Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Biol Chem ; 286(26): 23407-18, 2011 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-21550974

RESUMEN

Neuron polarization is essential for the formation of one axon and multiple dendrites, establishing the neuronal circuitry. Phosphoinositide 3-kinase (PI3K) signaling promotes axon selection and elongation. Here we report in hippocampal neurons siRNA knockdown of the proline-rich inositol polyphosphate 5-phosphatase (PIPP), which degrades PI3K-generated PtdIns(3,4,5)P(3), results in multiple hyperelongated axons consistent with a polarization defect. We identify collapsin response mediator protein 2 (CRMP2), which regulates axon selection by promoting WAVE1 delivery via Kinesin-1 motors to the axon growth cone, as a PIPP-interacting protein by Y2H screening, direct binding studies, and coimmunoprecipitation of an endogenous PIPP, CRMP2, and Kinesin-1 complex from brain lysates. The C-terminal growth cone-targeting domain of PIPP facilitates its interaction with CRMP2. PIPP growth cone localization is CRMP2-dependent. PIPP knockdown in PC12 cells promotes neurite elongation, WAVE1 and Kinesin-1 growth cone localization, whereas knockdown of CRMP2 exhibits the opposite phenotype, with shorter neurites and decreased WAVE1/Kinesin-1 at the growth cone. In contrast, CRMP2 overexpression promotes neurite elongation, a phenotype rescued by full-length PIPP, or expression of the CRMP2-binding PIPP domain. Therefore this study identifies PIPP and CRMP2 exert opposing roles in promoting axon selection and neurite elongation and the complex between these proteins serves to regulate the localization of effectors that promote neurite extension.


Asunto(s)
Conos de Crecimiento/metabolismo , Hipocampo/metabolismo , Complejos Multiproteicos/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neuritas/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , Animales , Hipocampo/citología , Inositol Polifosfato 5-Fosfatasas , Péptidos y Proteínas de Señalización Intercelular , Cinesinas/genética , Cinesinas/metabolismo , Masculino , Complejos Multiproteicos/genética , Proteínas del Tejido Nervioso/genética , Células PC12 , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfatos de Fosfatidilinositol/genética , Fosfatos de Fosfatidilinositol/metabolismo , Monoéster Fosfórico Hidrolasas/genética , Ratas , Ratas Sprague-Dawley , Familia de Proteínas del Síndrome de Wiskott-Aldrich/genética , Familia de Proteínas del Síndrome de Wiskott-Aldrich/metabolismo
2.
Mol Biol Cell ; 17(2): 607-22, 2006 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-16280363

RESUMEN

The spatial activation of phosphoinositide 3-kinase (PI3-kinase) signaling at the axon growth cone generates phosphatidylinositol 3,4,5 trisphosphate (PtdIns(3,4,5)P3), which localizes and facilitates Akt activation and stimulates GSK-3beta inactivation, promoting microtubule polymerization and axon elongation. However, the molecular mechanisms that govern the spatial down-regulation of PtdIns(3,4,5)P3 signaling at the growth cone remain undetermined. The inositol polyphosphate 5-phosphatases (5-phosphatase) hydrolyze the 5-position phosphate from phosphatidylinositol 4,5 bisphosphate (PtdIns(4,5)P2) and/or PtdIns(3,4,5)P3. We demonstrate here that PIPP, an uncharacterized 5-phosphatase, hydrolyzes PtdIns(3,4,5)P3 forming PtdIns(3,4)P2, decreasing Ser473-Akt phosphorylation. PIPP is expressed in PC12 cells, localizing to the plasma membrane of undifferentiated cells and the neurite shaft and growth cone of NGF-differentiated neurites. Overexpression of wild-type, but not catalytically inactive PIPP, in PC12 cells inhibited neurite elongation. Targeted depletion of PIPP using RNA interference (RNAi) resulted in enhanced neurite differentiation, associated with neurite hyperelongation. Inhibition of PI3-kinase activity prevented neurite hyperelongation in PIPP-deficient cells. PIPP targeted-depletion resulted in increased phospho-Ser473-Akt and phospho-Ser9-GSK-3beta, specifically at the neurite growth cone, and accumulation of PtdIns(3,4,5)P3 at this site, associated with enhanced microtubule polymerization in the neurite shaft. PIPP therefore inhibits PI3-kinase-dependent neurite elongation in PC12 cells, via regulation of the spatial distribution of phospho-Ser473-Akt and phospho-Ser9-GSK-3beta signaling.


Asunto(s)
Neuritas/enzimología , Fosfatidilinositol 3-Quinasas/metabolismo , Monoéster Fosfórico Hidrolasas/fisiología , Animales , Células COS , Diferenciación Celular , Aumento de la Célula , Chlorocebus aethiops , Conos de Crecimiento/fisiología , Hidrólisis , Inositol Polifosfato 5-Fosfatasas , Ratones , Factor de Crecimiento Nervioso/metabolismo , Neuritas/fisiología , Neuritas/ultraestructura , Células PC12 , Fosfatos de Fosfatidilinositol/metabolismo , Fosforilación , Proteínas Proto-Oncogénicas c-akt/metabolismo , Interferencia de ARN , Ratas
3.
Biochem Soc Symp ; (74): 161-81, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17233589

RESUMEN

Phosphoinositide signals regulate cell proliferation, differentiation, cytoskeletal rearrangement and intracellular trafficking. Hydrolysis of PtdIns(4,5)P2 and PtdIns(3,4,5)P3, by inositol polyphosphate 5-phosphatases regulates synaptic vesicle recycling (synaptojanin-1), hematopoietic cell function [SHIP1(SH2-containing inositol polyphosphate 5-phosphatase-1)], renal cell function [OCRL (oculocerebrorenal syndrome of Lowe)] and insulin signalling (SHIP2). We present here a detailed review of the characteristics of the ten mammalian 5-phosphatases. Knockout mouse phenotypes and underexpression studies are associated with significant phenotypic changes, indicating non-redundant roles, despite, in many cases, overlapping substrate specificity and tissue expression. The extraordinary complexity in the control of phosphoinositide signalling continues to be revealed.


Asunto(s)
Monoéster Fosfórico Hidrolasas/fisiología , Animales , Humanos , Inositol Polifosfato 5-Fosfatasas , Insulina/metabolismo , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Isoenzimas/fisiología , Modelos Biológicos , Síndrome Oculocerebrorrenal/enzimología , Síndrome Oculocerebrorrenal/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatasas , Monoéster Fosfórico Hidrolasas/química , Monoéster Fosfórico Hidrolasas/genética , Monoéster Fosfórico Hidrolasas/metabolismo , Estructura Terciaria de Proteína , Vesículas Sinápticas/metabolismo
4.
Int J Biochem Cell Biol ; 37(11): 2260-5, 2005 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-15964236

RESUMEN

Phosphoinositides are membrane-bound signaling molecules that recruit, activate and localize target effectors to intracellular membranes regulating apoptosis, cell proliferation, insulin signaling and membrane trafficking. The SH2 domain containing inositol polyphosphate 5-phosphatase-2 (SHIP2) hydrolyzes phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) generating phosphatidylinositol 3,4-bisphosphate (PtdIns(3,4)P2). Overexpression of SHIP2 inhibits insulin-stimulated phosphoinositide 3-kinase (PI3K) dependent signaling events. Analysis of diabetic human subjects has revealed an association between SHIP2 gene polymorphisms and type 2 diabetes mellitus. Genetic ablation of SHIP2 in mice has generated conflicting results. SHIP2 knockout mice were originally reported to show lethal neonatal hypoglycemia resulting from insulin hypersensitivity, but in addition to inactivating the SHIP2 gene, the Phox2a gene was also inadvertently deleted. Another SHIP2 knockout mouse has now been generated which inactivates the SHIP2 gene but leaves Phox2a intact. These animals show normal insulin and glucose tolerance but are highly resistant to weight gain on high fat diets, exhibiting an obesity-resistant phenotype. Therefore, SHIP2 remains a significant therapeutic target for the treatment of both obesity and type 2 diabetes.


Asunto(s)
Fosfatidilinositoles/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , Dominios Homologos src , Animales , Diabetes Mellitus Tipo 2/enzimología , Diabetes Mellitus Tipo 2/genética , Humanos , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatasas , Monoéster Fosfórico Hidrolasas/genética , Polimorfismo Genético , Sistemas de Mensajero Secundario/fisiología
5.
Cancer Discov ; 3(1): 82-95, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23242809

RESUMEN

UNLABELLED: MYC deregulation is common in human cancer. IG-MYC translocations that are modeled in Eµ-Myc mice occur in almost all cases of Burkitt lymphoma as well as in other B-cell lymphoproliferative disorders. Deregulated expression of MYC results in increased mTOR complex 1 (mTORC1) signaling. As tumors with mTORC1 activation are sensitive to mTORC1 inhibition, we used everolimus, a potent and specific mTORC1 inhibitor, to test the requirement for mTORC1 in the initiation and maintenance of Eµ-Myc lymphoma. Everolimus selectively cleared premalignant B cells from the bone marrow and spleen, restored a normal pattern of B-cell differentiation, and strongly protected against lymphoma development. Established Eµ-Myc lymphoma also regressed after everolimus therapy. Therapeutic response correlated with a cellular senescence phenotype and induction of p53 activity. Therefore, mTORC1-dependent evasion of senescence is critical for cellular transformation and tumor maintenance by MYC in B lymphocytes. SIGNIFICANCE: This work provides novel insights into the requirements for MYC-induced oncogenesis by showing that mTORC1 activity is necessary to bypass senescence during transformation of B lymphocytes. Furthermore, tumor eradication through senescence elicited by targeted inhibition of mTORC1 identifies a previously uncharacterized mechanism responsible for significant anticancer activity of rapamycin analogues and serves as proof-of-concept that senescence can be harnessed for therapeutic benefit


Asunto(s)
Antineoplásicos/uso terapéutico , Linfoma/tratamiento farmacológico , Proteínas/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-myc/metabolismo , Sirolimus/análogos & derivados , Animales , Linfocitos B/citología , Linfocitos B/fisiología , Diferenciación Celular/efectos de los fármacos , Senescencia Celular , Everolimus , Linfoma/metabolismo , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones , Ratones Transgénicos , Complejos Multiproteicos , Sirolimus/uso terapéutico , Serina-Treonina Quinasas TOR
6.
Sci Signal ; 4(188): ra56, 2011 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-21878679

RESUMEN

Precise regulation of ribosome biogenesis is fundamental to maintain normal cell growth and proliferation, and accelerated ribosome biogenesis is associated with malignant transformation. Here, we show that the kinase AKT regulates ribosome biogenesis at multiple levels to promote ribosomal RNA (rRNA) synthesis. Transcription elongation by RNA polymerase I, which synthesizes rRNA, required continuous AKT-dependent signaling, an effect independent of AKT's role in activating the translation-promoting complex mTORC1 (mammalian target of rapamycin complex 1). Sustained inhibition of AKT and mTORC1 cooperated to reduce rRNA synthesis and ribosome biogenesis by additionally limiting RNA polymerase I loading and pre-rRNA processing. In the absence of growth factors, constitutively active AKT increased synthesis of rRNA, ribosome biogenesis, and cell growth. Furthermore, AKT cooperated with the transcription factor c-MYC to synergistically activate rRNA synthesis and ribosome biogenesis, defining a network involving AKT, mTORC1, and c-MYC as a master controller of cell growth. Maximal activation of c-MYC-dependent rRNA synthesis in lymphoma cells required AKT activity. Moreover, inhibition of AKT-dependent rRNA transcription was associated with increased lymphoma cell death by apoptosis. These data indicate that decreased ribosome biogenesis is likely to be a fundamental component of the therapeutic response to AKT inhibitors in cancer.


Asunto(s)
Neoplasias/patología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , ARN Ribosómico/biosíntesis , Ribosomas , División Celular , ADN Ribosómico/genética , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina , Complejos Multiproteicos , Neoplasias/enzimología , Neoplasias/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas/metabolismo , ARN Polimerasa I/metabolismo , Transducción de Señal , Serina-Treonina Quinasas TOR , Transcripción Genética
7.
J Cell Sci ; 121(Pt 17): 2892-903, 2008 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-18697831

RESUMEN

The Rac-GEF P-Rex1 promotes membrane ruffling and cell migration in response to Rac activation, but its role in neuritogenesis is unknown. Rac1 promotes neurite differentiation; Rac3, however, may play an opposing role. Here we report that in nerve growth factor (NGF)-differentiated rat PC12 cells, P-Rex1 localised to the distal tips of developing neurites and to the axonal shaft and growth cone of differentiating hippocampal neurons. P-Rex1 expression inhibited NGF-stimulated PC12 neurite differentiation and this was dependent on the Rac-GEF activity of P-Rex1. P-Rex1 inhibition of neurite outgrowth was rescued by low-dose cytochalasin D treatment, which prevents actin polymerisation. P-Rex1 activated Rac3 GTPase activity when coexpressed in PC12 cells. In the absence of NGF stimulation, targeted depletion of P-Rex1 in PC12 cells by RNA interference induced the spontaneous formation of beta-tubulin-enriched projections. Following NGF stimulation, enhanced neurite differentiation, with neurite hyper-elongation correlating with decreased F-actin at the growth cone, was demonstrated in P-Rex1 knockdown cells. Interestingly, P-Rex1-depleted PC12 cells exhibited reduced Rac3 and Rac1 GTPase activity. This study has identified P-Rex1 as a Rac3-GEF in neuronal cells that localises to, and regulates, actin cytoskeletal dynamics at the axonal growth cone to in turn regulate neurite differentiation.


Asunto(s)
Diferenciación Celular , Factores de Intercambio de Guanina Nucleótido/metabolismo , Neuritas/metabolismo , Animales , Diferenciación Celular/efectos de los fármacos , Activación Enzimática/efectos de los fármacos , Conos de Crecimiento/efectos de los fármacos , Conos de Crecimiento/metabolismo , Factores de Intercambio de Guanina Nucleótido/química , Hipocampo/citología , Hipocampo/metabolismo , Humanos , Factor de Crecimiento Nervioso/farmacología , Neuritas/efectos de los fármacos , Células PC12 , Estructura Terciaria de Proteína , Transporte de Proteínas/efectos de los fármacos , Interferencia de ARN/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Proteínas de Unión al GTP rac/metabolismo
8.
IUBMB Life ; 58(8): 451-6, 2006 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16916781

RESUMEN

Phosphoinositide signaling molecules control cellular growth, proliferation and differentiation, intracellular vesicle trafficking, and cytoskeletal rearrangement. The inositol polyphosphate 5-phosphatase family remove the D-5 position phosphate from PtdIns(3,4,5)P3, PtdIns(4,5)P2 and PtdIns(3,5)P2 forming PtdIns(3,4)P2, PtdIns(4)P and PtdIns(3)P respectively. This enzyme family, comprising ten mammalian members, exhibit seemingly non-redundant functions including the regulation of synaptic vesicle recycling, hematopoietic cell function and insulin signaling. Here we highlight recently established insights into the functions of two well characterized 5-phosphatases OCRL and SHIP2, which have been the subject of extensive functional studies, and the characterization of recently identified members, SKIP and PIPP, in order to highlight the diverse and complex functions of this enzyme family.


Asunto(s)
Fosfatidilinositoles/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , Transducción de Señal , Animales , Humanos , Inositol Polifosfato 5-Fosfatasas , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Modelos Biológicos , Síndrome Oculocerebrorrenal/enzimología , Síndrome Oculocerebrorrenal/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Monoéster Fosfórico Hidrolasas/química , Monoéster Fosfórico Hidrolasas/genética , Estructura Terciaria de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA