Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Insect Mol Biol ; 33(2): 91-100, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37819050

RESUMEN

Drosophila suzukii (Matsumura) (Diptera: Drosophilidae), commonly called spotted wing Drosophila, is an important agricultural pest recognised worldwide. D. suzukii is a pest of soft-skinned fruits as females can lay eggs in ripening fruit before harvest. While strains for genetic biocontrol of D. suzukii have been made, the development of transgenic D. suzukii strains and their further screening remain a challenge partly due to the lack of phenotypically trackable genetic-markers, such as those widely used with the model genetic organism D. melanogaster. Here, we have used CRISPR/Cas9 to introduce heritable mutations in the eye colour genes white, cinnabar and sepia, which are located on the X, second and third chromosomes, respectively. Strains were obtained, which were homozygous for a single mutation. Genotyping of the established strains showed insertion and/or deletions (indels) at the targeted sites. A strain homozygous for mutations in cinnabar and sepia showed a pale-yellow eye colour at eclosion but darkened to a sepia colour after a week. The fecundity and fertility of some of the cinnabar and sepia strains were comparable with the wild type. Although white mutant males were previously reported to be sterile, we found that sterility is not fully penetrant and we have been able to maintain white-eyed strains for over a year. The cinnabar, sepia and white mutant strains developed in this study should facilitate future genetic studies in D. suzukii and the development of strains for genetic control of this pest.


Asunto(s)
Drosophila melanogaster , Drosophila , Compuestos de Mercurio , Femenino , Masculino , Animales , Drosophila/genética , Color del Ojo/genética , Fertilidad , Control de Insectos
2.
Transgenic Res ; 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39210187

RESUMEN

In insect genome editing CRISPR/Cas9 is predominantly employed, while the potential of several classes of Cas enzymes such as Cas12a largely remain untested. As opposed to Cas9 which requires a GC-rich protospacer adjacent motif (PAM), Cas12a requires a T-rich PAM and causes staggered cleavage in the target DNA, opening possibilities for multiplexing. In this regard, the utility of Cas12a has been shown in only a few insect species such as fruit flies and the silkworm, but not in non-model insects such as the fall armyworm, Spodoptera frugiperda, a globally important invasive pest that defies most of the current management methods. In this regard, a more recent genetic biocontrol method known as the precision-guided sterile insect technique (pgSIT) has shown successful implementation in Drosophila melanogaster, with certain thematic adaptations required for application in agricultural pests. However, before the development of a controllable gene drive for a non-model species, it is important to validate the activity of Cas12a in that species. In the current study we have, for the first time, demonstrated the potential of Cas12a by editing an eye color gene, tryptophan 2,3-dioxygenase (TO) of S. frugiperda by microinjecting ribonucleoprotein complex into pre-blastoderm (G0) eggs. Analysis of G0 mutants revealed that all five mutants (two male and three female) exhibited distinct edits consisting of both deletion and insertion events. All five edits were further validated through in silico modeling to understand the changes at the protein level and further corroborate with the range of eye-color phenotypes observed in the present study.

3.
Arch Insect Biochem Physiol ; 116(1): e22121, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38783691

RESUMEN

Invasive insect pests, currently, pose a serious economic threat to several staple crops all over the world, one such being the fall armyworm, Spodoptera frugiperda. It was first observed in Africa since 2016, outside of its natural habitat in the Americas. Subsequently, it invaded several countries in South and South East Asia and also very recently in Australia. In all the newly invaded regions, maize is the principal crop attacked causing a serious economic concern to the poor farmers, particularly in the developing countries. Owing to the innate genetic ability, it defies many of the management options that include insecticides, Bt transgenics, and so forth. This is due to its high mobility, polyphagy and ability for quick development of resistance to several classes of insecticides. At this critical juncture, CRISPR/Cas9 mediated genome editing has shown a lot of promise in developing a novel area-wide pest management strategy called precision-guided sterile insect technique (pgSIT). pgSIT was initially demonstrated in Drosophila melanogaster which holds a greater promise for the environmentally friendly management of several globally significant agricultural pests such as S. frugiperda. Therefore, before developing both sgRNA and Cas9 transgenic lines, we have validated the target gene such as tssk2 through a non-transgenic approach by microinjecting ribo nucleo protein complex (Cas9 protein and tssk2 sgRNA) into G0 eggs of S. frugiperda. In the current investigation, we have obtained five edited males with distinct mutations which were further used for crossing studies to ascertain the effect of tssk2 editing affecting egg hatchability.


Asunto(s)
Sistemas CRISPR-Cas , Spodoptera , Animales , Spodoptera/genética , Masculino , Control Biológico de Vectores/métodos , Edición Génica/métodos , Espermatogénesis/genética , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Femenino , Control de Insectos/métodos
4.
Arch Insect Biochem Physiol ; 113(4): e22024, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37211656

RESUMEN

The Oriental fruit fly, Bactrocera dorsalis (Hendel), is a highly invasive pest of quarantine importance affecting the global fruit trade. In managing B. dorsalis, methods like cultural, biological, chemical, sterile insect technique (SIT), and semiochemical-mediated attract-and-kill are in use with varying success. The SIT approach is the method of choice for a chemical-free, long-term suppression of B. dorsalis, followed in many countries across the globe. The nonspecific mutations caused by irradiation affect the overall fitness of flies, thus requiring a more precise method for a heritable, fitness-not-compromising approach. In this regard, CRISPR/Cas9-mediated genome editing enables the creation of mutations at the precise genomic location/s through RNA-guided dsDNA cleavage. Of late, DNA-free editing employing ribonucleoprotein complex (RNP) is preferred to validate the target genes at G0 stage embryos in insects. It requires characterizing genomic edits from adults after completing their life cycle, which may entail a few days to months, depending on longevity. Additionally, edit characterization is required from each individual, as edits are unique. Therefore, all RNP-microinjected individuals must be maintained until the end of their life cycle, irrespective of editing. To overcome this impediment, we predetermine the genomic edits from the shed tissues, such as pupal cases, to maintain only edited individuals. In this study, we have shown the utility of pupal cases from five males and females of B. dorsalis to predetermine the genomic edits, which corroborated the edits from the respective adults.


Asunto(s)
Tephritidae , Femenino , Masculino , Animales , Tephritidae/genética , Sistemas CRISPR-Cas , Pupa/genética , Drosophila , Genómica
5.
Biotechnol Appl Biochem ; 68(5): 971-982, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32744379

RESUMEN

Genome-wide analysis of cytochrome P450 monooxygenase (CYP) genes from the advanced genome project of the Leucinodes orbonalis and the expression analysis provided significant information about the metabolism-mediated insecticide resistance. A total of 72 putative CYP genes were identified from the genome and transcriptome of L. orbonalis. The genes were classified under 30 families and 46 subfamilies based on the standard nomenclature. In the present study, a novel CYP gene, CYP324F1, was identified and it has not been reported from any other living system so far. Biochemical assays showed enhanced titers (5.81-18.5-fold) of O-demethylase of CYP in five field-collected populations. We selected 34 homologous CYP gene sequences, seemed to be involved in insecticide resistance for primer design and quantitative real-time PCR studies. Among the many overexpressed genes (>10 fold), the expression levels of CYP324F1 and CYP306A1 were prominent across all the field populations as compared with the susceptible iso-female line. Oral delivery of ds-CYP324F1 and ds-CYP306A1 directed against CYP324F1 and CYP306A1 to the larvae of one of the insecticide resistance populations caused reduced expression of these two transcripts in a dose-dependent manner (53.4%-85.0%). It appears that the increased titer of O-demethylase is the result of increased transcription level of CYP genes in resistant populations. The data provide insight for identifying the novel resistance management strategies against L. orbonalis.


Asunto(s)
Sistema Enzimático del Citocromo P-450/metabolismo , Lepidópteros/enzimología , Animales , Biología Computacional , Sistema Enzimático del Citocromo P-450/genética , Resistencia a los Insecticidas/genética , Lepidópteros/metabolismo
6.
Gene ; 933: 148925, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39277149

RESUMEN

Vitellogenin (Vg), a yolk protein precursor, plays an important role in the oocyte development of insects and is an important target of genetic pest management. Vg is synthesized in the fat body, transported through haemolymph and accumulates in developing oocytes. In this regard, the eggplant shoot and fruit borer, Leucinodes orbonalis (Lepidoptera: Crambidae) is the major pest in South and South East Asia and a serious concern for farmers. Therefore, in the present study, we have cloned and characterized Vg from L. orbonalis (LoVg) for further applications. The cloned Vg consisted of 5,370 base pairs encoding 1,790 amino acid residues long protein. Further, sequence alignment revealed that LoVg has three conserved domains: a Vitellogenin N domain (LPD-N), a domain of unknown function protein families (DUF1943), and a von Willebrand factor type D domain (VWD). Using phylogenetic analysis, it was found that LoVg evolved alongside homologous proteins from different insects. The real-time expression levels of LoVg were significantly greater in female adults followed by the pupal stage. This suggests that Vg production and absorption in L. orbonalis occurs in the later pupal stage. Our studies showed that editing LoVg using CRISPR/Cas9 did not affect the total number of eggs laid but affected egg hatchability. These studies help us to design newer approaches in insect pest management through genetic suppression for sustainable pest management.

7.
Int J Biol Macromol ; 253(Pt 2): 126557, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37657567

RESUMEN

The Fall armyworm, Spodoptera frugiperda is a significant global pest causing serious yield loss on several staple crops. In this regard, this pest defies several management approaches based on chemicals, Bt transgenics etc., requiring effective alternatives. Recently CRISPR/Cas9 mediated genome editing has opened up newer avenues to establish functions of various target genes before employing them for further application. The virgin female moths of S. frugiperda emit sex pheromones to draw conspecific males. Therefore, we have edited the key pheromone synthesis gene, fatty acyl-CoA Delta-9 desaturase (DES9) of the Indian population of S. frugiperda. In order to achieve a larger deletion of the DES9, we have designed two single guide RNA (sgRNA) in sense and antisense direction targeting the first exon instead of a single guide RNA. The sgRNA caused site-specific knockout with a larger deletion which impacted the mating. Crossing studies between wild male and mutant female resulted in no fecundity, while fecundity was normal when mutant male crossed with the wild female. This indicates that mating disruption is stronger in females where DES9 is mutated. The current work is the first of its kind to show that DES9 gene editing impacted the likelihood of mating in S. frugiperda.


Asunto(s)
Mariposas Nocturnas , Atractivos Sexuales , Femenino , Masculino , Animales , Spodoptera/genética , Atractivos Sexuales/genética , ARN Guía de Sistemas CRISPR-Cas , Estearoil-CoA Desaturasa/genética , Sistemas CRISPR-Cas/genética , Mariposas Nocturnas/genética , Mutagénesis
8.
3 Biotech ; 13(11): 370, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37849767

RESUMEN

The Fall armyworm, Spodoptera frugiperda, is a globally important invasive pest, primarily on corn, causing severe yield loss. Overuse of synthetic chemicals has caused significant ecological harm, and in many instances control has failed. Therefore, developing efficient, environmentally friendly substitutes for sustainable management of this pest is of high priority. CRISPR/Cas9-mediated gene editing causes site-specific mutations that typically result in loss-of-function of the target gene. In this regard, identifying key genes that govern the reproduction of S. frugiperda and finding ways to introduce mutations in the key genes is very important for successfully managing this pest. In this study, the pheromone biosynthesis activator neuropeptide (PBAN) gene of S. frugiperda was cloned and tested for its function via a loss-of-function approach using CRISPR/Cas9. Ribonucleoprotein (RNP) complex (single guide RNA (sgRNA) targeting the PBAN gene + Cas9 protein) was validated through in vitro restriction assay followed by embryonic microinjection into the G0 stage for in vivo editing of the target gene. Specific suppression of PBAN by CRISPR/Cas9 in females significantly affected mating. Mating studies between wild males and mutant females resulted in no fecundity. This was in contrast to when mutant males were crossed with wild females, which resulted in reduced fecundity. These results suggest that mating disruption is more robust where PBAN is edited in females. The behavioural bioassay using an olfactometer revealed that mutant females were less attractive to wild males compared to wild females. This study is the first of its kind, supporting CRISPR/Cas9 mediating editing of the PBAN gene disrupting mating in S. frugiperda. Understanding the potential use of these molecular techniques may help develop novel management strategies that target other key functional genes. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-023-03798-3.

9.
Front Physiol ; 12: 742871, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34867448

RESUMEN

The South American pinworm Tuta absoluta (Meyrick) (Family: Gelechiidae) is one of the most devastating lepidopteran pests in the developing countries of South America, Africa, and Asia. This pest is classified as the most serious threat for tomato production worldwide. In the present study, we analyzed RNAi-mediated control through exogenously applied dsRNA delivery on tomato. The dsRNA treatments were made to target the juvenile hormone binding protein and the v-ATPase B. Both mRNA targets were cloned, validated by sequencing, and used to produce each dsRNA. After treatments the relative transcript expression was analyzed using qRTPCR to assess to efficacy of RNAi. A leaf-dip assay was used to provide late 2nd instar larvae three feeding access periods: 24, 48, and 72 h, to evaluate the effect of gene silencing of each target. Larvae were fed tomato leaves coated with five different RNAi concentrations (10, 20, 30, 40, and 50 micrograms/centimeter-squared), that suppressed two genes (juvenile hormone protein, JHBP, and vacuolar-type adenosine triphosphatase enzyme, v-ATPase). Treatments with dsRNA showed a significant increase in mortality at 24, 48, and 72 h after ingestion (P < 0.01, α = 0.05), along with reduced leaf damage, and increased feeding deterrence. The results suggest that these two RNAi products may provide a suitable treatment for control of this and other lepidopteran pests.

10.
Artículo en Inglés | MEDLINE | ID: mdl-32148145

RESUMEN

The Cicadellidae (Auchenorrhyncha: Hemiptera) are important agricultural, horticultural and ornamental pests. But it is very difficult to define nymphs and female adults using morphological characteristics. This research was aimed at understanding the variety of leafhoppers species and defining the prospective cause of the aster-yellow disease in China Aster, Marigold and Chrysanthemum. Two surveys were conducted in and around Pune, Maharashtra and Bengaluru, Karnataka between November 2016 and February 2017. The mitochondrial cytochrome oxidase subunit I (mtCOI) region marker was used in the species diagnosis and genetic diversity research. Through the use of mtCOI molecular marker eight different leafhoppers species were identified as Sogatella furcifera, Homalodisca insolita, Amrasca biguttula, Balclutha incise and Balclutha abdominalis and Japanagallia trifurcate. Whereas at genus level identified as Toya, Empoasca, Perkinsiella, Hishimonus, Tambocerus, Phaconeura, Curena, Psammotettix and Graphocophala species. These results are strongly corroborated with morphological identification. On the basis of multiple sequence alignment of the mtCOI gene, a species phylogenetic tree with the highest likelihood was drawn. All the leafhopper species clustered together in accordance with the species data collected from the database of the different geographic regions from the NCBI GenBank and Barcode of Life (BOLD). Such results suggest that it is important to use both molecular and morphological methods to ensure accurate identification of organisms. To conclude, this research contributes valuable knowledge to molecular biology and recognizes leafhopper species that serve as major phytoplasma vectors.


Asunto(s)
Calendula/genética , Chrysanthemum/genética , Código de Barras del ADN Taxonómico , Hemípteros/genética , Enfermedades de las Plantas/genética , Animales , China , Complejo IV de Transporte de Electrones/genética , Complejo IV de Transporte de Electrones/metabolismo , Genoma Mitocondrial/genética , Filogenia
11.
Mitochondrial DNA A DNA Mapp Seq Anal ; 30(7): 779-785, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31482739

RESUMEN

Beetles of the subfamily Scolytinae are the most damaging insects in the world. Among which the black twig borer, Xylosandrus compactus (Eichhoff) (Coleoptera: Curculionidae: Scolytinae), is one of the serious pests in coffee plantations. Their cryptic life cycle inside the host plant makes these insects difficult to control. For its effective management accurate, timely and rapid identification of species is critical. By cloning and sequencing the 5' mitochondrial cytochrome oxidase c subunit 1 (COI) gene, the beetle's molecular identification confirmed its identity as X. compactus. No pseudogenes and indels were found in analyzed nucleotide sequences; they match with high similarity in nucleotide NCBI Basic Local Alignment Search Tool search. The X. compactus COI genes sequences were deposited at NCBI GenBank with accession numbers of KY172634, KY172635 and the Barcode of Life (BOLD) with BIN ID: ACB4177. Furthermore, based on multiple sequence alignment of the X. compactus MtCOI gene, a phylogenetic tree with maximum probability was drawn. X. compactus species clustered together which agree with the species data collected from NCBI GenBank database from the different geographic regions. There were no morphological and molecular differences between space and time-collected coffee shot-hole borers, thus all the specimens described were X. compactus infesting both robusta and arabica coffee.


Asunto(s)
Escarabajos/genética , Código de Barras del ADN Taxonómico , Complejo IV de Transporte de Electrones/genética , Genoma Mitocondrial/genética , Animales , Filogenia , Especificidad de la Especie
12.
PLoS One ; 14(9): e0223281, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31568480

RESUMEN

The gut microbial community structure of adult Thrips tabaci collected from 10 different agro-climatically diverse locations of India was characterized by using the Illumina MiSeq platform to amplify the V3 region of the 16S rRNA gene of bacteria present in the sampled insects. Analyses were performed to study the bacterial communities associated with Thrips tabaci in India. The complete bacterial metagenome of T. tabaci was comprised of 1662 OTUs of which 62.25% belong to known and 37.7% of unidentified/unknown bacteria. These OTUs constituted 21 bacterial phyla of 276 identified genera. Phylum Proteobacteria was predominant, followed by Actinobacteria, Firmicutes, Bacteroidetes and Cyanobacteria. Additionally, the occurrence of the reproductive endosymbiont, Wolbachia was detected at two locations (0.56%) of the total known OTUs. There is high variation in diversity and species richness among the different locations. Alpha-diversity metrics indicated the higher gut bacterial diversity at Bangalore and lowest at Rahuri whereas higher bacterial species richness at T. tabaci samples from Imphal and lowest at Jhalawar. Beta diversity analyses comparing bacterial communities between the samples showed distinct differences in bacterial community composition of T. tabaci samples from different locations. This paper also constitutes the first record of detailed bacterial communities associated with T. tabaci. The location-wise variation in microbial metagenome profile of T. tabaci suggests that bacterial diversity might be governed by its population genetic structure, environment and habitat.


Asunto(s)
Actinobacteria/genética , Bacteroidetes/genética , Cianobacterias/genética , Firmicutes/genética , Microbioma Gastrointestinal/genética , Proteobacteria/genética , Thysanoptera/microbiología , Actinobacteria/clasificación , Actinobacteria/aislamiento & purificación , Animales , Técnicas de Tipificación Bacteriana , Bacteroidetes/clasificación , Bacteroidetes/aislamiento & purificación , Cianobacterias/clasificación , Cianobacterias/aislamiento & purificación , Firmicutes/clasificación , Firmicutes/aislamiento & purificación , Variación Genética , India , Filogenia , Proteobacteria/clasificación , Proteobacteria/aislamiento & purificación , ARN Ribosómico 16S/genética , Simbiosis/genética , Nicotiana/parasitología , Wolbachia/clasificación , Wolbachia/genética , Wolbachia/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA