Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Mol Biol Rep ; 48(2): 1475-1483, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33492574

RESUMEN

Rutin is an important flavonoid consumed in the daily diet. It is also known as vitamin P and has been extensively investigated due to its pharmacological properties. On the other hand, neuronal death induced by glutamate excitotoxicity is present in several diseases including neurodegenerative diseases. The neuroprotective properties of rutin have been under investigation, although its mechanism of action is still poorly understood. We hypothesized that the mechanisms of neuroprotection of rutin are associated with the increase in glutamate metabolism in astrocytes. This study aimed to evaluate the protective effects of rutin with a focus on the modulation of glutamate detoxification. We used brain organotypic cultures from post-natal Wistar rats (P7-P9) treated with rutin to evaluate neural cell protection and levels of proteins involved in the glutamate metabolism. Moreover, we used cerebral cortex slices from adult Wistar rats to evaluate glutamate uptake. We showed that rutin inhibited the cell death and loss of glutamine synthetase (GS) induced by glutamate that was associated with an increase in glutamate-aspartate transporter (GLAST) in brain organotypic cultures from post-natal Wistar rats. Additionally, it was observed that rutin increased the glutamate uptake in cerebral cortex slices from adult Wistar rats. We conclude that rutin is a neuroprotective agent that prevents glutamate excitotoxicity and thereof suggest that this effect involves the regulation of astrocytic metabolism.


Asunto(s)
Muerte Celular/efectos de los fármacos , Ácido Glutámico/metabolismo , Neuronas/efectos de los fármacos , Rutina/farmacología , Animales , Astrocitos/efectos de los fármacos , Células Cultivadas , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/metabolismo , Transportador 1 de Aminoácidos Excitadores , Glutamato-Amoníaco Ligasa/genética , Ácido Glutámico/toxicidad , Neuronas/patología , Fármacos Neuroprotectores/farmacología , Neurotoxinas/metabolismo , Neurotoxinas/toxicidad , Ratas , Ratas Wistar
2.
Biochim Biophys Acta Mol Basis Dis ; 1863(1): 1-14, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27663722

RESUMEN

Astrocytes are dynamic cells that maintain brain homeostasis by regulating neurotransmitter systems, antioxidant defenses, inflammatory responses and energy metabolism. Astroglial cells are also primarily responsible for the uptake and metabolism of glucose in the brain. Diabetes mellitus (DM) is a pathological condition characterized by hyperglycemia and is associated with several changes in the central nervous system (CNS), including alterations in glial function. Classically, excessive glucose concentrations are used to induce experimental models of astrocyte dysfunction; however, hypoglycemic episodes may also cause several brain injuries. The main focus of the present study was to evaluate how fluctuations in glucose levels induce cytotoxicity. The culture medium of astroglial cells was replaced twice as follows: (1) from 6mM (control) to 12mM (high glucose), and (2) from 12mM to 0mM (glucose deprivation). Cell viability, mitochondrial function, oxidative/nitrosative stress, glutamate metabolism, inflammatory responses, nuclear factor κB (NFκB) transcriptional activity and p38 mitogen-activated protein kinase (p38 MAPK) levels were assessed. Our in vitro experimental model showed that up and down fluctuations in glucose levels decreased cell proliferation, induced mitochondrial dysfunction, increased oxidative/nitrosative stress with consequent cellular biomolecular damage, impaired glutamate metabolism and increased pro-inflammatory cytokine release. Additionally, activation of the NFκB and p38 signaling pathways were putative mechanisms of the effects of glucose fluctuations on astroglial cells. In summary, for the first time, we show that changes in glucose concentrations, from high-glucose levels to glucose deprivation, exacerbate glial injury.


Asunto(s)
Astrocitos/patología , Glucosa/metabolismo , Estrés Oxidativo , Animales , Astrocitos/citología , Astrocitos/metabolismo , Línea Celular , Supervivencia Celular , Células Cultivadas , Hiperglucemia/metabolismo , Hiperglucemia/patología , Hipoglucemia/metabolismo , Hipoglucemia/patología , Inflamación/metabolismo , Inflamación/patología , FN-kappa B/metabolismo , Estrés Nitrosativo , Ratas Wistar , Transducción de Señal , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
3.
Muscle Nerve ; 50(1): 79-86, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24123151

RESUMEN

INTRODUCTION: In this study we examined oxidative stress and skeletal muscle damage resulting from acute strength, aerobic, or concurrent exercise in rats. METHODS: The animals were divided into control (C), strength (SE), aerobic (AE), and combined (CE) exercise groups. They were euthanized at 3 different time-points (6, 24, and 48 h) after acute exercise. RESULTS: SE exercise rats had increased dichlorofluorescein oxidation at 6 h post-exercise and decreased superoxide dismutase activity at all time-points. Glutathione peroxidase activity and sulfhydryl levels were increased in the AE group at 48 h post-exercise. Serum lactate dehydrogenase activity was increased in the SE and CE groups at 24 h and in the AE group at 48 h. Echo intensity was elevated at 24 h for all groups. CONCLUSIONS: Forty-eight hours was sufficient for complete recovery from oxidative stress and muscle damage in the SE and CE groups, but not in the AE group.


Asunto(s)
Fuerza Muscular/fisiología , Músculo Esquelético/lesiones , Condicionamiento Físico Animal/fisiología , Aerobiosis , Animales , Catalasa/metabolismo , Fluoresceínas , Colorantes Fluorescentes , Glutatión Peroxidasa/metabolismo , L-Lactato Deshidrogenasa/metabolismo , Masculino , Músculo Esquelético/diagnóstico por imagen , Oxidación-Reducción , Estrés Oxidativo/fisiología , Ratas , Ratas Wistar , Entrenamiento de Fuerza , Compuestos de Sulfhidrilo/metabolismo , Superóxido Dismutasa/metabolismo , Ultrasonografía
4.
Cell Biochem Funct ; 31(8): 636-42, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23316007

RESUMEN

Long-chain polyunsaturated n-3 fatty acids (n-3 LCPUFAs) have hypolipidemic effects and modulate intermediary metabolism to prevent or reverse insulin resistance in a way that is not completely elucidated. Here, effects of these fatty acids on the lipid profile, phosphoenolpyruvate carboxykinase (PEPCK) activity, lipid synthesis from glucose in epididymal adipose tissue (Ep-AT) and liver were investigated. Male rats were fed a high-sucrose diet (SU diet), containing either sunflower oil or a mixture of sunflower and fish oil (SU-FO diet), and the control group was fed a standard diet. After 13 weeks, liver, adipose tissue and blood were harvested and analysed. The dietary n-3 LCPUFAs prevented sucrose-induced increase in adiposity and serum free fat acids, serum and hepatic triacylglycerol and insulin levels. Furthermore, these n-3 LCPUFAs decreased lipid synthesis from glucose and increased PEPCK activity in the Ep-AT of rats fed the SU-FO diet compared to those fed the SU diet, besides reducing lipid synthesis from glucose in hepatic tissue. Thus, the inclusion of n-3 LCPUFAs in the diet may be beneficial for the prevention or attenuation of dyslipidemia and insulin resistance, and for reducing the risk of related chronic diseases.


Asunto(s)
Tejido Adiposo/metabolismo , Sacarosa en la Dieta/administración & dosificación , Ácidos Grasos Omega-3/administración & dosificación , Ácidos Grasos Omega-3/farmacología , Glucosa/metabolismo , Lípidos/biosíntesis , Fosfoenolpiruvato Carboxiquinasa (ATP)/metabolismo , Tejido Adiposo/efectos de los fármacos , Animales , Sacarosa en la Dieta/farmacología , Suplementos Dietéticos , Activación Enzimática/efectos de los fármacos , Glucosa/química , Masculino , Ratas , Ratas Wistar
5.
Neurotoxicology ; 94: 59-70, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36336098

RESUMEN

Pyrrolizidine alkaloids (PAs) are secondary plant metabolites playing an important role as phytotoxins in the plant defense mechanisms and can be present as contaminant in the food of humans and animals. The PA monocrotaline (MCT), one of the major plant derived toxin that affect humans and animals, is present in a high concentration in Crotalaria spp. (Leguminosae) seeds and can induce toxicity after consumption, characterized mainly by hepatotoxicity and pneumotoxicity. However, the effects of the ingestion of MCT in the central nervous system (CNS) are still poorly elucidated. Here we investigated the effects of MCT oral acute administration on the behavior and CNS toxicity in rats. Male adult Wistar were treated with MCT (109 mg/Kg, oral gavage) and three days later the Elevated Pluz Maze test demonstrated that MCT induced an anxiolytic-like effect, without changes in novelty habituation and in operational and spatial memory profiles. Histopathology revealed that the brain of MCT-intoxicated animals presented hyperemic vascular structures in the hippocampus, parahippocampal cortex and neocortex, mild perivascular edema in the neocortex, hemorrhagic focal area in the brain stem, hemorrhage and edema in the thalamus. MCT also induced neurotoxicity in the cortex and hippocampus, as revealed by Fluoro Jade-B and Cresyl Violet staining, as well astrocyte reactivity, revealed by immunocytochemistry for glial fibrillary acidic protein. Additionally, it was demonstrated by RT-qPCR that MCT induced up-regulation on mRNA expression of neuroinflammatory mediator, especially IL1ß and CCL2 in the hippocampus and cortex, and down-regulation on mRNA expression of neurotrophins HGDF and BDNF in the cortex. Together, these results demonstrate that the ingestion of MCT induces cerebrovascular lesions and toxicity to neurons that are associated to astroglial cell response and neuroinflammation in the cortex and hippocampus of rats, highlighting CNS damages after acute intoxication, also putting in perspective it uses as a model for cerebrovascular damage.


Asunto(s)
Gliosis , Monocrotalina , Humanos , Ratas , Animales , Monocrotalina/toxicidad , Monocrotalina/metabolismo , Gliosis/inducido químicamente , Ratas Wistar , Astrocitos/metabolismo , ARN Mensajero/metabolismo
6.
J Cell Biochem ; 113(1): 174-83, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21882227

RESUMEN

The present study investigated the effects of chronic hyperprolinemia on oxidative and metabolic status in liver and serum of rats. Wistar rats received daily subcutaneous injections of proline from their 6th to 28th day of life. Twelve hours after the last injection the rats were sacrificed and liver and serum were collected. Results showed that hyperprolinemia induced a significant reduction in total antioxidant potential and thiobarbituric acid-reactive substances. The activities of the antioxidant enzymes catalase and superoxide dismutase were significantly increased after chronic proline administration, while glutathione (GSH) peroxidase activity, dichlorofluorescin oxidation, GSH, sulfhydryl, and carbonyl content remained unaltered. Histological analyses of the liver revealed that proline treatment induced changes of the hepatic microarchitecture and increased the number of inflammatory cells and the glycogen content. Biochemical determination also demonstrated an increase in glycogen concentration, as well as a higher synthesis of glycogen in liver of hyperprolinemic rats. Regarding to hepatic metabolism, it was observed an increase on glucose oxidation and a decrease on lipid synthesis from glucose. However, hepatic lipid content and serum glucose levels were not changed. Proline administration did not alter the aminotransferases activities and serum markers of hepatic injury. Our findings suggest that hyperprolinemia alters the liver homeostasis possibly by induction of a mild degree of oxidative stress and metabolic changes. The hepatic alterations caused by proline probably do not implicate in substantial hepatic tissue damage, but rather demonstrate a process of adaptation of this tissue to oxidative stress. However, the biological significance of these findings requires additional investigation.


Asunto(s)
Errores Innatos del Metabolismo de los Aminoácidos/inducido químicamente , Errores Innatos del Metabolismo de los Aminoácidos/metabolismo , Hígado/metabolismo , Estrés Oxidativo , Prolina/administración & dosificación , 1-Pirrolina-5-Carboxilato Deshidrogenasa/deficiencia , Animales , Antioxidantes/análisis , Glucemia/análisis , Catalasa/metabolismo , Femenino , Fluoresceínas/metabolismo , Glutatión/análisis , Glutatión Peroxidasa/metabolismo , Glucógeno/biosíntesis , Lípidos/biosíntesis , Masculino , Prolina Oxidasa/deficiencia , Prolina Oxidasa/metabolismo , Ratas , Ratas Wistar , Superóxido Dismutasa/metabolismo , Sustancias Reactivas al Ácido Tiobarbitúrico/análisis
7.
Mol Cell Biochem ; 361(1-2): 151-60, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21989716

RESUMEN

Ω3-Polyunsaturated fatty acids (Ω3-PUFAs) are known to act as hypolipidaemics, but the literature is unclear about the effects that Ω3-PUFAs have on oxidative stress in obese and diabetic patients. In this study, our aim was to investigate the effects of Ω3-PUFAs on oxidative stress, including antioxidant enzyme activity and hepatic lipid and glycogen metabolism in the livers of diabetic and non-diabetic rats fed on a high fat thermolyzed diet. Rats were divided into six groups: (1) the control group (C), (2) the control diabetic group (D), (3) the high fat thermolyzed diet group (HFTD), which were fed a diet that was enriched in fat that was heated for 60 min at 180°C, (4) the high fat thermolyzed diet diabetic group (D + HFTD), (5) the high fat thermolyzed diet + Ω3 polyunsaturated fatty acid group (HFTD + Ω3), and (6) the high fat thermolyzed diet + Ω3 polyunsaturated fatty acid diabetic group (D + HFTD + Ω3). The most important finding of this study was that Ω3-PUFAs are able to reduce triglycerides, non-esterified fatty acid, lipoperoxidation levels, advanced glycation end products, SOD/CAT enzymatic ratio, and CAT immunocontent and increase SOD2 levels in the livers of diabetic rats fed with a HFTD. However, Ω3-PUFAs did not alter the observed levels of protein damage, blood glucose, or glycogen metabolism in the liver. These findings suggest that Ω3-PUFAs may represent an important auxiliary adjuvant in combating some diseases like diabetes mellitus, insulin resistance, and non-alcoholic fatty liver disease.


Asunto(s)
Diabetes Mellitus Experimental/metabolismo , Ácidos Grasos Omega-3/administración & dosificación , Glucógeno/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , Peroxidación de Lípido , Hígado/metabolismo , Adiposidad , Animales , Catalasa/metabolismo , Diabetes Mellitus Experimental/enzimología , Diabetes Mellitus Experimental/fisiopatología , Dieta Alta en Grasa , Productos Finales de Glicación Avanzada/sangre , Hígado/enzimología , Hígado/fisiopatología , Lisina/análogos & derivados , Lisina/sangre , Masculino , Estrés Oxidativo , Carbonilación Proteica , Ratas , Ratas Wistar , Superóxido Dismutasa/metabolismo , Sustancias Reactivas al Ácido Tiobarbitúrico/metabolismo
8.
Neurol Res ; 41(5): 385-398, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30821663

RESUMEN

OBJECTIVE: JM-20, a novel hybrid synthetic molecule, has been reported to have antioxidant, mitoprotective, anti-excitotoxic, anti-apoptotic and anti-inflammatory properties. However, the neuroprotective effect of JM-20 against memory impairment in preclinical AD-like models has not been analyzed. The aim of this study was to evaluate the potential neuroprotection of JM-20 that preserves essential memory process from cholinergic dysfunction and other molecular damages. METHODS: The effects of JM-20 on scopolamine (1 mg/kg)-induced cognitive disorders were studied. Male Wistar rats (220-230 g) were treated with JM-20 and/or scopolamine, and behavioral tasks were performed. The AChE activity, superoxide dismutase activity, catalase activity, MDA and T-SH level on brain tissue were determined by spectrophotometric methods. Mitochondrial functionality parameters were measured after behavioral tests. Histological analyses on hippocampus and prefrontal cortex were processed with hematoxylin and eosin, and neuronal and axonal damage were determined. RESULTS: The behavioral, biochemical and histopathological studies revealed that oral pre-treatment with JM-20 (8 mg/kg) significantly attenuated the scopolamine-induced memory deficits, mitochondrial malfunction, oxidative stress, and prevented AChE hyperactivity probably due to specific inhibition of AChE enzyme. It was also observed marked histological protection on hippocampal and prefrontal-cortex regions. CONCLUSIONS: The multimodal action of this molecule could mediate the memory protection here observed and suggest that it may modulate different pathological aspects of memory deficits associated with AD in humans.


Asunto(s)
Benzodiazepinas/farmacología , Inhibidores de la Colinesterasa/farmacología , Disfunción Cognitiva/tratamiento farmacológico , Memoria/efectos de los fármacos , Niacina/análogos & derivados , Nootrópicos/farmacología , Acetilcolinesterasa/metabolismo , Animales , Antioxidantes/metabolismo , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/patología , Disfunción Cognitiva/metabolismo , Disfunción Cognitiva/patología , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Peroxidación de Lípido/efectos de los fármacos , Peroxidación de Lípido/fisiología , Masculino , Memoria/fisiología , Trastornos de la Memoria/tratamiento farmacológico , Trastornos de la Memoria/metabolismo , Trastornos de la Memoria/patología , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Niacina/farmacología , Distribución Aleatoria , Ratas Wistar , Escopolamina
9.
Mol Neurobiol ; 55(2): 1551-1555, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-28185126

RESUMEN

Zika virus (ZIKV) has become a major challenge for scientists and health agencies. ZIKV's involvement with human fetal microcephaly and Guillain-Barré syndrome and its transmission through Aedes africanus and Aedes aegypti mosquitos highlighted the epidemiological and neurological risks associated to ZIKV infection. In 2013, ZIKV arrives in Brazil but the first outbreak in the country was reported in 2015. Here, we used the Web of Science as a search tool for comparing the evolution of world and Brazilian scientific research on dengue virus (DENV)-also present in mosquito-, ZIKV and microcephaly. The association between ZIKV and microcephaly was only evidenced in 2015. Interestingly, Brazil and the USA are the responsible for most of these reports. Furthermore, the level of double-counted articles indicates a high degree of international collaborative effort in studying ZIKV and microcephaly. The ZIKV research clearly requires multidisciplinary expertise including epidemiologic, clinical, virological, and neurochemical backgrounds. This letter intends to emphasize the need of multidisciplinary studies and put forward some as yet unanswered questions in attempting to contribute to the understanding of this multifaceted health problem. In line with this, we recently constituted a collaborative and multidisciplinary taskforce encompassing eight Brazilian scientific institutions of excellence, The ZIKV translational research taskforce. This taskforce comprises a vast international network of collaborators and welcomes additional collaborators. We intend to advance fast in terms of mechanisms, which can potentially contribute to treat or halt ZIKV spreading around the world.


Asunto(s)
Infección por el Virus Zika , Virus Zika , Animales , Brasil , Brotes de Enfermedades , Humanos , Neurociencias , Investigación Biomédica Traslacional
10.
Mol Neurobiol ; 55(3): 1966-1976, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-28255907

RESUMEN

Astrocytes are dynamic glial cells associated to neurotransmitter systems, metabolic functions, antioxidant defense, and inflammatory response, maintaining the brain homeostasis. Elevated concentrations of homocysteine (Hcy) are involved in the pathogenesis of age-related neurodegenerative disorders, such as Parkinson and Alzheimer diseases. In line with this, our hypothesis was that Hcy could promote glial reactivity in a model of cortical primary astrocyte cultures from adult Wistar rats. Thus, cortical astrocytes were incubated with different concentrations of Hcy (10, 30, and 100 µM) during 24 h. After the treatment, we analyzed cell viability, morphological parameters, antioxidant defenses, and inflammatory response. Hcy did not induce any alteration in cell viability; however, it was able to induce cytoskeleton rearrangement. The treatment with Hcy also promoted a significant decrease in the activities of Na+, K+ ATPase, superoxide dismutase (SOD), and glutathione peroxidase (GPx), as well as in the glutathione (GSH) content. Additionally, Hcy induced an increase in the pro-inflammatory cytokine release. In an attempt to elucidate the putative mechanisms involved in the Hcy-induced glial reactivity, we measured the nuclear factor kappa B (NFκB) transcriptional activity and heme oxygenase 1 (HO-1) expression, which were activated and inhibited by Hcy, respectively. In summary, our findings provide important evidences that Hcy modulates critical astrocyte parameters from adult rats, which might be associated to the aging process.


Asunto(s)
Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Homocisteína/toxicidad , Neuroglía/efectos de los fármacos , Neuroglía/metabolismo , Factores de Edad , Animales , Antioxidantes/metabolismo , Astrocitos/patología , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Células Cultivadas , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/metabolismo , Relación Dosis-Respuesta a Droga , Mediadores de Inflamación/metabolismo , Masculino , Neuroglía/patología , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/fisiología , Ratas , Ratas Wistar
11.
Mol Neurobiol ; 55(3): 2025-2041, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-28271402

RESUMEN

This study was performed to evaluate the bilateral effects of focal permanent ischemia (FPI) on glial metabolism in the cerebral cortex. Two and 9 days after FPI induction, we analyze [18F]FDG metabolism by micro-PET, astrocyte morphology and reactivity by immunohistochemistry, cytokines and trophic factors by ELISA, glutamate transporters by RT-PCR, monocarboxylate transporters (MCTs) by western blot, and substrate uptake and oxidation by ex vivo slices model. The FPI was induced surgically by thermocoagulation of the blood in the pial vessels of the motor and sensorimotor cortices in adult (90 days old) male Wistar rats. Neurochemical analyses were performed separately on both ipsilateral and contralateral cortical hemispheres. In both cortical hemispheres, we observed an increase in tumor necrosis factor alpha (TNF-α), interleukin-1ß (IL-1ß), and glutamate transporter 1 (GLT-1) mRNA levels; lactate oxidation; and glutamate uptake and a decrease in brain-derived neurotrophic factor (BDNF) after 2 days of FPI. Nine days after FPI, we observed an increase in TNF-α levels and a decrease in BDNF, GLT-1, and glutamate aspartate transporter (GLAST) mRNA levels in both hemispheres. Additionally, most of the unilateral alterations were found only in the ipsilateral hemisphere and persisted until 9 days post-FPI. They include diminished in vivo glucose uptake and GLAST expression, followed by increased glial fibrillary acidic protein (GFAP) gray values, astrocyte reactivity, and glutamate oxidation. Astrocytes presented signs of long-lasting reactivity, showing a radial morphology. In the intact hemisphere, there was a decrease in MCT2 levels, which did not persist. Our study shows the bilateralism of glial modifications following FPI, highlighting the role of energy metabolism adaptations on brain recovery post-ischemia.


Asunto(s)
Adaptación Fisiológica/fisiología , Isquemia Encefálica/metabolismo , Corteza Cerebral/metabolismo , Neuroglía/metabolismo , Animales , Isquemia Encefálica/patología , Corteza Cerebral/patología , Transportador 1 de Aminoácidos Excitadores/metabolismo , Transportador 2 de Aminoácidos Excitadores/metabolismo , Masculino , Neuroglía/patología , Ratas , Ratas Wistar
12.
Exp Biol Med (Maywood) ; 232(8): 1021-6, 2007 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-17720948

RESUMEN

The aim of this study was to investigate the potential relationship between hypothyroidism and delta-aminolevulinate dehydratase (delta-ALA-D) activity in rat blood and liver. Experimental hypothyroidism was induced in weanling rats by exposing their mothers to propylthiouracil (PTU) diluted in tap water (0.05% w/ v), ad libitum, during the lactational period (PTU group). Control (euthyroid) group included weanling rats whose mothers received just tap water, ad libitum, during the lactational period. Reverted-hypothyroid group (PTU + 3,3',5-triiodo-L-thyronine [T(3)]) included weanling rats whose mothers were exposed to PTU similarly to those in the hypothyroid group, but pups received daily subcutaneous injections of T(3) (20 microg/kg, from Postnatal Days 2-20). After the treatment, serum T(3) levels were drastically decreased (around 70%) in the PTU group, and this phenomenon was almost reverted by exogenous T(3). PTU decreased blood delta-ALA-D activity by 75%, and T(3) treatment prevented such phenomena. Erythrocytes and hemoglobin levels were increased by 10% in PTU-treated animals and higher increments (around 25%) were observed in these parameters when exogenous T(3) was coadministered. Dithiothreitol did not change blood delta-ALA-D activity of PTU-exposed animals when present in the reaction medium, suggesting no involvement of the enzyme's essential thiol groups in PTU-induced delta-ALA-D inhibition. PTU did not affect blood delta-ALA-D activity in vitro. These results are the first to show a correlation between hypothyroidism and decreased delta-ALA-D activity and point to this enzyme as a potential molecule involved with hypothyroidism-related hematological changes.


Asunto(s)
Hipotiroidismo Congénito/enzimología , Hígado/enzimología , Porfobilinógeno Sintasa/sangre , Animales , Animales Recién Nacidos , Antitiroideos/toxicidad , Hipotiroidismo Congénito/sangre , Hipotiroidismo Congénito/inducido químicamente , Modelos Animales de Enfermedad , Ditiotreitol/farmacología , Activación Enzimática/efectos de los fármacos , Eritrocitos/enzimología , Femenino , Hemoglobinas/análisis , Lactancia/sangre , Masculino , Ratas , Ratas Wistar , Tiouracilo/toxicidad , Triyodotironina/farmacología
13.
Nutr Res ; 38: 52-63, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28381354

RESUMEN

Because homocysteine (Hcy) is a risk factor for cardiovascular disease, and vitamin D deficiency can contribute to cardiovascular pathologies. In the present study, we tested the hypothesis that Hcy could impair energy metabolism, mitochondrial function, and redox status in heart slices of Wistar rats and that 1,25-dihydroxivitamin D3 (calcitriol) treatment could prevent such effects. Heart slices were first pretreated with 3 different concentrations of calcitriol (50, 100, and 250nmol/L) for 30minutes at 37°C, after which Hcy was added to promote deleterious effects on metabolism. After 1 hour of incubation, the samples were washed, homogenized, and stored at -80°C before analysis. The results showed that Hcy caused changes in energy metabolism (respiratory chain enzymes), mitochondrial function, and cell viability. Homocysteine also induced oxidative stress, increasing lipid peroxidation, reactive oxygen species generation, and protein damage. An imbalance in antioxidant enzymes was also observed. Calcitriol (50nmol/L) reverted the effect of Hcy on the parameters tested, except for the immunocontent of catalase. Both treatments (calcitriol and Hcy) did not alter the vitamin D receptor immunocontent, which combined with the fact that our ex vivo model is acute, suggesting that the beneficial effect of calcitriol occurs directly through antioxidative mechanisms and not via gene expression. In this study, we show that Hcy impairs mitochondrial function and induces changes in the redox status in heart slices, which were reverted by calcitriol. These findings suggest that calcitriol may be a preventive/therapeutic strategy for complications caused by Hcy.


Asunto(s)
Antioxidantes/farmacología , Calcitriol/farmacología , Corazón/efectos de los fármacos , Homocisteína/metabolismo , Mitocondrias/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Vitamina D/análogos & derivados , Animales , Antioxidantes/metabolismo , Enfermedades Cardiovasculares/etiología , Enfermedades Cardiovasculares/metabolismo , Enfermedades Cardiovasculares/prevención & control , Supervivencia Celular , Metabolismo Energético , Corazón/fisiopatología , Homocisteína/farmacología , Peroxidación de Lípido , Masculino , Mitocondrias/metabolismo , Mitocondrias/fisiología , Oxidación-Reducción , Carbonilación Proteica , Ratas Wistar , Especies Reactivas de Oxígeno/metabolismo , Receptores de Calcitriol/metabolismo , Vitamina D/farmacología
14.
Neurol Res ; 39(7): 649-659, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28398193

RESUMEN

OBJECTIVE: Scopolamine (SCO) administration to rats induces molecular features of AD and other dementias, including impaired cognition, increased oxidative stress, and imbalanced cholinergic transmission. Although mitochondrial dysfunction is involved in different types of dementias, its role in cognitive impairment induced by SCO has not been well elucidated. The aim of this work was to evaluate the in vivo effect of SCO on different brain mitochondrial parameters in rats to explore its neurotoxic mechanisms of action. METHODS: Saline (Control) or SCO (1 mg/kg) was administered intraperitoneally 30 min prior to neurobehavioral and biochemical evaluations. Novel object recognition and Y-maze paradigms were used to evaluate the impact on memory, while redox profiles in different brain regions and the acetylcholinesterase (AChE) activity of the whole brain were assessed to elucidate the amnesic mechanism of SCO. Finally, the effects of SCO on brain mitochondria were evaluated both ex vivo and in vitro, the latter to determine whether SCO could directly interfere with mitochondrial function. RESULTS: SCO administration induced memory deficit, increased oxidative stress, and increased AChE activities in the hippocampus and prefrontal cortex. Isolated brain mitochondria from rats administered with SCO were more vulnerable to mitochondrial swelling, membrane potential dissipation, H2O2 generation and calcium efflux, all likely resulting from oxidative damage. The in vitro mitochondrial assays suggest that SCO did not affect the organelle function directly. CONCLUSION: In conclusion, the present results indicate that SCO induced cognitive dysfunction and oxidative stress may involve brain mitochondrial impairment, an important target for new neuroprotective compounds against AD and other dementias.


Asunto(s)
Trastornos de la Memoria/metabolismo , Mitocondrias/metabolismo , Acetilcolinesterasa/metabolismo , Animales , Encéfalo/metabolismo , Calcio/metabolismo , Cationes Bivalentes/metabolismo , Modelos Animales de Enfermedad , Peróxido de Hidrógeno/metabolismo , Masculino , Aprendizaje por Laberinto/fisiología , Potencial de la Membrana Mitocondrial/fisiología , Dilatación Mitocondrial/fisiología , Estrés Oxidativo/fisiología , Distribución Aleatoria , Ratas Wistar , Reconocimiento en Psicología/fisiología , Escopolamina
15.
Front Neurol ; 8: 485, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28979235

RESUMEN

OBJECTIVES: Spinocerebellar ataxia type 3/Machado-Joseph disease (SCA3/MJD) is a polyglutamine disorder with no current disease-modifying treatment. Conformational changes in mutant ataxin-3 trigger different pathogenic cascades, including reactive oxygen species (ROS) generation; however, the clinical relevance of oxidative stress elements as peripheral biomarkers of SCA3/MJD remains unknown. We aimed to evaluate ROS production and antioxidant defense capacity in symptomatic and presymptomatic SCA3/MJD individuals and correlate these markers with clinical and molecular data with the goal of assessing their properties as disease biomarkers. METHODS: Molecularly confirmed SCA3/MJD carriers and controls were included in an exploratory case-control study. Serum ROS, measured by 2',7'-dichlorofluorescein diacetate (DCFH-DA) as well as superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) antioxidant enzyme activities, levels were assessed. RESULTS: Fifty-eight early/moderate stage symptomatic SCA3/MJD, 12 presymptomatic SCA3/MJD, and 47 control individuals were assessed. The DCFH-DA levels in the symptomatic group were 152.82 nmol/mg of protein [95% confidence interval (CI), 82.57-223.08, p < 0.001] higher than in the control and 243.80 nmol/mg of protein (95% CI, 130.64-356.96, p < 0.001) higher than in the presymptomatic group. The SOD activity in the symptomatic group was 3 U/mg of protein (95% CI, 0.015-6.00, p = 0.048) lower than in the presymptomatic group. The GSH-Px activity in the symptomatic group was 13.96 U/mg of protein (95% CI, 5.90-22.03, p < 0.001) lower than in the control group and 20.52 U/mg of protein (95% CI, 6.79-34.24, p < 0.001) lower than in the presymptomatic group and was inversely correlated with the neurological examination score for spinocerebellar ataxias (R = -0.309, p = 0.049). CONCLUSION: Early/moderate stage SCA3/MJD patients presented a decreased antioxidant capacity and increased ROS generation. GSH-Px activity was the most promising oxidative stress disease biomarker in SCA3/MJD. Further longitudinal studies are necessary to identify both the roles of redox parameters in SCA3/MJD pathophysiology and as surrogate outcomes for clinical trials.

16.
Int J Dev Neurosci ; 48: 71-9, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26658316

RESUMEN

Elevated plasma homocysteine (Hcy) levels have been detected in patients with various neurodegenerative conditions. Studies of brain tissue have revealed that hyperhomocysteinemia may impair energy metabolism, resulting in neuronal damage. In addition, new evidence has indicated that vitamin D plays crucial roles in brain development, brain metabolism and neuroprotection. The aim of this study was to investigate the neuroprotective effects of 1,25-dihydroxivitamin D3 (calcitriol) in cerebral cortex slices that were incubated with a mild concentration of Hcy. Cerebral cortex slices from adult rats were first pre-treated for 30 min with one of three different concentrations of calcitriol (50 nM, 100 nM and 250 nM), followed by Hcy for 1h to promote cellular dysfunction. Hcy caused changes in bioenergetics parameters (e.g., respiratory chain enzymes) and mitochondrial functions by inducing changes in mitochondrial mass and swelling. Here, we used flow cytometry to analyze neurons that were double-labelled with Propidium Iodide (PI) and found that Hcy induced an increase in NeuN(+)/PI cells but did not affect GFAP(+)/Pi cells. Hcy also induced oxidative stress by increasing reactive oxygen species generation, lipid peroxidation and protein damage and reducing the activity of antioxidant enzymes (e.g., SOD, CAT and GPx). Calcitriol (50 nM) prevented these alterations by increasing the level of the vitamin D receptor. Our findings suggest that using calcitriol may be a therapeutic strategy for treating the cerebral complications caused by Hcy.


Asunto(s)
Calcitriol/farmacología , Corteza Cerebral/efectos de los fármacos , Homocisteína/farmacología , Fármacos Neuroprotectores/farmacología , Animales , Antioxidantes/metabolismo , Relación Dosis-Respuesta a Droga , Complejo II de Transporte de Electrones/metabolismo , Complejo IV de Transporte de Electrones/metabolismo , Citometría de Flujo , Proteína Ácida Fibrilar de la Glía/metabolismo , Técnicas In Vitro , Masculino , Fosfopiruvato Hidratasa/metabolismo , Propidio/metabolismo , Ratas , Ratas Wistar , ATPasa Intercambiadora de Sodio-Potasio/metabolismo
17.
Front Neurosci ; 10: 509, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27877108

RESUMEN

Diabetes mellitus (DM) causes important modifications in the availability and use of different energy substrates in various organs and tissues. Similarly, dietary manipulations such as high fat diets also affect systemic energy metabolism. However, how the brain adapts to these situations remains unclear. To investigate these issues, control and alloxan-induced type I diabetic rats were fed either a standard or a high fat diet enriched with advanced glycation end products (AGEs) (HAGE diet). The HAGE diet increased their levels of blood ketone bodies, and this effect was exacerbated by DM induction. To determine the effects of diet and/or DM induction on key cerebral bioenergetic parameters, both ketone bodies (ß-hydroxybutyric acid) and lactate oxidation were measured. In parallel, the expression of Monocarboxylate Transporter 1 (MCT1) and 2 (MCT2) isoforms in hippocampal and cortical slices from rats submitted to these diets was assessed. Ketone body oxidation increased while lactate oxidation decreased in hippocampal and cortical slices in both control and diabetic rats fed a HAGE diet. In parallel, the expression of both MCT1 and MCT2 increased only in the cerebral cortex in diabetic rats fed a HAGE diet. These results suggest a shift in the preferential cerebral energy substrate utilization in favor of ketone bodies in animals fed a HAGE diet, an effect that, in DM animals, is accompanied by the enhanced expression of the related transporters.

18.
Nutr Res ; 35(6): 512-22, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25963123

RESUMEN

Renal dysfunction is a severe complication that is caused by diabetes mellitus. Many factors associate the progression of this complication with high levels of proinflammatory and pro-oxidant substances, such as advanced glycation end products (AGEs), which form a heterogeneous group of compounds that can accumulate in tissues such as retinas, joints, and kidneys. The hypothesis of this study is that n-3 polyunsaturated fatty acids (n-3 PUFAs) have a nephroprotective effect on rats after exposing them to a combination of 2 protocols that increase the AGE amounts: a high-fat diet enriched with AGEs and a diabetes rat model. Adult Wistar rats were divided into 6 groups that received the following diets for 4 weeks: (1) control group; 2) HAGE: high AGE fat-containing diet group; (3) HAGE + n-3: high AGE fat-containing diet plus n-3 PUFAs group; (4) diabetic group; (5) Db + HAGE: high AGE fat-containing diet diabetic group; and (6) Db + HAGE + n-3: high AGE fat-containing diet plus n-3 PUFAs diabetic group. Diabetes mellitus was induced by an intraperitoneal injection of alloxan (150 mg kg(-1)). In diabetic and nondiabetic rats, the high HAGE fat-containing diet increased the serum creatinine, tumor necrosis factor-α, thiobarbituric acid reactive substances, and reactive oxygen species levels, as well as the superoxide dismutase/catalase + glutathione peroxidase ratio and the superoxide dismutase 2 and receptor for advanced glycation end products immunocontent of the kidneys. n-3 Polyunsaturated fatty acids attenuated these alterations and influenced the receptor for advanced glycation end products/oxidative stress/tumor necrosis factor-α axis. In summary, this study showed that the extrinsic AGE pathway (HAGE diet) had a greater effect on renal metabolism than the intrinsic AGE pathway (diabetes induction) and that n-3 PUFAs appear to prevent renal dysfunction via antioxidant and anti-inflammatory pathways.


Asunto(s)
Nefropatías Diabéticas/prevención & control , Dieta , Ácidos Grasos Omega-3/uso terapéutico , Productos Finales de Glicación Avanzada/sangre , Riñón/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Receptor para Productos Finales de Glicación Avanzada/metabolismo , Animales , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Antioxidantes/metabolismo , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Creatinina/sangre , Diabetes Mellitus Experimental/complicaciones , Nefropatías Diabéticas/sangre , Ácidos Grasos Omega-3/farmacología , Riñón/metabolismo , Masculino , Ratas Wistar , Sustancias Reactivas al Ácido Tiobarbitúrico , Factor de Necrosis Tumoral alfa/sangre
19.
PLoS One ; 9(5): e96241, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24788779

RESUMEN

Lesions with great loss of skin and extensive burns are usually treated with heterologous skin grafts, which may lead rejection. Cell therapy with mesenchymal stem cells is arising as a new proposal to accelerate the healing process. We tested a new therapy consisting of sodium carboxymethylcellulose (CMC) as a biomaterial, in combination with adipose-derived stem cells (ADSCs), to treat skin lesions in an in vivo rat model. This biomaterial did not affect membrane viability and induced a small and transient genotoxicity, only at the highest concentration tested (40 mg/mL). In a rat wound model, CMC at 10 mg/mL associated with ADSCs increased the rate of cell proliferation of the granulation tissue and epithelium thickness when compared to untreated lesions (Sham), but did not increase collagen fibers nor alter the overall speed of wound closure. Taken together, the results show that the CMC is capable to allow the growth of ADSCs and is safe for this biological application up to the concentration of 20 mg/mL. These findings suggest that CMC is a promising biomaterial to be used in cell therapy.


Asunto(s)
Carboximetilcelulosa de Sodio/farmacología , Trasplante de Células Madre Mesenquimatosas/métodos , Células Madre Mesenquimatosas/efectos de los fármacos , Piel/lesiones , Heridas y Lesiones/terapia , Tejido Adiposo/citología , Animales , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Células Cultivadas , Colágeno/metabolismo , Modelos Animales de Enfermedad , Inmunohistoquímica , Queratinas/metabolismo , Masculino , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/fisiología , Ratas Wistar , Piel/metabolismo , Piel/fisiopatología , Ingeniería de Tejidos/métodos , Andamios del Tejido/química , Cicatrización de Heridas , Heridas y Lesiones/metabolismo , Heridas y Lesiones/fisiopatología
20.
Artículo en Inglés | MEDLINE | ID: mdl-24936773

RESUMEN

Anxiety-related disorders are frequently observed in the population. Because the available pharmacotherapies for anxiety can cause side effects, new anxiolytic compounds have been screened using behavioral tasks. For example, diphenyl diselenide (PhSe)2, a simple organoselenium compound with neuroprotective effects, has demonstrated anxiolytic effects in rodents. However, this compound has not yet been tested in a novelty-based paradigm in non-mammalian animal models. In this study, we assessed the potential anxiolytic effects of (PhSe)2 on the behavior of adult zebrafish under novelty-induced stress. The animals were pretreated with 0.1, 0.25, 0.5, and 1µM (PhSe)2 in the aquarium water for 30min. The fish were then exposed to a novel tank, and their behavior was quantified during a 6-min trial. (PhSe)2 treatment altered fish behavior in a concentration-dependent manner. At 0.01 and 0.25µM, (PhSe)2 did not elicit effects on fish behavior. At 0.5µM, moderate behavioral side effects (e.g., lethargy and short episodic immobility) were noted. At the highest concentration tested (1µM), dramatic side effects were observed, such as burst behavior and longer periods of immobility. The results were confirmed by spatiotemporal analysis of each group. Occupancy plot data showed dispersed homebase formation in the 0.25µM (PhSe)2-treated group compared with the control group (treated with 0.04% DMSO). Furthermore, animals treated with 0.25µM (PhSe)2 showed a reduction in latency to enter the top and spent more time in the upper area of the tank. These data suggest that (PhSe)2 may induce an anxiolytic-like effect in situations of anxiety evoked by novelty.


Asunto(s)
Ansiolíticos/farmacología , Trastornos de Ansiedad/tratamiento farmacológico , Derivados del Benceno/farmacología , Conducta Exploratoria/efectos de los fármacos , Compuestos de Organoselenio/farmacología , Estrés Psicológico/tratamiento farmacológico , Animales , Ansiolíticos/efectos adversos , Derivados del Benceno/efectos adversos , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Femenino , Masculino , Actividad Motora/efectos de los fármacos , Pruebas Neuropsicológicas , Compuestos de Organoselenio/efectos adversos , Distribución Aleatoria , Pez Cebra
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA