/antagonistas & inhibidores , Miembro C3 de la Familia 1 de las Aldo-Ceto Reductasas/genética , Benzo(a)Antracenos/análisis , Biocatálisis , Línea Celular , Cromatografía Líquida de Alta Presión , Humanos , Espectrometría de Masas , NAD(P)H Deshidrogenasa (Quinona)/antagonistas & inhibidores , NAD(P)H Deshidrogenasa (Quinona)/genética , NAD(P)H Deshidrogenasa (Quinona)/metabolismo , Isoformas de Proteínas/antagonistas & inhibidores , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
19.
Mutagenesis ; 33(4): 311-321, 2018 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-30215795

RESUMEN

The tumour suppressor p53, encoded by TP53, is a key player in a wide network of signalling pathways. We investigated its role in the bioactivation of the environmental carcinogen 3-nitrobenzanthrone (3-NBA)found in diesel exhaust and its metabolites 3-aminobenzanthrone (3-ABA) and N-hydroxy-3-aminobenzanthrone (N-OH-3-ABA) in a panel of isogenic human colorectal HCT116 cells differing only with respect to their TP53 status [i.e. TP53(+/+), TP53(+/-), TP53(-/-), TP53(R248W/+) or TP53(R248W/-)]. As a measure of metabolic competence, DNA adduct formation was determined using 32P-postlabelling. Wild-type (WT) p53 did not affect the bioactivation of 3-NBA; no difference in DNA adduct formation was observed in TP53(+/+), TP53(+/-) and TP53(-/-) cells. Bioactivation of both metabolites 3-ABA and N-OH-3-ABA on the other hand was WT-TP53 dependent. Lower 3-ABA- and N-OH-3-ABA-DNA adduct levels were found in TP53(+/-) and TP53(-/-) cells compared to TP53(+/+) cells, and p53's impact was attributed to differences in cytochrome P450 (CYP) 1A1 expression for 3-ABA whereas for N-OH-3-ABA, an impact of this tumour suppressor on sulphotransferase (SULT) 1A1/3 expression was detected. Mutant R248W-p53 protein function was similar to or exceeded the ability of WT-p53 in activating 3-NBA and its metabolites, measured as DNA adducts. However, identification of the xenobiotic-metabolising enzyme(s) (XMEs), through which mutant-p53 regulates these responses, proved difficult to decipher. For example, although both mutant cell lines exhibited higher CYP1A1 induction after 3-NBA treatment compared to TP53(+/+) cells, 3-NBA-derived DNA adduct levels were only higher in TP53(R248W/-) cells but not in TP53(R248W/+) cells. Our results show that p53's influence on carcinogen activation depends on the agent studied and thereby on the XMEs that mediate the bioactivation of that particular compound. The phenomenon of p53 regulating CYP1A1 expression in human cells is consistent with other recent findings; however, this is the first study highlighting the impact of p53 on sulphotransferase-mediated (i.e. SULT1A1) carcinogen metabolism in human cells.


Asunto(s)
Activación Metabólica/efectos de los fármacos , Contaminantes Atmosféricos/efectos adversos , Benzo(a)Antracenos/efectos adversos , Carcinógenos Ambientales/efectos adversos , Proteína p53 Supresora de Tumor/metabolismo , Contaminación del Aire/efectos adversos , Antracenos/efectos adversos , Carcinogénesis/inducido químicamente , Carcinogénesis/metabolismo , Línea Celular Tumoral , Citocromo P-450 CYP1A1/metabolismo , Aductos de ADN/efectos de los fármacos , Daño del ADN/efectos de los fármacos , Células HCT116 , Humanos , Inactivación Metabólica/efectos de los fármacos , Bases de Schiff/efectos adversos , Emisiones de Vehículos/toxicidad
20.
Arch Toxicol ; 92(2): 967-982, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29177888

RESUMEN

Genetic damage is a key event in tumorigenesis, and chemically induced genotoxic effects are a human health concern. Although genetic toxicity data have historically been interpreted using a qualitative screen-and-bin approach, there is increasing interest in quantitative analysis of genetic toxicity dose-response data. We demonstrate an emerging use of the benchmark dose (BMD)-approach for empirically ranking cross-tissue sensitivity. Using a model environmental carcinogen, we quantitatively examined responses for four genetic damage endpoints over an extended dose range, and conducted cross-tissue sensitivity rankings using BMD100 values and their 90% confidence intervals (CIs). MutaMouse specimens were orally exposed to 11 doses of benzo[a]pyrene. DNA adduct frequency and lacZ mutant frequency (MF) were measured in up to 8 tissues, and Pig-a MF and micronuclei (MN) were assessed in immature (RETs) and mature red blood cells (RBCs). The cross-tissue BMD pattern for lacZ MF is similar to that observed for DNA adducts, and is consistent with an oral route-of-exposure and differences in tissue-specific metabolism and proliferation. The lacZ MF BMDs were significantly correlated with the tissue-matched adduct BMDs, demonstrating a consistent adduct conversion rate across tissues. The BMD CIs, for both the Pig-a and the MN endpoints, overlapped for RETs and RBCs, suggesting comparable utility of both cell populations for protracted exposures. Examination of endpoint-specific response maxima illustrates the difficulty of comparing BMD values for a fixed benchmark response across endpoints. Overall, the BMD-approach permitted robust comparisons of responses across tissues/endpoints, which is valuable to our mechanistic understanding of how benzo[a]pyrene induces genetic damage.


Asunto(s)
Benzo(a)pireno/toxicidad , Aductos de ADN/análisis , Pruebas de Mutagenicidad , Animales , Carcinógenos Ambientales/toxicidad , Daño del ADN , Relación Dosis-Respuesta a Droga , Determinación de Punto Final , Eritrocitos/efectos de los fármacos , Masculino , Ratones , Ratones Transgénicos , Pruebas de Micronúcleos , Modelos Teóricos , Pruebas de Toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA