Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 200
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Am J Hum Genet ; 110(2): 273-283, 2023 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-36649705

RESUMEN

This study sought to examine the association between DNA methylation and body mass index (BMI) and the potential of BMI-associated cytosine-phosphate-guanine (CpG) sites to provide information about metabolic health. We pooled summary statistics from six trans-ethnic epigenome-wide association studies (EWASs) of BMI representing nine cohorts (n = 17,034), replicated these findings in the Women's Health Initiative (WHI, n = 4,822), and developed an epigenetic prediction score of BMI. In the pooled EWASs, 1,265 CpG sites were associated with BMI (p < 1E-7) and 1,238 replicated in the WHI (FDR < 0.05). We performed several stratified analyses to examine whether these associations differed between individuals of European and African descent, as defined by self-reported race/ethnicity. We found that five CpG sites had a significant interaction with BMI by race/ethnicity. To examine the utility of the significant CpG sites in predicting BMI, we used elastic net regression to predict log-normalized BMI in the WHI (80% training/20% testing). This model found that 397 sites could explain 32% of the variance in BMI in the WHI test set. Individuals whose methylome-predicted BMI overestimated their BMI (high epigenetic BMI) had significantly higher glucose and triglycerides and lower HDL cholesterol and LDL cholesterol compared to accurately predicted BMI. Individuals whose methylome-predicted BMI underestimated their BMI (low epigenetic BMI) had significantly higher HDL cholesterol and lower glucose and triglycerides. This study confirmed 553 and identified 685 CpG sites associated with BMI. Participants with high epigenetic BMI had poorer metabolic health, suggesting that the overestimation may be driven in part by cardiometabolic derangements characteristic of metabolic syndrome.


Asunto(s)
Epigénesis Genética , Epigenoma , Humanos , Femenino , Índice de Masa Corporal , Epigénesis Genética/genética , Obesidad/genética , HDL-Colesterol/genética , Estudio de Asociación del Genoma Completo , Metilación de ADN/genética , Epigenómica , Triglicéridos , Islas de CpG/genética
2.
Circulation ; 150(3): 171-173, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39008562

RESUMEN

Our research investigates the societal implications of access to glucagon-like peptide-1 (GLP-1) agonists, particularly in light of recent clinical trials demonstrating the efficacy of semaglutide in reducing cardiovascular mortality. A decade-long analysis of Google Trends indicates a significant increase in searches for GLP-1 agonists, primarily in North America. This trend contrasts with the global prevalence of obesity. Given the high cost of GLP-1 agonists, a critical question arises: Will this disparity in medication accessibility exacerbate the global health equity gap in obesity treatment? This viewpoint explores strategies to address the health equity gap exacerbated by this emerging medication. Because GLP-1 agonists hold the potential to become a cornerstone in obesity treatment, ensuring equitable access is a pressing public health concern.


Asunto(s)
Receptor del Péptido 1 Similar al Glucagón , Equidad en Salud , Obesidad , Humanos , Obesidad/tratamiento farmacológico , Receptor del Péptido 1 Similar al Glucagón/agonistas , Péptidos Similares al Glucagón/uso terapéutico , Disparidades en Atención de Salud , Accesibilidad a los Servicios de Salud , Fármacos Antiobesidad/uso terapéutico , Hipoglucemiantes/uso terapéutico , Agonistas Receptor de Péptidos Similares al Glucagón
3.
Am J Hum Genet ; 109(6): 1055-1064, 2022 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-35588732

RESUMEN

Polygenic risk scores (PRSs) quantify the contribution of multiple genetic loci to an individual's likelihood of a complex trait or disease. However, existing PRSs estimate this likelihood with common genetic variants, excluding the impact of rare variants. Here, we report on a method to identify rare variants associated with outlier gene expression and integrate their impact into PRS predictions for body mass index (BMI), obesity, and bariatric surgery. Between the top and bottom 10%, we observed a 20.8% increase in risk for obesity (p = 3 × 10-14), 62.3% increase in risk for severe obesity (p = 1 × 10-6), and median 5.29 years earlier onset for bariatric surgery (p = 0.008), as a function of expression outlier-associated rare variant burden when controlling for common variant PRS. We show that these predictions were more significant than integrating the effects of rare protein-truncating variants (PTVs), observing a mean 19% increase in phenotypic variance explained with expression outlier-associated rare variants when compared with PTVs (p = 2 × 10-15). We replicated these findings by using data from the Million Veteran Program and demonstrated that PRSs across multiple traits and diseases can benefit from the inclusion of expression outlier-associated rare variants identified through population-scale transcriptome sequencing.


Asunto(s)
Herencia Multifactorial , Obesidad , Índice de Masa Corporal , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Humanos , Herencia Multifactorial/genética , Obesidad/genética , Fenotipo , Factores de Riesgo
4.
Am J Hum Genet ; 109(7): 1286-1297, 2022 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-35716666

RESUMEN

Despite the growing number of genome-wide association studies (GWASs), it remains unclear to what extent gene-by-gene and gene-by-environment interactions influence complex traits in humans. The magnitude of genetic interactions in complex traits has been difficult to quantify because GWASs are generally underpowered to detect individual interactions of small effect. Here, we develop a method to test for genetic interactions that aggregates information across all trait-associated loci. Specifically, we test whether SNPs in regions of European ancestry shared between European American and admixed African American individuals have the same causal effect sizes. We hypothesize that in African Americans, the presence of genetic interactions will drive the causal effect sizes of SNPs in regions of European ancestry to be more similar to those of SNPs in regions of African ancestry. We apply our method to two traits: gene expression in 296 African Americans and 482 European Americans in the Multi-Ethnic Study of Atherosclerosis (MESA) and low-density lipoprotein cholesterol (LDL-C) in 74K African Americans and 296K European Americans in the Million Veteran Program (MVP). We find significant evidence for genetic interactions in our analysis of gene expression; for LDL-C, we observe a similar point estimate, although this is not significant, most likely due to lower statistical power. These results suggest that gene-by-gene or gene-by-environment interactions modify the effect sizes of causal variants in human complex traits.


Asunto(s)
Estudio de Asociación del Genoma Completo , Herencia Multifactorial , LDL-Colesterol , Expresión Génica , Humanos , Herencia Multifactorial/genética , Polimorfismo de Nucleótido Simple/genética , Población Blanca/genética
5.
Hepatology ; 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39190705

RESUMEN

BACKGROUND AND AIMS: Metabolic dysfunction-associated fatty liver disease (MASLD) is the most prevalent chronic liver pathology in western countries, with serious public health consequences. Efforts to identify causal genes for MASLD have been hampered by the relative paucity of human data from gold standard magnetic resonance quantification of hepatic fat. To overcome insufficient sample size, genome-wide association studies using MASLD surrogate phenotypes have been used, but only a small number of loci have been identified to date. In this study, we combined genome-wide association studies of MASLD composite surrogate phenotypes with genetic colocalization studies followed by functional in vitro screens to identify bona fide causal genes for MASLD. APPROACH AND RESULTS: We used the UK Biobank to explore the associations of our novel MASLD score, and genetic colocalization to prioritize putative causal genes for in vitro validation. We created a functional genomic framework to study MASLD genes in vitro using CRISPRi. Our data identify VKORC1 , TNKS , LYPLAL1 , and GPAM as regulators of lipid accumulation in hepatocytes and suggest the involvement of VKORC1 in the lipid storage related to the development of MASLD. CONCLUSIONS: Complementary genetic and genomic approaches are useful for the identification of MASLD genes. Our data supports VKORC1 as a bona fide MASLD gene. We have established a functional genomic framework to study at scale putative novel MASLD genes from human genetic association studies.

6.
PLoS Genet ; 18(6): e1010193, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35653334

RESUMEN

BACKGROUND: Height has been associated with many clinical traits but whether such associations are causal versus secondary to confounding remains unclear in many cases. To systematically examine this question, we performed a Mendelian Randomization-Phenome-wide association study (MR-PheWAS) using clinical and genetic data from a national healthcare system biobank. METHODS AND FINDINGS: Analyses were performed using data from the US Veterans Affairs (VA) Million Veteran Program in non-Hispanic White (EA, n = 222,300) and non-Hispanic Black (AA, n = 58,151) adults in the US. We estimated height genetic risk based on 3290 height-associated variants from a recent European-ancestry genome-wide meta-analysis. We compared associations of measured and genetically-predicted height with phenome-wide traits derived from the VA electronic health record, adjusting for age, sex, and genetic principal components. We found 345 clinical traits associated with measured height in EA and an additional 17 in AA. Of these, 127 were associated with genetically-predicted height at phenome-wide significance in EA and 2 in AA. These associations were largely independent from body mass index. We confirmed several previously described MR associations between height and cardiovascular disease traits such as hypertension, hyperlipidemia, coronary heart disease (CHD), and atrial fibrillation, and further uncovered MR associations with venous circulatory disorders and peripheral neuropathy in the presence and absence of diabetes. As a number of traits associated with genetically-predicted height frequently co-occur with CHD, we evaluated effect modification by CHD status of genetically-predicted height associations with risk factors for and complications of CHD. We found modification of effects of MR associations by CHD status for atrial fibrillation/flutter but not for hypertension, hyperlipidemia, or venous circulatory disorders. CONCLUSIONS: We conclude that height may be an unrecognized but biologically plausible risk factor for several common conditions in adults. However, more studies are needed to reliably exclude horizontal pleiotropy as a driving force behind at least some of the MR associations observed in this study.


Asunto(s)
Fibrilación Atrial , Hipertensión , Veteranos , Adulto , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Humanos , Hipertensión/epidemiología , Hipertensión/genética , Polimorfismo de Nucleótido Simple/genética
7.
Am Heart J ; 276: 99-109, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38762090

RESUMEN

BACKGROUND: As a mega-biobank linked to a national healthcare system, the Million Veteran Program (MVP) can directly improve the health care of participants. To determine the feasibility and outcomes of returning medically actionable genetic results to MVP participants, the program launched the MVP Return of Actionable Results (MVP-ROAR) Study, with familial hypercholesterolemia (FH) as an exemplar actionable condition. METHODS: The MVP-ROAR Study consists of a completed single-arm pilot phase and an ongoing randomized clinical trial (RCT), in which MVP participants are recontacted and invited to receive clinical confirmatory gene sequencing testing and a telegenetic counseling intervention. The primary outcome of the RCT is 6-month change in low-density lipoprotein cholesterol (LDL-C) between participants receiving results at baseline and those receiving results after 6 months. RESULTS: The pilot developed processes to identify and recontact participants nationally with probable pathogenic variants in low-density lipoprotein receptor (LDLR) on the MVP genotype array, invite them to clinical confirmatory gene sequencing, and deliver a telegenetic counseling intervention. Among participants in the pilot phase, 8 (100%) had active statin prescriptions after 6 months. Results were shared with 16 first-degree family members. Six-month ΔLDL-C (low-density lipoprotein cholesterol) after the genetic counseling intervention was -37 mg/dL (95% CI: -12 to -61; P = .03). The ongoing RCT will determine between-arm differences in this primary outcome. CONCLUSION: While underscoring the importance of clinical confirmation of research results, the pilot phase of the MVP-ROAR Study marks a turning point in MVP and demonstrates the feasibility of returning genetic results to participants and their providers. The ongoing RCT will contribute to understanding how such a program might improve patient health care and outcomes. CLINICAL TRIAL REGISTRATION: ClinicalTrials.gov ID NCT04178122.


Asunto(s)
LDL-Colesterol , Hiperlipoproteinemia Tipo II , Veteranos , Humanos , Proyectos Piloto , LDL-Colesterol/sangre , Hiperlipoproteinemia Tipo II/terapia , Hiperlipoproteinemia Tipo II/genética , Masculino , Femenino , Pruebas Genéticas/métodos , Asesoramiento Genético/métodos , Receptores de LDL/genética , Estados Unidos , Persona de Mediana Edad
8.
Diabetologia ; 66(9): 1643-1654, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37329449

RESUMEN

AIMS/HYPOTHESIS: The euglycaemic-hyperinsulinaemic clamp (EIC) is the reference standard for the measurement of whole-body insulin sensitivity but is laborious and expensive to perform. We aimed to assess the incremental value of high-throughput plasma proteomic profiling in developing signatures correlating with the M value derived from the EIC. METHODS: We measured 828 proteins in the fasting plasma of 966 participants from the Relationship between Insulin Sensitivity and Cardiovascular disease (RISC) study and 745 participants from the Uppsala Longitudinal Study of Adult Men (ULSAM) using a high-throughput proximity extension assay. We used the least absolute shrinkage and selection operator (LASSO) approach using clinical variables and protein measures as features. Models were tested within and across cohorts. Our primary model performance metric was the proportion of the M value variance explained (R2). RESULTS: A standard LASSO model incorporating 53 proteins in addition to routinely available clinical variables increased the M value R2 from 0.237 (95% CI 0.178, 0.303) to 0.456 (0.372, 0.536) in RISC. A similar pattern was observed in ULSAM, in which the M value R2 increased from 0.443 (0.360, 0.530) to 0.632 (0.569, 0.698) with the addition of 61 proteins. Models trained in one cohort and tested in the other also demonstrated significant improvements in R2 despite differences in baseline cohort characteristics and clamp methodology (RISC to ULSAM: 0.491 [0.433, 0.539] for 51 proteins; ULSAM to RISC: 0.369 [0.331, 0.416] for 67 proteins). A randomised LASSO and stability selection algorithm selected only two proteins per cohort (three unique proteins), which improved R2 but to a lesser degree than in standard LASSO models: 0.352 (0.266, 0.439) in RISC and 0.495 (0.404, 0.585) in ULSAM. Reductions in improvements of R2 with randomised LASSO and stability selection were less marked in cross-cohort analyses (RISC to ULSAM R2 0.444 [0.391, 0.497]; ULSAM to RISC R2 0.348 [0.300, 0.396]). Models of proteins alone were as effective as models that included both clinical variables and proteins using either standard or randomised LASSO. The single most consistently selected protein across all analyses and models was IGF-binding protein 2. CONCLUSIONS/INTERPRETATION: A plasma proteomic signature identified using a standard LASSO approach improves the cross-sectional estimation of the M value over routine clinical variables. However, a small subset of these proteins identified using a stability selection algorithm affords much of this improvement, especially when considering cross-cohort analyses. Our approach provides opportunities to improve the identification of insulin-resistant individuals at risk of insulin resistance-related adverse health consequences.


Asunto(s)
Enfermedades Cardiovasculares , Resistencia a la Insulina , Masculino , Adulto , Humanos , Estudios Longitudinales , Proteómica , Estudios Transversales , Insulina
9.
Am J Hum Genet ; 106(4): 535-548, 2020 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-32243820

RESUMEN

The Million Veteran Program (MVP), initiated by the Department of Veterans Affairs (VA), aims to collect biosamples with consent from at least one million veterans. Presently, blood samples have been collected from over 800,000 enrolled participants. The size and diversity of the MVP cohort, as well as the availability of extensive VA electronic health records, make it a promising resource for precision medicine. MVP is conducting array-based genotyping to provide a genome-wide scan of the entire cohort, in parallel with whole-genome sequencing, methylation, and other 'omics assays. Here, we present the design and performance of the MVP 1.0 custom Axiom array, which was designed and developed as a single assay to be used across the multi-ethnic MVP cohort. A unified genetic quality-control analysis was developed and conducted on an initial tranche of 485,856 individuals, leading to a high-quality dataset of 459,777 unique individuals. 668,418 genetic markers passed quality control and showed high-quality genotypes not only on common variants but also on rare variants. We confirmed that, with non-European individuals making up nearly 30%, MVP's substantial ancestral diversity surpasses that of other large biobanks. We also demonstrated the quality of the MVP dataset by replicating established genetic associations with height in European Americans and African Americans ancestries. This current dataset has been made available to approved MVP researchers for genome-wide association studies and other downstream analyses. Further data releases will be available for analysis as recruitment at the VA continues and the cohort expands both in size and diversity.


Asunto(s)
Etnicidad/genética , Anciano , Anciano de 80 o más Años , Estudios de Cohortes , Femenino , Marcadores Genéticos/genética , Estudio de Asociación del Genoma Completo/métodos , Genotipo , Humanos , Masculino , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple/genética , Medicina de Precisión/métodos , Control de Calidad , Veteranos , Secuenciación Completa del Genoma/métodos
10.
Mol Psychiatry ; 27(10): 3961-3969, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35986173

RESUMEN

The association between coronary artery disease (CAD) and posttraumatic stress disorder (PTSD) contributes to the high morbidity and mortality observed for these conditions. To understand the dynamics underlying PTSD-CAD comorbidity, we investigated large-scale genome-wide association (GWA) statistics from the Million Veteran Program (MVP), the UK Biobank (UKB), the Psychiatric Genomics Consortium, and the CARDIoGRAMplusC4D Consortium. We observed a genetic correlation of CAD with PTSD case-control and quantitative outcomes, ranging from 0.18 to 0.32. To investigate possible cause-effect relationships underlying these genetic correlations, we performed a two-sample Mendelian randomization (MR) analysis, observing a significant bidirectional relationship between CAD and PTSD symptom severity. Genetically-determined PCL-17 (PTSD 17-item Checklist) total score was associated with increased CAD risk (odds ratio = 1.04; 95% confidence interval, 95% CI = 1.01-1.06). Conversely, CAD genetic liability was associated with reduced PCL-17 total score (beta = -0.42; 95% CI = -0.04 to -0.81). Because of these opposite-direction associations, we conducted a pleiotropic meta-analysis to investigate loci with concordant vs. discordant effects on PCL-17 and CAD, observing that concordant-effect loci were enriched for molecular pathways related to platelet amyloid precursor protein (beta = 1.53, p = 2.97 × 10-7) and astrocyte activation regulation (beta = 1.51, p = 2.48 × 10-6) while discordant-effect loci were enriched for biological processes related to lipid metabolism (e.g., triglyceride-rich lipoprotein particle clearance, beta = 2.32, p = 1.61 × 10-10). To follow up these results, we leveraged MVP and UKB electronic health records (EHR) to assess longitudinal changes in the association between CAD and posttraumatic stress severity. This EHR-based analysis highlighted that earlier CAD diagnosis is associated with increased PCL-total score later in life, while lower PCL total score was associated with increased risk of a later CAD diagnosis (Mann-Kendall trend test: MVP tau = 0.932, p < 2 × 10-16; UKB tau = 0.376, p = 0.005). In conclusion, both our genetically-informed analyses and our EHR-based follow-up investigation highlighted a bidirectional relationship between PTSD and CAD where multiple pleiotropic mechanisms are likely to be involved.


Asunto(s)
Enfermedad de la Arteria Coronaria , Trastornos por Estrés Postraumático , Humanos , Enfermedad de la Arteria Coronaria/genética , Enfermedad de la Arteria Coronaria/diagnóstico , Enfermedad de la Arteria Coronaria/epidemiología , Estudio de Asociación del Genoma Completo/métodos , Trastornos por Estrés Postraumático/genética , Polimorfismo de Nucleótido Simple , Registros Electrónicos de Salud , Comorbilidad , Factores de Riesgo , Predisposición Genética a la Enfermedad/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA