Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Vet Res ; 53(1): 45, 2022 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-35733232

RESUMEN

Bovine paratuberculosis is an endemic disease caused by Mycobacterium avium subspecies paratuberculosis (Map). Map is mainly transmitted between herds through movement of infected but undetected animals. Our objective was to investigate the effect of observed herd characteristics on Map spread on a national scale in Ireland. Herd characteristics included herd size, number of breeding bulls introduced, number of animals purchased and sold, and number of herds the focal herd purchases from and sells to. We used these characteristics to classify herds in accordance with their probability of becoming infected and of spreading infection to other herds. A stochastic individual-based model was used to represent herd demography and Map infection dynamics of each dairy cattle herd in Ireland. Data on herd size and composition, as well as birth, death, and culling events were used to characterize herd demography. Herds were connected with each other through observed animal trade movements. Data consisted of 13 353 herds, with 4 494 768 dairy female animals, and 72 991 breeding bulls. We showed that the probability of an infected animal being introduced into the herd increases both with an increasing number of animals that enter a herd via trade and number of herds from which animals are sourced. Herds that both buy and sell a lot of animals pose the highest infection risk to other herds and could therefore play an important role in Map spread between herds.


Asunto(s)
Enfermedades de los Bovinos , Modelos Epidemiológicos , Mycobacterium avium subsp. paratuberculosis , Paratuberculosis , Animales , Bovinos , Enfermedades de los Bovinos/microbiología , Enfermedades de los Bovinos/transmisión , Industria Lechera , Femenino , Irlanda/epidemiología , Masculino , Paratuberculosis/microbiología , Paratuberculosis/transmisión , Prevalencia
2.
Vet Res ; 53(1): 102, 2022 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-36461110

RESUMEN

Considering human decision-making is essential for understanding the mechanisms underlying the propagation of real-life diseases. We present an extension of a model for pathogen spread that considers farmers' dynamic decision-making regarding the adoption of a control measure in their own herd. Farmers can take into account the decisions and observed costs of their trade partners or of their geographic neighbours. The model and construction of such costs are adapted to the case of bovine viral diarrhoea, for which an individual-based stochastic model is considered. Simulation results suggest that obtaining information from geographic neighbours might lead to a better control of bovine viral diarrhoea than considering information from trade partners. In particular, using information from all geographic neighbours at each decision time seems to be more beneficial than considering only the information from one geographic neighbour or trade partner at each time. This study highlights the central role that social dynamics among farmers can take in the spread and control of bovine viral diarrhoea, providing insights into how public policy efforts could be targeted in order to increase voluntary vaccination uptake against this disease in endemic areas.


Asunto(s)
Agricultores , Infecciones por Pestivirus , Animales , Humanos , Conducta Imitativa , Infecciones por Pestivirus/veterinaria , Vacunación/veterinaria , Diarrea/prevención & control , Diarrea/veterinaria
3.
Proc Biol Sci ; 288(1944): 20202810, 2021 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-33529565

RESUMEN

Spatio-temporally heterogeneous environments may lead to unexpected population dynamics. Knowledge is needed on local properties favouring population resilience at large scale. For pathogen vectors, such as tsetse flies transmitting human and animal African trypanosomosis, this is crucial to target management strategies. We developed a mechanistic spatio-temporal model of the age-structured population dynamics of tsetse flies, parametrized with field and laboratory data. It accounts for density- and temperature-dependence. The studied environment is heterogeneous, fragmented and dispersal is suitability-driven. We confirmed that temperature and adult mortality have a strong impact on tsetse populations. When homogeneously increasing adult mortality, control was less effective and induced faster population recovery in the coldest and temperature-stable locations, creating refuges. To optimally select locations to control, we assessed the potential impact of treating them and their contribution to the whole population. This heterogeneous control induced a similar population decrease, with more dispersed individuals. Control efficacy was no longer related to temperature. Dispersal was responsible for refuges at the interface between controlled and uncontrolled zones, where resurgence after control was very high. The early identification of refuges, which could jeopardize control efforts, is crucial. We recommend baseline data collection to characterize the ecosystem before implementing any measures.


Asunto(s)
Tripanosomiasis Africana , Moscas Tse-Tse , Animales , Ecosistema , Humanos , Insectos Vectores , Dinámica Poblacional
4.
PLoS Comput Biol ; 15(9): e1007342, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31518349

RESUMEN

Stochastic mechanistic epidemiological models largely contribute to better understand pathogen emergence and spread, and assess control strategies at various scales (from within-host to transnational scale). However, developing realistic models which involve multi-disciplinary knowledge integration faces three major challenges in predictive epidemiology: lack of readability once translated into simulation code, low reproducibility and reusability, and long development time compared to outbreak time scale. We introduce here EMULSION, an artificial intelligence-based software intended to address those issues and help modellers focus on model design rather than programming. EMULSION defines a domain-specific language to make all components of an epidemiological model (structure, processes, parameters…) explicit as a structured text file. This file is readable by scientists from other fields (epidemiologists, biologists, economists), who can contribute to validate or revise assumptions at any stage of model development. It is then automatically processed by EMULSION generic simulation engine, preventing any discrepancy between model description and implementation. The modelling language and simulation architecture both rely on the combination of advanced artificial intelligence methods (knowledge representation and multi-level agent-based simulation), allowing several modelling paradigms (from compartment- to individual-based models) at several scales (up to metapopulation). The flexibility of EMULSION and its capability to support iterative modelling are illustrated here through examples of progressive complexity, including late revisions of core model assumptions. EMULSION is also currently used to model the spread of several diseases in real pathosystems. EMULSION provides a command-line tool for checking models, producing model diagrams, running simulations, and plotting outputs. Written in Python 3, EMULSION runs on Linux, MacOS, and Windows. It is released under Apache-2.0 license. A comprehensive documentation with installation instructions, a tutorial and many examples are available from: https://sourcesup.renater.fr/www/emulsion-public.


Asunto(s)
Biología Computacional/métodos , Modelos Biológicos , Programas Informáticos , Procesos Estocásticos , Animales , Bovinos , Epidemiología , Humanos , Plantas
5.
Vet Res ; 50(1): 30, 2019 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-31036076

RESUMEN

To explore the regional spread of endemic pathogens, investigations are required both at within and between population levels. The bovine viral diarrhoea virus (BVDV) is such a pathogen, spreading among cattle herds mainly due to trade movements and neighbourhood contacts, and causing an endemic disease with economic consequences. To assess the contribution of both transmission routes on BVDV regional and local spread, we developed an original epidemiological model combining data-driven and mechanistic approaches, accounting for heterogeneous within-herd dynamics, animal movements and neighbourhood contacts. Extensive simulations were performed over 9 years in an endemic context in a French region with high cattle density. The most uncertain model parameters were calibrated on summary statistics of epidemiological data, highlighting that neighbourhood contacts and within-herd transmission should be high. We showed that neighbourhood contacts and trade movements complementarily contribute to BVDV spread on a regional scale in endemically infected and densely populated areas, leading to intense fade-out/colonization events: neighbourhood contacts generate the vast majority of outbreaks (72%) but mostly in low immunity herds and correlated to a rather short presence of persistently infected animals (P); trade movements generate fewer infections but could affect herds with higher immunity and generate a prolonged presence of P. Both movements and neighbourhood contacts should be considered when designing control or eradication strategies for densely populated region.


Asunto(s)
Diarrea Mucosa Bovina Viral/transmisión , Virus de la Diarrea Viral Bovina/fisiología , Animales , Diarrea Mucosa Bovina Viral/epidemiología , Bovinos , Ambiente , Francia/epidemiología , Factores de Riesgo , Transportes
6.
Vet Res ; 46: 12, 2015 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-25828555

RESUMEN

Bovine viral diarrhea virus (BVDV) is a common pathogen of cattle herds that causes economic losses due to reproductive disorders in breeding cattle and increased morbidity and mortality amongst infected calves. Our objective was to evaluate the impact of BVDV spread on the productivity of a beef cow-calf herd using a stochastic model in discrete time that accounted for (1) the difference in transmission rates when animals are housed indoors versus grazing on pasture, (2) the external risk of disease introductions through fenceline contact with neighboring herds and the purchase of infected cattle, and (3) the risk of individual pregnant cattle generating persistently infected (PI) calves based on their stage in gestation. The model predicted the highest losses from BVDV during the first 3 years after disease was introduced into a naive herd. During the endemic phase, the impact of BVDV on the yearly herd productivity was much lower due to herd immunity. However, cumulative losses over 10 years in an endemic situation greatly surpassed the losses that occurred during the acute phase. A sensitivity analysis of key model parameters revealed that herd size, the duration of breeding, grazing, and selling periods, renewal rate of breeding females, and the level of numerical productivity expected by the farmer had a significant influence on the predicted losses. This model provides a valuable framework for evaluating the impact of BVDV and the efficacy of different control strategies in beef cow-calf herds.


Asunto(s)
Crianza de Animales Domésticos/métodos , Diarrea Mucosa Bovina Viral/transmisión , Virus de la Diarrea Viral Bovina/fisiología , Animales , Diarrea Mucosa Bovina Viral/epidemiología , Diarrea Mucosa Bovina Viral/virología , Bovinos , Femenino , Francia/epidemiología , Masculino , Modelos Teóricos , Reproducción , Estaciones del Año , Procesos Estocásticos
7.
Vaccines (Basel) ; 9(10)2021 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-34696246

RESUMEN

Bovine viral diarrhoea (BVD) remains an issue despite control programs implemented worldwide. Virus introduction can occur through contacts with neighbouring herds. Vaccination can locally protect exposed herds. However, virus spread depends on herd characteristics, which may impair vaccination efficiency. Using a within-herd epidemiological model, we compared three French cow-calf farming systems named by their main breed: Charolaise, Limousine, and Blonde d'Aquitaine. We assessed vaccination strategies of breeding females assuming two possible protections: against infection or against vertical transmission. Four commercial vaccines were considered: Bovilis®, Bovela®, Rispoval®, and Mucosiffa®. We tested various virus introduction frequency in a naïve herd. We calculated BVD economic impact and vaccination reward. In Charolaise, BVD economic impact was 113€ per cow over 5 years after virus introduction. Irrespective of the vaccine and for a high enough risk of introduction, the yearly expected reward was 0.80€ per invested euro per cow. Vaccination should not be stopped before herd exposure has been decreased. In contrast, the reward was almost nil in Blonde d'Aquitaine and Limousine. This highlights the importance of accounting for herd specificities to assess BVD impact and vaccination efficiency. To guide farmers' vaccination decisions against BVD, we transformed this model into a French decision support tool.

8.
PLoS One ; 9(5): e91929, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24786468

RESUMEN

SUMMARY: The classification of transposable elements (TEs) is key step towards deciphering their potential impact on the genome. However, this process is often based on manual sequence inspection by TE experts. With the wealth of genomic sequences now available, this task requires automation, making it accessible to most scientists. We propose a new tool, PASTEC, which classifies TEs by searching for structural features and similarities. This tool outperforms currently available software for TE classification. The main innovation of PASTEC is the search for HMM profiles, which is useful for inferring the classification of unknown TE on the basis of conserved functional domains of the proteins. In addition, PASTEC is the only tool providing an exhaustive spectrum of possible classifications to the order level of the Wicker hierarchical TE classification system. It can also automatically classify other repeated elements, such as SSR (Simple Sequence Repeats), rDNA or potential repeated host genes. Finally, the output of this new tool is designed to facilitate manual curation by providing to biologists with all the evidence accumulated for each TE consensus. AVAILABILITY: PASTEC is available as a REPET module or standalone software (http://urgi.versailles.inra.fr/download/repet/REPET_linux-x64-2.2.tar.gz). It requires a Unix-like system. There are two standalone versions: one of which is parallelized (requiring Sun grid Engine or Torque), and the other of which is not.


Asunto(s)
Elementos Transponibles de ADN , Genómica/métodos , Arabidopsis/genética , Automatización
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA