Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Nucleic Acids Res ; 47(14): e79, 2019 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-31045203

RESUMEN

Genome-wide association studies (GWAS) associate single nucleotide polymorphisms (SNPs) to complex phenotypes. Most human SNPs fall in non-coding regions and are likely regulatory SNPs, but linkage disequilibrium (LD) blocks make it difficult to distinguish functional SNPs. Therefore, putative functional SNPs are usually annotated with molecular markers of gene regulatory regions and prioritized with dedicated prediction tools. We integrated associated SNPs, LD blocks and regulatory features into a supervised model called TAGOOS (TAG SNP bOOSting) and computed scores genome-wide. The TAGOOS scores enriched and prioritized unseen associated SNPs with an odds ratio of 4.3 and 3.5 and an area under the curve (AUC) of 0.65 and 0.6 for intronic and intergenic regions, respectively. The TAGOOS score was correlated with the maximal significance of associated SNPs and expression quantitative trait loci (eQTLs) and with the number of biological samples annotated for key regulatory features. Analysis of loci and regions associated to cleft lip and human adult height phenotypes recovered known functional loci and predicted new functional loci enriched in transcriptions factors related to the phenotypes. In conclusion, we trained a supervised model based on associated SNPs to prioritize putative functional regions. The TAGOOS scores, annotations and UCSC genome tracks are available here: https://tagoos.readthedocs.io.


Asunto(s)
Biología Computacional/métodos , Estudio de Asociación del Genoma Completo/métodos , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo/genética , Aprendizaje Automático Supervisado , Regulación de la Expresión Génica , Predisposición Genética a la Enfermedad/genética , Humanos , Internet , Desequilibrio de Ligamiento , Fenotipo , Secuencias Reguladoras de Ácidos Nucleicos/genética
2.
Nucleic Acids Res ; 46(D1): D267-D275, 2018 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-29126285

RESUMEN

With this latest release of ReMap (http://remap.cisreg.eu), we present a unique collection of regulatory regions in human, as a result of a large-scale integrative analysis of ChIP-seq experiments for hundreds of transcriptional regulators (TRs) such as transcription factors, transcriptional co-activators and chromatin regulators. In 2015, we introduced the ReMap database to capture the genome regulatory space by integrating public ChIP-seq datasets, covering 237 TRs across 13 million (M) peaks. In this release, we have extended this catalog to constitute a unique collection of regulatory regions. Specifically, we have collected, analyzed and retained after quality control a total of 2829 ChIP-seq datasets available from public sources, covering a total of 485 TRs with a catalog of 80M peaks. Additionally, the updated database includes new search features for TR names as well as aliases, including cell line names and the ability to navigate the data directly within genome browsers via public track hubs. Finally, full access to this catalog is available online together with a TR binding enrichment analysis tool. ReMap 2018 provides a significant update of the ReMap database, providing an in depth view of the complexity of the regulatory landscape in human.


Asunto(s)
Inmunoprecipitación de Cromatina , Proteínas de Unión al ADN/metabolismo , Bases de Datos Genéticas , Elementos Reguladores de la Transcripción , Análisis de Secuencia de ADN , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Factores de Transcripción/metabolismo
3.
Nucleic Acids Res ; 43(W1): W50-6, 2015 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-25904632

RESUMEN

RSAT (Regulatory Sequence Analysis Tools) is a modular software suite for the analysis of cis-regulatory elements in genome sequences. Its main applications are (i) motif discovery, appropriate to genome-wide data sets like ChIP-seq, (ii) transcription factor binding motif analysis (quality assessment, comparisons and clustering), (iii) comparative genomics and (iv) analysis of regulatory variations. Nine new programs have been added to the 43 described in the 2011 NAR Web Software Issue, including a tool to extract sequences from a list of coordinates (fetch-sequences from UCSC), novel programs dedicated to the analysis of regulatory variants from GWAS or population genomics (retrieve-variation-seq and variation-scan), a program to cluster motifs and visualize the similarities as trees (matrix-clustering). To deal with the drastic increase of sequenced genomes, RSAT public sites have been reorganized into taxon-specific servers. The suite is well-documented with tutorials and published protocols. The software suite is available through Web sites, SOAP/WSDL Web services, virtual machines and stand-alone programs at http://www.rsat.eu/.


Asunto(s)
Elementos Reguladores de la Transcripción , Programas Informáticos , Sitios de Unión , Variación Genética , Genómica , Humanos , Internet , Motivos de Nucleótidos , Factores de Transcripción/metabolismo
5.
Nat Commun ; 11(1): 4826, 2020 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-32958757

RESUMEN

DNA replication initiates from multiple genomic locations called replication origins. In metazoa, DNA sequence elements involved in origin specification remain elusive. Here, we examine pluripotent, primary, differentiating, and immortalized human cells, and demonstrate that a class of origins, termed core origins, is shared by different cell types and host ~80% of all DNA replication initiation events in any cell population. We detect a shared G-rich DNA sequence signature that coincides with most core origins in both human and mouse genomes. Transcription and G-rich elements can independently associate with replication origin activity. Computational algorithms show that core origins can be predicted, based solely on DNA sequence patterns but not on consensus motifs. Our results demonstrate that, despite an attributed stochasticity, core origins are chosen from a limited pool of genomic regions. Immortalization through oncogenic gene expression, but not normal cellular differentiation, results in increased stochastic firing from heterochromatin and decreased origin density at TAD borders.


Asunto(s)
ADN/biosíntesis , ADN/química , Origen de Réplica/genética , Animales , Composición de Base , Secuencia de Bases , Carcinogénesis , Diferenciación Celular , Células Cultivadas , Replicación del ADN/genética , Genoma Humano/genética , Heterocromatina/genética , Humanos , Ratones , Motivos de Nucleótidos , Transcripción Genética
6.
Nat Commun ; 10(1): 3274, 2019 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-31332171

RESUMEN

Genome-wide studies of DNA replication origins revealed that origins preferentially associate with an Origin G-rich Repeated Element (OGRE), potentially forming G-quadruplexes (G4). Here, we functionally address their requirements for DNA replication initiation in a series of independent approaches. Deletion of the OGRE/G4 sequence strongly decreased the corresponding origin activity. Conversely, the insertion of an OGRE/G4 element created a new replication origin. This element also promoted replication of episomal EBV vectors lacking the viral origin, but not if the OGRE/G4 sequence was deleted. A potent G4 ligand, PhenDC3, stabilized G4s but did not alter the global origin activity. However, a set of new, G4-associated origins was created, whereas suppressed origins were largely G4-free. In vitro Xenopus laevis replication systems showed that OGRE/G4 sequences are involved in the activation of DNA replication, but not in the pre-replication complex formation. Altogether, these results converge to the functional importance of OGRE/G4 elements in DNA replication initiation.


Asunto(s)
Replicación del ADN/genética , G-Cuádruplex , Mamíferos/genética , Origen de Réplica/genética , Animales , Células Cultivadas , Vectores Genéticos/genética , Humanos , Ratones , Mutación , Células 3T3 NIH , Oocitos/metabolismo , Plásmidos/genética , Xenopus laevis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA