RESUMEN
BACKGROUND: Attractive Targeted Sugar Baits (ATSBs) are a proposed new vector control tool for malaria that contain sugar and an ingestion toxicant, and are designed to attract and kill sugar-feeding mosquitoes. During a two-arm cluster randomized Phase III trial conducted in Zambia to test the efficacy of ATSB stations on malaria incidence, ATSB stations deployed on eligible household structures within intervention clusters were routinely monitored to ensure their good physical condition and high coverage. This study investigates trends in prevalence and rate of damage to ATSB stations during year 2 of the two-year trial. METHODS: The analysis was conducted using monitoring data collected in year 2, which included types of damage observed, location, and date of removal and/or replacement of ATSB stations. The study evaluated temporal trends in the prevalence of overall damage and different damage types among 68,299 ATSB stations deployed. A profile of all ATSB stations installed on each structure was constructed, and spatial analyses conducted on overall damage and different damage types observed on 18,890 structures. Mixed effects regression analyses were conducted to investigate drivers of damage to ATSB stations on these structures. RESULTS: Prevalence of overall damage and different damage types was temporally and spatially heterogeneous. Among damaged ATSB stations observed during monitoring, tears and mold had the highest prevalences on average, with tears maintaining above 50.0% prevalence through most of the monitoring period, while mold prevalence increased steadily during the first few months, peaking in February. Overall, 45.6% of structures had at least one damaged ATSB station, however this varied spatially across the trial site. Both structure characteristics and environmental factors significantly impacted the odds and rate of damage to ATSB stations on structures, including: ATSB stations' level of protection from rainfall and sunshine; roof and wall material of the structure; night-time temperature; rainfall; enhanced vegetation index, and land cover. CONCLUSION: Damage to ATSB stations in this setting was common and was temporally and spatially heterogeneous. This has implications on operational feasibility, sustainability, and cost of future deployment. Further research is required to understand the mechanisms of damage, and to minimize prevalence and rate of damage to ATSB stations.
Asunto(s)
Control de Mosquitos , Zambia/epidemiología , Control de Mosquitos/métodos , Control de Mosquitos/estadística & datos numéricos , Animales , Malaria/prevención & control , Malaria/epidemiología , Azúcares , Mosquitos Vectores/efectos de los fármacos , Anopheles/efectos de los fármacos , HumanosRESUMEN
BACKGROUND: Attractive Targeted Sugar Baits (ATSBs) offer a complementary vector control strategy to interventions targeting blood feeding or larval control by attacking the sugar feeding behaviour of adult mosquitoes using an attract-and-kill approach. Western Zambia was the first location to receive and deploy ATSB Sarabi version 1.2 stations in a Phase III cluster randomized controlled trial. This paper describes ATSB station installation, monitoring, removal, and disposal, quantifies ATSB station coverage, and reports major reasons for ATSB station replacement. METHODS: ATSB stations were deployed during two annual transmission seasons, through scheduled installation and removal campaigns. During deployment, monitoring was conducted per protocol to maintain high coverage of the ATSB stations in good condition. Routine monitoring visits during the trial captured details on ATSB station damage necessitating replacement following pre-defined replacement criteria. Annual cross-sectional household surveys measured ATSB station coverage during peak malaria transmission. RESULTS: A total of 67,945 ATSB stations were installed in Year 1 (41,695 initially installed+ 26,250 installed during monitoring) and 69,494 ATSB stations were installed in Year 2 (41,982 initially installed+ 27,512 installed during monitoring) across 35 intervention clusters to maintain high coverage of two ATSB stations in good condition per eligible household structure. The primary reasons for ATSB station replacement due to damage were holes/tears and presence of mold. Cross-sectional household surveys documented high coverage of ATSB stations across Year 1 and Year 2 with 93.1% of eligible structures having ≥ 2 ATSB stations in any condition. DISCUSSION: ATSB station deployment and monitoring efforts were conducted in the context of a controlled cRCT to assess potential product efficacy. Damage to ATSB stations during deployment required replacement of a subset of stations. High coverage of eligible structures was maintained over the two-year study despite replacement requirements. Additional research is needed to better understand the impact of damage on ATSB station effectiveness under programmatic conditions, including thresholds of threats to physical integrity and biological deterioration on product efficacy. CONCLUSIONS: Optimizing ATSB stations to address causes of damage and conducting implementation research to inform optimal delivery and cost-effective deployment will be important to facilitate scale-up of ATSB interventions.
Asunto(s)
Control de Mosquitos , Zambia , Control de Mosquitos/métodos , Humanos , Animales , Femenino , Malaria/prevención & control , Azúcares , Estudios Transversales , Mosquitos Vectores/fisiología , Anopheles/fisiología , MasculinoRESUMEN
BACKGROUND: Community acceptance is an important criterion to assess in community trials, particularly for new tools that require high coverage and use by a target population. Installed on exterior walls of household structures, the attractive targeted sugar bait (ATSB) is a new vector control tool designed to attract and kill mosquitoes. ATSBs were evaluated in Western Zambia during a two-year cluster randomized controlled trial to assess the efficacy of ATSBs in reducing malaria transmission. Community acceptance of ATSBs was critical for successful trial implementation. METHODS: A community engagement strategy outlined activities and key messages to promote acceptance. Annual cross-sectional surveys, conducted during the peak transmission period, assessed households for presence of ATSBs as well as perceived benefits, concerns, and willingness to use ATSBs. Sixteen focus group discussions and 16 in-depth interviews, conducted at the end of each ATSB station deployment period, obtained a range of perceptions and household experiences with ATSB stations, as well as ITN use in the context of ATSB deployment. RESULTS: Methods used during the study to promote acceptance and continued use of ATSBs were effective in achieving greater than 90% coverage, a high (greater than 70%) level of perceived benefits, and fewer than 10% of households reporting safety concerns. Common facilitators of acceptance included the desire for protection against malaria and reduction of mosquitoes, trust in health initiatives, and understanding of the product. Common barriers to acceptance included misconceptions of product impact on mosquitoes, continued cases of malaria, association with satanism, and damage to household structures. DISCUSSION: Future use of the ATSB intervention will likely require activities that foster community acceptance before, during, and after the intervention is introduced. Additional research may be needed to understand the impact of different levels of community engagement on ATSB station coverage, ATSB station perception, and ITN use. CONCLUSION: There was high acceptance of ATSB stations during the trial in Western Zambia. Continuous and intense community engagement efforts contributed to sustained ATSB coverage and trust in the product. Acceptance of ATSBs during programmatic delivery requires further research.
Asunto(s)
Malaria , Control de Mosquitos , Zambia , Control de Mosquitos/métodos , Humanos , Malaria/prevención & control , Estudios Transversales , Femenino , Masculino , Adulto , Animales , Persona de Mediana Edad , Azúcares/administración & dosificación , Adulto Joven , Insecticidas , AdolescenteRESUMEN
BACKGROUND: The primary vector control interventions in Zambia are long-lasting insecticidal nets and indoor residual spraying. Challenges with these interventions include insecticide resistance and the outdoor biting and resting behaviours of many Anopheles mosquitoes. Therefore, new vector control tools targeting additional mosquito behaviours are needed to interrupt transmission. Attractive targeted sugar bait (ATSB) stations, which exploit the sugar feeding behaviours of mosquitoes, may help in this role. This study evaluated the residual laboratory bioefficacy of Westham prototype ATSB® Sarabi v.1.2.1 Bait Station (Westham Ltd., Hod-Hasharon, Israel) in killing malaria vectors in Western Province, Zambia, during the first year of a large cluster randomized phase-III trial (Clinical Trials.gov Identifier: NCT04800055). METHODS: This was a repeat cross-sectional study conducted within three districts, Nkeyema, Kaoma, and Luampa, in Western Province, Zambia. The study was conducted in 12 intervention clusters among the 70 trial clusters (35 interventions, 35 controls) between December 2021 and June 2022. Twelve undamaged bait stations installed on the outer walls of households were collected monthly (one per cluster per month) for bioassays utilizing adult female and male Anopheles gambiae sensu stricto (Kisumu strain) mosquitoes from a laboratory colony. RESULTS: A total of 84 field-deployed ATSB stations were collected, and 71 ultimately met the study inclusion criteria for remaining in good condition. Field-deployed stations that remained in good condition (intact, non-depleted of bait, and free of dirt as well as mold) retained high levels of bioefficacy (mean induced mortality of 95.3% in males, 71.3% in females, 83.9% combined total) over seven months in the field but did induce lower mortality rates than non-deployed ATSB stations (mean induced mortality of 96.4% in males, 87.0% in females, 91.4% combined total). There was relatively little variation in corrected mortality rates between monthly rounds for those ATSB stations that had been deployed to the field. CONCLUSION: While field-deployed ATSB stations induced lower mortality rates than non-deployed ATSB stations, these stations nonetheless retained relatively high and stable levels of bioefficacy across the 7-month malaria transmission season. While overall mean mosquito mortality rates exceeded 80%, mean mortality rates for females were 24 percentage points lower than among males and these differences merit attention and further evaluation in future studies. The duration of deployment was not associated with lower bioefficacy. Westham prototype ATSB stations can still retain bioefficacy even after deployment in the field for 7 months, provided they do not meet predetermined criteria for replacement.
Asunto(s)
Anopheles , Control de Mosquitos , Mosquitos Vectores , Zambia , Animales , Control de Mosquitos/métodos , Anopheles/efectos de los fármacos , Anopheles/fisiología , Mosquitos Vectores/efectos de los fármacos , Mosquitos Vectores/fisiología , Femenino , Masculino , Estudios Transversales , Malaria/prevención & control , Malaria/transmisión , Estaciones del Año , Insecticidas/farmacología , Azúcares , Humanos , Conducta AlimentariaRESUMEN
BACKGROUND: The attractive targeted sugar bait (ATSB) is a novel malaria vector control tool designed to attract and kill mosquitoes using a sugar-based bait, laced with oral toxicant. Western Province, Zambia, was one of three countries selected for a series of phase III cluster randomized controlled trials of the Westham ATSB Sarabi version 1.2. The trial sites in Kenya, Mali, and Zambia were selected to represent a range of different ecologies and malaria transmission settings across sub-Saharan Africa. This case study describes the key characteristics of the ATSB Zambia trial site to allow for interpretation of the results relative to the Kenya and Mali sites. METHODS: This study site characterization incorporates data from the trial baseline epidemiological and mosquito sugar feeding surveys conducted in 2021, as well as relevant literature on the study area. RESULTS: CHARACTERIZATION OF THE TRIAL SITE: The trial site in Zambia was comprised of 70 trial-designed clusters in Kaoma, Nkeyema, and Luampa districts. Population settlements in the trial site were dispersed across a large geographic area with sparsely populated villages. The overall population density in the 70 study clusters was 65.7 people per square kilometre with a total site population of 122,023 people living in a geographic area that covered 1858 square kilometres. However, the study clusters were distributed over a total area of approximately 11,728 square kilometres. The region was tropical with intense and seasonal malaria transmission. An abundance of trees and other plants in the trial site were potential sources of sugar meals for malaria vectors. Fourteen Anopheles species were endemic in the site and Anopheles funestus was the dominant vector, likely accounting for around 95% of all Plasmodium falciparum malaria infections. Despite high coverage of indoor residual spraying and insecticide-treated nets, the baseline malaria prevalence during the peak malaria transmission season was 50% among people ages six months and older. CONCLUSION: Malaria transmission remains high in Western Province, Zambia, despite coverage with vector control tools. New strategies are needed to address the drivers of malaria transmission in this region and other malaria-endemic areas in sub-Saharan Africa.
Asunto(s)
Anopheles , Malaria , Control de Mosquitos , Mosquitos Vectores , Azúcares , Zambia , Control de Mosquitos/métodos , Control de Mosquitos/estadística & datos numéricos , Mosquitos Vectores/efectos de los fármacos , Animales , Anopheles/efectos de los fármacos , Anopheles/fisiología , Humanos , Malaria/prevención & control , Malaria/transmisión , Femenino , Insecticidas/farmacologíaRESUMEN
BACKGROUND: Attractive targeted sugar bait (ATSB) stations are a novel tool with potential to complement current approaches to malaria vector control. To assess the public health value of ATSB station deployment in areas of high coverage with standard vector control, a two-arm cluster-randomized controlled trial (cRCT) of Sarabi ATSB® stations (Westham Ltd., Hod-Hasharon, Israel) was conducted in Western Province, Zambia, a high-burden location were Anopheles funestus is the dominant vector. The trial included 70 clusters and was designed to measure the effect of ATSBs on case incidence and infection prevalence over two 7-month deployments. Reported here are results of the vector surveillance component of the study, conducted in a subset of 20 clusters and designed to provide entomological context to guide overall interpretation of trial findings. METHODS: Each month, 200 paired indoor-outdoor human landing catch (HLC) and 200 paired light trap (LT) collections were conducted to monitor An. funestus parity, abundance, biting rates, sporozoite prevalence, and entomological inoculation rates (EIR). RESULTS: During the study 20,337 female An. funestus were collected, 11,229 from control and 9,108 from intervention clusters. A subset of 3,131 HLC specimens were assessed for parity: The mean non-parous proportion was 23.0% (95% CI 18.2-28.7%, total n = 1477) in the control and 21.2% (95% CI 18.8-23.9%, total n = 1654) in the intervention arm, an OR = 1.05 (95% CI 0.82-1.34; p = 0.688). A non-significant reduction in LT abundance (RR = 0.65 [95% CI 0.30-1.40, p = 0.267]) was associated with ATSB deployment. HLC rates were highly variable, but model results indicate a similar non-significant trend with a RR = 0.68 (95%CI 0.22-2.00; p = 0.479). There were no effects on sporozoite prevalence or EIR. CONCLUSIONS: Anopheles funestus parity did not differ across study arms, but ATSB deployment was associated with a non-significant 35% reduction in vector LT density, results that are consistent with the epidemiological impact reported elsewhere. Additional research is needed to better understand how to maximize the potential impact of ATSB approaches in Zambia and other contexts. TRIAL REGISTRATION NUMBER: This trial was registered with Clinicaltrials.gov (NCT04800055, 16 March 2021).
Asunto(s)
Anopheles , Control de Mosquitos , Mosquitos Vectores , Zambia , Anopheles/fisiología , Animales , Mosquitos Vectores/fisiología , Control de Mosquitos/métodos , Femenino , Humanos , Azúcares , Malaria/prevención & controlRESUMEN
BACKGROUND: Community case management of malaria (CCM) has been expanded in many settings, but there are limited data describing the impact of these services in routine implementation settings or at large scale. Zambia has intensively expanded CCM since 2013, whereby trained volunteer community health workers (CHW) use rapid diagnostic tests and artemether-lumefantrine to diagnose and treat uncomplicated malaria. METHODS: This retrospective, observational study explored associations between changing malaria service point (health facility or CHW) density per 1000 people and severe malaria admissions or malaria inpatient deaths by district and month in a dose-response approach, using existing routine and programmatic data. Negative binomial generalized linear mixed-effect models were used to assess the impact of increasing one additional malaria service point per 1000 population, and of achieving Zambia's interim target of 1 service point per 750 population. Access to insecticide-treated nets, indoor-residual spraying, and rainfall anomaly were included in models to reduce potential confounding. RESULTS: The study captured 310,855 malaria admissions and 7158 inpatient malaria deaths over 83 districts (seven provinces) from January 2015 to May 2020. Total CHWs increased from 43 to 4503 during the study period, while health facilities increased from 1263 to 1765. After accounting for covariates, an increase of one malaria service point per 1000 was associated with a 19% reduction in severe malaria admissions among children under five (incidence rate ratio [IRR] 0.81, 95% confidence interval [CI] 0.75-0.87, p < 0.001) and 23% reduction in malaria deaths among under-fives (IRR 0.77, 95% CI 0.66-0.91). After categorizing the exposure of population per malaria service point, there was evidence for an effect on malaria admissions and inpatient malaria deaths among children under five only when reaching the target of one malaria service point per 750 population. CONCLUSIONS: CCM is an effective strategy for preventing severe malaria and deaths in areas such as Zambia where malaria diagnosis and treatment access remains challenging. These results support the continued investment in CCM scale-up in similar settings, to improve access to malaria diagnosis and treatment.
Asunto(s)
Antimaláricos , Sistemas de Información en Salud , Malaria , Niño , Humanos , Antimaláricos/uso terapéutico , Zambia/epidemiología , Manejo de Caso , Estudios Retrospectivos , Pacientes Internos , Arteméter/uso terapéutico , Combinación Arteméter y Lumefantrina/uso terapéutico , Malaria/tratamiento farmacológico , Malaria/prevención & control , Malaria/epidemiología , Agentes Comunitarios de SaludRESUMEN
BACKGROUND: Haiti is planning targeted interventions to accelerate progress toward malaria elimination. In the most affected department (Grande-Anse), a combined mass drug administration (MDA) and indoor residual spraying (IRS) campaign was launched in October 2018. This study assessed the intervention's effectiveness in reducing Plasmodium falciparum prevalence. METHODS: An ecological quasi-experimental study was designed, using a pretest and posttest with a nonrandomized control group. Surveys were conducted in November 2017 in a panel of easy access groups (25 schools and 16 clinics) and were repeated 2-6 weeks after the campaign, in November 2018. Single-dose sulfadoxine-pyrimethamine and primaquine was used for MDA, and pirimiphos-methyl as insecticide for IRS. RESULTS: A total of 10 006 participants were recruited. Fifty-two percent of the population in the intervention area reported having received MDA. Prevalence diminished between 2017 and 2018 in both areas, but the reduction was significantly larger in the intervention area (ratio of adjusted risk ratios, 0.32 [95% confidence interval, .104-.998]). CONCLUSIONS: Despite a moderate coverage, the campaign was effective in reducing P. falciparum prevalence immediately after 1 round. Targeted MDA plus IRS is useful in preelimination settings to rapidly decrease the parasite reservoir, an encouraging step to accelerate progress toward malaria elimination.
Asunto(s)
Insecticidas , Malaria , Haití/epidemiología , Humanos , Insecticidas/farmacología , Malaria/tratamiento farmacológico , Malaria/epidemiología , Malaria/prevención & control , Administración Masiva de Medicamentos , Control de MosquitosRESUMEN
Serological data can provide estimates of human exposure to both malaria vector and parasite based on antibody responses. A multiplex bead-based assay was developed to simultaneously detect IgG to Anopheles albimanus salivary gland extract (SGE) and 23 Plasmodium falciparum antigens among 4185 participants enrolled in Artibonite department, Haiti in 2017. Logistic regression adjusted for participant- and site-level covariates and found children under 5 years and 6-15 years old had 3.7- and 5.4-fold increase in odds, respectively, of high anti-SGE IgG compared to participants >15 years. Seropositivity to P. falciparum CSP, Rh2_2030, and SEA-1 antigens was significantly associated with high IgG response against SGE, and participant enrolment at elevations under 200 m was associated with higher anti-SGE IgG levels. The ability to approximate population exposure to malaria vectors through SGE serology data is very dependent by age categories, and SGE antigens can be easily integrated into a multiplex serological assay.
Asunto(s)
Anopheles , Malaria Falciparum , Malaria , Animales , Anopheles/parasitología , Formación de Anticuerpos , Antígenos , Niño , Preescolar , Haití/epidemiología , Humanos , Inmunoglobulina G , Malaria/epidemiología , Malaria Falciparum/epidemiología , Mosquitos Vectores , Plasmodium falciparum , Glándulas SalivalesRESUMEN
Accurate malaria diagnosis is foundational for control and elimination, and Haiti relies on histidine-rich protein 2 (HRP2)-based rapid diagnostic tests (RDTs) identifying Plasmodium falciparum in clinical and community settings. In 2017, 1 household and 2 easy-access group surveys tested all participants (N = 32 506) by conventional and high-sensitivity RDTs. A subset of blood samples (n = 1154) was laboratory tested for HRP2 by bead-based immunoassay and for P. falciparum 18S rDNA by photo-induced electron transfer polymerase chain reaction. Both RDT types detected low concentrations of HRP2 with sensitivity estimates between 2.6 ng/mL and 14.6 ng/mL. Compared to the predicate HRP2 laboratory assay, RDT sensitivity ranged from 86.3% to 96.0% between tests and settings, and specificity from 90.0% to 99.6%. In the household survey, the high-sensitivity RDT provided a significantly higher number of positive tests, but this represented a very small proportion (<0.2%) of all participants. These data show that a high-sensitivity RDT may have limited utility in a malaria elimination setting like Haiti.
Asunto(s)
Pruebas Diagnósticas de Rutina/métodos , Malaria Falciparum/diagnóstico , Malaria Falciparum/transmisión , Plasmodium falciparum/genética , Plasmodium falciparum/inmunología , Adolescente , Antígenos de Protozoos/sangre , Antígenos de Protozoos/inmunología , Niño , Preescolar , ADN Protozoario/sangre , ADN Protozoario/genética , ADN Ribosómico/sangre , ADN Ribosómico/genética , Ensayo de Inmunoadsorción Enzimática/métodos , Femenino , Haití/epidemiología , Humanos , Lactante , Malaria Falciparum/epidemiología , Malaria Falciparum/parasitología , Masculino , Reacción en Cadena de la Polimerasa/métodos , Proteínas Protozoarias/sangre , Proteínas Protozoarias/inmunología , Sensibilidad y EspecificidadRESUMEN
BACKGROUND: As in most eliminating countries, malaria transmission is highly focal in Haiti. More granular information, including identifying asymptomatic infections, is needed to inform programmatic efforts, monitor intervention effectiveness, and identify remaining foci. Easy access group (EAG) surveys can supplement routine surveillance with more granular information on malaria in a programmatically tractable way. This study assessed how and which type of venue for EAG surveys can improve understanding malaria epidemiology in two regions with different transmission profiles. METHODS: EAG surveys were conducted within the departments of Artibonite and Grand'Anse (Haiti), in regions with different levels of transmission intensity. Surveys were conducted in three venue types: primary schools, health facilities, and churches. The sampling approach varied accordingly. Individuals present at the venues at the time of the survey were eligible whether they presented malaria symptoms or not. The participants completed a questionnaire and were tested for Plasmodium falciparum by a highly sensitive rapid diagnostic test (hsRDT). Factors associated with hsRDT positivity were assessed by negative binomial random-effects regression models. RESULTS: Overall, 11,029 individuals were sampled across 39 venues in Artibonite and 41 in Grand'Anse. The targeted sample size per venue type (2100 in Artibonite and 2500 in Grand'Anse) was reached except for the churches in Artibonite, where some attendees left the venue before they could be approached or enrolled. Refusal rate and drop-out rate were < 1%. In total, 50/6003 (0.8%) and 355/5026 (7.1%) sampled individuals were hsRDT positive in Artibonite and Grand'Anse, respectively. Over half of all infections in both regions were identified at health facilities. Being male and having a current or reported fever in the previous 2 weeks were consistently identified with increased odds of being hsRDT positive. CONCLUSIONS: Surveys in churches were problematic because of logistical and recruitment issues. However, EAG surveys in health facilities and primary schools provided granular information about malaria burden within two departments in Haiti. The EAG surveys were able to identify residual foci of transmission that were missed by recent national surveys. Non-care seeking and/or asymptomatic malaria infections can be identified in this alternative surveillance tool, facilitating data-driven decision-making for improved targeting of interventions.
Asunto(s)
Brotes de Enfermedades/estadística & datos numéricos , Monitoreo Epidemiológico , Malaria Falciparum/epidemiología , Plasmodium falciparum/patogenicidad , Adolescente , Adulto , Niño , Femenino , Haití/epidemiología , Humanos , Masculino , Adulto JovenRESUMEN
BACKGROUND: Many countries have made substantial progress in scaling-up and sustaining malaria intervention coverage, leading to more focalized and heterogeneous transmission in many settings. Evaluation provides valuable information for programmes to understand if interventions have been implemented as planned and with quality, if the programme had the intended impact on malaria burden, and to guide programmatic decision-making. Low-, moderate-, and heterogeneous-transmission settings present unique evaluation challenges because of dynamic and targeted intervention strategies. This paper provides illustration of evaluation approaches and methodologies for these transmission settings, and suggests how to answer evaluation questions specific to the local context. METHODS: The Roll Back Malaria Monitoring and Evaluation Reference Group formed a task force in October 2017 to lead development of this framework. The task force includes representatives from National Malaria Programmes, funding agencies, and malaria research and implementing partners. The framework builds on existing guidance for process and outcome evaluations and impact evaluations specifically in high transmission settings. RESULTS: The theory of change describes how evaluation questions asked by national malaria programmes in different contexts influence evaluation design. The transmission setting, existing stratification, and data quality and availability are also key considerations. The framework is intended for adaption by countries to their local context, and use for evaluation at sub-national level. Confirmed malaria incidence is recommended as the primary impact indicator due to its sensitivity to detect changes in low-transmission settings. It is expected that process evaluations provide sufficient evidence for programme monitoring and improvement, while impact evaluations are needed following adoption of new mixes of interventions, operational strategies, tools or policies, particularly in contexts of changing malaria epidemiology. Impact evaluations in low-, moderate-, or heterogeneous-transmission settings will likely use plausibility designs, and methods highlighted by the framework include interrupted time series, district-level dose-response analyses, and constructed control methods. Triangulating multiple data sources and analyses is important to strengthen the plausibility argument. CONCLUSIONS: This framework provides a structure to assist national malaria programmes and partners to design evaluations in low-, moderate- or heterogeneous-transmission settings. Emphasizing a continuous cycle along the causal pathway linking process evaluation to impact evaluation and then programmatic decision-making, the framework provides practical guidance in evaluation design, analysis, and interpretation to ensure that the evaluation meets national malaria programme priority questions and guides decision-making at national and sub-national levels.
Asunto(s)
Control de Enfermedades Transmisibles/métodos , Malaria/prevención & control , Programas Nacionales de Salud , Evaluación de Programas y Proyectos de Salud , Humanos , Malaria/transmisiónRESUMEN
BACKGROUND: Prompt and effective malaria diagnosis and treatment is a cornerstone of malaria control. Case management guidelines recommend confirmatory testing of suspected malaria cases, then prescription of specific drugs for uncomplicated malaria and for severe malaria. This study aims to describe case management practices for children aged 1-59 months seeking treatment with current or recent fever from public and private, rural and urban health providers in Mali. METHODS: Data were collected at sites in Sikasso Region and Bamako. Health workers recorded key information from the consultation including malaria diagnostic testing and result, their final diagnosis, and all drugs prescribed. Children with signs of severe diseases were ineligible. Consultations were not independently observed. Appropriate case management was defined as both 1) tested for malaria using rapid diagnostic test or microscopy, and 2) receiving artemisinin combination therapy (ACT) and no other antimalarials if test-positive, or receiving no antimalarials if test-negative. RESULTS: Of 1602 participating children, 23.7% were appropriately managed, ranging from 5.3% at public rural facilities to 48.4% at community health worker sites. The most common reason for 'inappropriate' management was lack of malaria diagnostic testing (50.4% of children). Among children with confirmed malaria, 50.8% received a non-ACT antimalarial (commonly artesunate injection or artemether), either alone or in combination with ACT. Of 215 test-negative children, 44.2% received an antimalarial drug, most commonly ACT. Prescription of multiple drugs was common: 21.7% of all children received more than one type of antimalarial, while 51.9% received an antibiotic and antimalarial. Inappropriate case management increased in children with increasing axillary temperatures and those seeking care over weekends. CONCLUSIONS: Multiple limitations in management of febrile children under five were identified, including inconsistent use of confirmatory testing and apparent use of severe malaria drugs for uncomplicated malaria. While we cannot confirm the reasons for these shortcomings, there is a need to address the high use of non-ACT antimalarials in this context; to minimize potential for drug resistance, reduce unnecessary expense, and preserve life-saving treatment for severe malaria cases. These findings highlight the challenge of managing febrile illness in young children in a high transmission setting.
Asunto(s)
Antimaláricos , Artemisininas , Malaria , Antimaláricos/uso terapéutico , Artemisininas/uso terapéutico , Preescolar , Humanos , Lactante , Recién Nacido , Malaria/diagnóstico , Malaria/tratamiento farmacológico , Malaria/epidemiología , Malí/epidemiología , Sector PrivadoRESUMEN
BACKGROUND: Nationally-representative household surveys are the standard approach to monitor access to and treatment with artemisinin-based combination therapy (ACT) among children under 5 years (U5), however these indicators are dependent on caregivers' recall of the treatment received. METHODS: A prospective case-control study was performed in Mali to validate caregivers' recall of treatment received by U5s when seeking care for fever from rural and urban public health facilities, community health workers and urban private facilities. Clinician-recorded consultation details were the gold standard. Consenting caregivers were followed-up for interview at home within 2 weeks using standard questions from Demographic and Health Surveys and Malaria Indicator Surveys. RESULTS: Among 1602 caregivers, sensitivity of recalling that the child received a finger/heel prick was 91.5%, with specificity 85.7%. Caregivers' recall of a positive malaria test result had sensitivity 96.2% with specificity 59.7%. Irrespective of diagnostic test result, the sensitivity and specificity of caregivers' recalling a malaria diagnosis made by the health worker were 74.3% and 74.9%, respectively. Caregivers' recall of ACT being given had sensitivity of 43.2% and specificity 90.2%, while recall that any anti-malarial was given had sensitivity 59.0% and specificity 82.7%. Correcting caregivers' response of treatment received using a combination of a visual aid with photographs of common drugs for fever, prescription documents and retained packaging changed ACT recall sensitivity and specificity to 91.5% and 71.1%, respectively. CONCLUSIONS: These findings indicate that caregivers' responses during household surveys are valid when assessing if a child received a finger/heel prick during a consultation in the previous 2 weeks, and if the malaria test result was positive. Recall of ACT treatment received by U5s was poor when based on interview response only, but was substantially improved when incorporating visual aids, prescriptions and drug packaging review.
Asunto(s)
Antimaláricos/uso terapéutico , Cuidadores , Malaria/diagnóstico , Malaria/tratamiento farmacológico , Artemisininas/uso terapéutico , Estudios de Casos y Controles , Preescolar , Quimioterapia Combinada , Composición Familiar , Femenino , Fiebre/epidemiología , Fiebre/etiología , Humanos , Lactante , Masculino , Malí , Recuerdo Mental , Aceptación de la Atención de Salud , Estudios Prospectivos , Servicios de Salud Rural , Sensibilidad y Especificidad , Encuestas y Cuestionarios , Servicios Urbanos de SaludRESUMEN
BACKGROUND: As momentum towards malaria elimination grows, strategies are being developed for scale-up in elimination settings. One prominent strategy, reactive case detection (RACD), involves screening and treating individuals living in close proximity to passively detected, or "index" cases. This study aims to use RACD to quantify Plasmodium parasitaemia in households of index cases, and identify risk factors for infection; these data could inform reactive screening approaches and identify target risk groups. METHODS: This study was conducted in the Western Cambodian province of Pailin between May 2013 and March 2014 among 440 households. Index participants/index cases (n = 270) and surrounding households (n = 110) were screened for Plasmodium infection with rapid diagnostic tests (RDT), microscopy and real-time polymerase chain reaction (PCR). Participants were interviewed to identify risk factors. A comparison group of 60 randomly-selected households was also screened, to compare infection levels of RACD and non-RACD households. In order to identify potential risk factors that would inform screening approaches and identify risk groups, multivariate logistic regression models were applied. RESULTS: Nine infections were identified in households of index cases (RACD approach) through RDT screening of 1898 individuals (seven Plasmodium vivax, two Plasmodium falciparum); seven were afebrile. Seventeen infections were identified through PCR screening of 1596 individuals (15 P. vivax, and 22 % P. falciparum/P. vivax mixed infections). In the control group, 25 P. falciparum infections were identified through PCR screening of 237 individuals, and no P. vivax was found. Plasmodium falciparum infection was associated with fever (p = 0.013), being a member of a control household (p ≤ 0.001), having a history of malaria infection (p = 0.041), and sleeping without a mosquito net (p = 0.011). Significant predictors of P. vivax infection, as diagnosed by PCR, were fever (p = 0.058, borderline significant) and history of malaria infection (p ≤ 0.001). CONCLUSION: This study found that RACD identified very few secondary infections when targeting index and neighbouring households for screening. The results suggest RACD is not appropriate, where exposure to malaria occurs away from the community, and there is a high level of treatment-seeking from the private sector. Piloting RACD in a range of transmission settings would help to identify the ideal environment for feasible and effective reactive screening methods.
Asunto(s)
Malaria Falciparum/diagnóstico , Malaria Falciparum/epidemiología , Malaria Vivax/diagnóstico , Malaria Vivax/epidemiología , Análisis de Varianza , Cambodia/epidemiología , Estudios Transversales , Composición Familiar , Femenino , Humanos , Masculino , Plasmodium falciparum/aislamiento & purificación , Plasmodium vivax/aislamiento & purificaciónRESUMEN
BACKGROUND: Syndromic surveillance is a supplementary approach to routine surveillance, using pre-diagnostic and non-clinical surrogate data to identify possible infectious disease outbreaks. To date, syndromic surveillance has primarily been used in high-income countries for diseases such as influenza--however, the approach may also be relevant to resource-poor settings. This study investigated the potential for monitoring school absenteeism and febrile illness, as part of a school-based surveillance system to identify localised malaria epidemics in Ethiopia. METHODS: Repeated cross-sectional school- and community-based surveys were conducted in six epidemic-prone districts in southern Ethiopia during the 2012 minor malaria transmission season to characterise prospective surrogate and syndromic indicators of malaria burden. Changes in these indicators over the transmission season were compared to standard indicators of malaria (clinical and confirmed cases) at proximal health facilities. Subsequently, two pilot surveillance systems were implemented, each at ten sites throughout the peak transmission season. Indicators piloted were school attendance recorded by teachers, or child-reported recent absenteeism from school and reported febrile illness. RESULTS: Lack of seasonal increase in malaria burden limited the ability to evaluate sensitivity of the piloted syndromic surveillance systems compared to existing surveillance at health facilities. Weekly absenteeism was easily calculated by school staff using existing attendance registers, while syndromic indicators were more challenging to collect weekly from schoolchildren. In this setting, enrolment of school-aged children was found to be low, at 54%. Non-enrolment was associated with low household wealth, lack of parental education, household size, and distance from school. CONCLUSIONS: School absenteeism is a plausible simple indicator of unusual health events within a community, such as malaria epidemics, but the sensitivity of an absenteeism-based surveillance system to detect epidemics could not be rigorously evaluated in this study. Further piloting during a demonstrated increase in malaria transmission within a community is recommended.
Asunto(s)
Absentismo , Epidemias , Malaria/epidemiología , Vigilancia de la Población/métodos , Instituciones Académicas , Adolescente , Niño , Estudios Transversales , Brotes de Enfermedades , Etiopía/epidemiología , Femenino , Fiebre/epidemiología , Instituciones de Salud , Humanos , Gripe Humana/epidemiología , Masculino , Proyectos Piloto , Estudios ProspectivosRESUMEN
Outreach Training and Supportive Supervision (OTSS) of malaria services at health facilities has been adopted by numerous malaria-endemic countries. The OTSS model is characterized by a hands-on method to enhance national guidelines and supervision tools, train supervisors, and perform supervision visits. An independent evaluation was conducted to evaluate the effectiveness of OTSS on health worker competence in the clinical management of malaria, parasitological diagnosis, and prevention of malaria in pregnancy. From 2018 to 2021, health facilities in Cameroon, Ghana, Niger, and Zambia received OTSS visits during which health workers were observed directly during patient consultations, and supervisors completed standardized checklists to assess their performance. Mixed-effects logistic regression models were developed to assess the impact of increasing OTSS visit number on a set of eight program-generated outcome indicators, including overall competency and requesting a confirmatory malaria test appropriately. Seven of eight outcome indicators showed evidence of beneficial effects of increased OTSS visits. Odds of health workers reaching competency thresholds for the malaria-in-pregnancy checklist increased by more than four times for each additional OTSS visit (odds ratio [OR], 4.62; 95% CI, 3.62-5.88). Each additional OTSS visit was associated with almost four times the odds of the health worker foregoing antimalarial prescriptions for patients who tested negative for malaria (OR, 3.80; 95% CI, 2.35-6.16). This evaluation provides evidence that successive OTSS visits result in meaningful improvements in indicators linked to quality case management of patients attending facilities for malaria diagnosis and treatment, as well as quality malaria prevention services received by women attending antenatal services.
Asunto(s)
Malaria , Femenino , Humanos , Embarazo , Zambia/epidemiología , Camerún/epidemiología , Ghana , Niger , Malaria/diagnóstico , Malaria/tratamiento farmacológico , Malaria/prevención & controlRESUMEN
BACKGROUND: Some settings continue to experience a high malaria burden despite scale-up of malaria vector control to high levels of coverage. Characterisation of persistent malaria transmission in the presence of standard control measures, also termed residual malaria transmission, to understand where and when individuals are exposed to vector biting is critical to inform refinement of prevention and control strategies. METHODS: Secondary analysis was performed using data collected during a phase III cluster randomized trial of attractive targeted sugar bait stations in Western Province, Zambia. Two seasonal cohorts of children aged 1-14 years were recruited and monitored monthly during the malaria transmission season, concurrent with entomological surveillance using a combination of human landing catch (HLC) and Centres for Disease Control (CDC) light traps at randomly selected households in study clusters. Behavioural data from cohort participants were combined with measured Anopheles funestus landing rates and sporozoite positivity to estimate the human behaviour-adjusted entomological inoculation rate (EIR). RESULTS: Behavioural data from 1237 children over 5456 child-visits in 20 entomology surveillance clusters were linked with hourly landing rates from 8131 female An. funestus trapped by HLC. Among all An. funestus tested by enzyme-linked immunosorbent assay (ELISA), 3.3% were sporozoite-positive. Mean EIR directly measured from HLC was 0.07 infectious bites per person per night (ib/p/n). When accounting for child locations over the evening and night, the mean behaviour-adjusted EIR was 0.02 ib/p/n. Children not sleeping under insecticide-treated nets (ITNs) experienced 13.6 infectious bites per person per 6 month season, 8% of which occurred outdoors, while ITN users received 1.3 infectious bites per person per 6 month season, 86% of which were received outdoors. Sleeping under an ITN can prevent approximately 90% of potential An. funestus bites among children. CONCLUSIONS: In this setting ITNs have a high personal protective efficacy owing to peak An. funestus biting occurring indoors while most individuals are asleep. However, despite high household possession of ITNs (>90%) and high individual use (>70%), children in this setting experience more than one infectious bite per person per 6 month transmission season, sufficient to maintain high malaria transmission and burden. New tools and strategies are required to reduce the malaria burden in such settings.
Asunto(s)
Anopheles , Malaria , Control de Mosquitos , Mosquitos Vectores , Animales , Zambia/epidemiología , Anopheles/fisiología , Anopheles/parasitología , Humanos , Preescolar , Niño , Mosquitos Vectores/fisiología , Mosquitos Vectores/parasitología , Malaria/transmisión , Malaria/prevención & control , Malaria/epidemiología , Femenino , Control de Mosquitos/métodos , Lactante , Adolescente , Masculino , Estaciones del Año , Mordeduras y Picaduras de Insectos/prevención & control , Mordeduras y Picaduras de Insectos/epidemiologíaRESUMEN
BACKGROUND: Plasmodium-helminth coinfection can have a number of consequences for infected hosts, yet our knowledge of the epidemiology of coinfection across multiple settings is limited. This study investigates the distribution and heterogeneity of coinfection with Plasmodium falciparum and 3 major helminth species across East Africa. METHODS: Cross-sectional parasite surveys were conducted among 28 050 children in 299 schools across a range of environmental settings in Kenya, Uganda, and Ethiopia. Data on individual, household, and environmental risk factors were collected and a spatially explicit Bayesian modeling framework was used to investigate heterogeneities of species infection and coinfection and their risk factors as well as school- and individual-level associations between species. RESULTS: Broad-scale geographical patterns of Plasmodium-helminth coinfection are strongly influenced by the least common infection and by species-specific environmental factors. At the individual level, there is an enduring positive association between P. falciparum and hookworm but no association between P. falciparum and Schistosoma species. However, the relative importance of such within-individual associations is less than the role of spatial factors in influencing coinfection risks. CONCLUSIONS: Patterns of coinfection seem to be influenced more by the distribution of the least common species and its environmental risk factors, rather than any enduring within-individual associations.
Asunto(s)
Coinfección/epidemiología , Infecciones por Uncinaria/epidemiología , Malaria Falciparum/epidemiología , Plasmodium falciparum , Esquistosomiasis Urinaria/epidemiología , Esquistosomiasis mansoni/epidemiología , Adolescente , Teorema de Bayes , Niño , Coinfección/parasitología , Etiopía/epidemiología , Femenino , Humanos , Kenia/epidemiología , Modelos Logísticos , Masculino , Factores de Riesgo , Uganda/epidemiologíaRESUMEN
OBJECTIVE: To evaluate the diagnostic accuracy of a circulating cathodic antigen (CCA) urine dipstick test for detecting Schistosoma mansoni and S. haematobium alongside an integrated rapid mapping survey in Southern Sudan. METHODS AND RESULTS: A total of 373 children aged 5-16 years were included in the study. Of these 26.0% were infected with S. haematobium and 24.5% were infected with S. mansoni, as identified by urine filtration or single Kato-Katz thick smear, respectively. The CCA performed moderately in detecting S. mansoni, with sensitivity of 89.1% and specificity of 74.2%, and poorly in detecting S. haematobium infections, with a sensitivity of 36.8% and specificity of 78.9%. This may be a slight underestimate of true CCA accuracy, since only single stool and urine samples were examined by microscopy. The true 'gold standard' for comparison would have been the collection of multiple stool samples over consecutive days. CONCLUSION: The poor CCA accuracy for diagnosis of urinary schistosomiasis means that this test is currently not suitable for rapid mapping of schistosomiasis in areas where both S. mansoni and S. haematobium may be endemic.