Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Am J Hum Genet ; 108(5): 929-941, 2021 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-33811806

RESUMEN

Proteins involved in transcriptional regulation harbor a demonstrated enrichment of mutations in neurodevelopmental disorders. The Sin3 (Swi-independent 3)/histone deacetylase (HDAC) complex plays a central role in histone deacetylation and transcriptional repression. Among the two vertebrate paralogs encoding the Sin3 complex, SIN3A variants cause syndromic intellectual disability, but the clinical consequences of SIN3B haploinsufficiency in humans are uncharacterized. Here, we describe a syndrome hallmarked by intellectual disability, developmental delay, and dysmorphic facial features with variably penetrant autism spectrum disorder, congenital malformations, corpus callosum defects, and impaired growth caused by disruptive SIN3B variants. Using chromosomal microarray or exome sequencing, and through international data sharing efforts, we identified nine individuals with heterozygous SIN3B deletion or single-nucleotide variants. Five individuals harbor heterozygous deletions encompassing SIN3B that reside within a ∼230 kb minimal region of overlap on 19p13.11, two individuals have a rare nonsynonymous substitution, and two individuals have a single-nucleotide deletion that results in a frameshift and predicted premature termination codon. To test the relevance of SIN3B impairment to measurable aspects of the human phenotype, we disrupted the orthologous zebrafish locus by genome editing and transient suppression. The mutant and morphant larvae display altered craniofacial patterning, commissural axon defects, and reduced body length supportive of an essential role for Sin3 function in growth and patterning of anterior structures. To investigate further the molecular consequences of SIN3B variants, we quantified genome-wide enhancer and promoter activity states by using H3K27ac ChIP-seq. We show that, similar to SIN3A mutations, SIN3B disruption causes hyperacetylation of a subset of enhancers and promoters in peripheral blood mononuclear cells. Together, these data demonstrate that SIN3B haploinsufficiency leads to a hitherto unknown intellectual disability/autism syndrome, uncover a crucial role of SIN3B in the central nervous system, and define the epigenetic landscape associated with Sin3 complex impairment.


Asunto(s)
Trastorno del Espectro Autista/genética , Haploinsuficiencia/genética , Histona Desacetilasas/metabolismo , Discapacidad Intelectual/genética , Proteínas Represoras/genética , Acetilación , Adolescente , Animales , Niño , Preescolar , Variaciones en el Número de Copia de ADN/genética , Femenino , Histonas/química , Histonas/metabolismo , Humanos , Lactante , Larva/genética , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Modelos Moleculares , Mutación , Proteínas Represoras/deficiencia , Proteínas Represoras/metabolismo , Síndrome , Adulto Joven , Pez Cebra/genética , Proteínas de Pez Cebra/deficiencia , Proteínas de Pez Cebra/genética
2.
Hum Mutat ; 43(12): 2130-2140, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36251260

RESUMEN

Neurofibromatosis type 1 (NF1) is caused by inactivating mutations in NF1. Due to the size, complexity, and high mutation rate at the NF1 locus, the identification of causative variants can be challenging. To obtain a molecular diagnosis in 15 individuals meeting diagnostic criteria for NF1, we performed transcriptome analysis (RNA-seq) on RNA obtained from cultured skin fibroblasts. In each case, routine molecular DNA diagnostics had failed to identify a disease-causing variant in NF1. A pathogenic variant or abnormal mRNA splicing was identified in 13 cases: 6 deep intronic variants and 2 transposon insertions causing noncanonical splicing, 3 postzygotic changes, 1 branch point mutation and, in 1 case, abnormal splicing for which the responsible DNA change remains to be identified. These findings helped resolve the molecular findings for an additional 17 individuals in multiple families with NF1, demonstrating the utility of skin-fibroblast-based transcriptome analysis for molecular diagnostics. RNA-seq improves mutation detection in NF1 and provides a powerful complementary approach to DNA-based methods. Importantly, our approach is applicable to other genetic disorders, particularly those caused by a wide variety of variants in a limited number of genes and specifically for individuals in whom routine molecular DNA diagnostics did not identify the causative variant.


Asunto(s)
Neurofibromatosis 1 , Humanos , Neurofibromatosis 1/diagnóstico , Neurofibromatosis 1/genética , Neurofibromatosis 1/patología , Mutación , Empalme del ARN/genética , ADN , Fibroblastos/patología , Neurofibromina 1/genética
3.
J Med Genet ; 57(12): 843-850, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32277046

RESUMEN

PURPOSE: Although a familial distribution has been documented, the genetic aetiology of mitral valve prolapse (MVP) is largely unknown, with only four genes identified so far: FLNA, DCHS1, DZIP1 and PLD1. The aim of this study was to evaluate the genetic yield in known causative genes and to identify possible novel genes associated with MVP using a heart gene panel based on exome sequencing. METHODS: Patients with MVP were referred for genetic counselling when a positive family history for MVP was reported and/or Barlow's disease was diagnosed. In total, 101 probands were included to identify potentially pathogenic variants in a set of 522 genes associated with cardiac development and/or diseases. RESULTS: 97 (96%) probands were classified as Barlow's disease and 4 (4%) as fibroelastic deficiency. Only one patient (1%) had a likely pathogenic variant in the known causative genes (DCHS1). However, an interesting finding was that 10 probands (11%) had a variant that was classified as likely pathogenic in six different, mostly cardiomyopathy genes: DSP (1×), HCN4 (1×), MYH6 (1×), TMEM67 (1×), TRPS1 (1×) and TTN (5×). CONCLUSION: Exome slice sequencing analysis performed in MVP probands reveals a low genetic yield in known causative genes but may expand the cardiac phenotype of other genes. This study suggests for the first time that also genes related to cardiomyopathy may be associated with MVP. This highlights the importance to screen these patients and their family for the presence of arrhythmias and of 'disproportionate' LV remodelling as compared with the severity of mitral regurgitation, unravelling a possible coexistent cardiomyopathy.


Asunto(s)
Cardiomiopatías/genética , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Prolapso de la Válvula Mitral/genética , Proteínas Adaptadoras Transductoras de Señales/genética , Anciano , Miosinas Cardíacas/genética , Cardiomiopatías/patología , Conectina , Desmoplaquinas/genética , Exoma/genética , Femenino , Humanos , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/genética , Masculino , Proteínas de la Membrana/genética , Persona de Mediana Edad , Prolapso de la Válvula Mitral/patología , Proteínas Musculares/genética , Cadenas Pesadas de Miosina/genética , Linaje , Canales de Potasio/genética , Proteínas Represoras/genética , Secuenciación del Exoma
4.
Genet Med ; 22(7): 1206-1214, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32341573

RESUMEN

PURPOSE: Congenital heart defects (CHD) are associated with genetic syndromes. Rapid aneuploidy testing and chromosome microarray analysis (CMA) are standard care in fetal CHD. Many genetic syndromes remain undetected with these tests. This cohort study aims to estimate the frequency of causal genetic variants, in particular structural chromosome abnormalities and sequence variants, in fetuses with severe CHD at mid-gestation, to aid prenatal counselling. METHODS: Fetuses with severe CHD were extracted from the PRECOR registry (2012-2016). We evaluated pre- and postnatal genetic testing results retrospectively to estimate the frequency of genetic diagnoses in general, as well as for specific CHDs. RESULTS: 919 fetuses with severe CHD were identified. After exclusion of 211 cases with aneuploidy, a genetic diagnosis was found in 15.7% (111/708). These comprised copy number variants in 9.9% (70/708). In 4.5% (41/708) sequence variants were found that would have remained undetected with CMA. Interrupted aortic arch, pulmonary atresia with ventricular septal defect and atrioventricular septal defect were most commonly associated with a genetic diagnosis. CONCLUSION: In case of normal CMA results, parents should be offered exome sequencing sequentially, if time allows for it, especially if the CHD is accompanied by other structural malformations due to the large variety in genetic syndromes.


Asunto(s)
Cardiopatías Congénitas , Estudios de Cohortes , Femenino , Feto , Cardiopatías Congénitas/diagnóstico , Cardiopatías Congénitas/epidemiología , Cardiopatías Congénitas/genética , Humanos , Embarazo , Diagnóstico Prenatal , Prevalencia , Estudios Retrospectivos
5.
Genet Med ; 21(10): 2303-2310, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-30918357

RESUMEN

PURPOSE: Exome sequencing (ES) is an efficient tool to diagnose genetic disorders postnatally. Recent studies show that it may have a considerable diagnostic yield in fetuses with structural anomalies on ultrasound. We report on the clinical impact of the implementation of prenatal ES (pES) for ongoing pregnancies in routine care. METHODS: We retrospectively analyzed the impact of pES on pregnancy outcome and pre- or perinatal management in the first 22 patients counseled for pES because of one or more structural anomalies on fetal ultrasound. RESULTS: In two cases, a diagnosis was made by chromosomal microarray analysis after ES counseling. The remaining 20 cases were divided in three groups: (1) pES to aid parental decision making (n = 12), (2) pES in the context of late pregnancy termination requests (n = 5), and (3) pES to guide pre- or perinatal management (n = 3). pES had a clinical impact in 75% (9/12), 40% (2/5), and 100% (3/3) respectively, showing an overall clinical impact of pES of 70% (14/20). CONCLUSION: We show that clinical implementation of pES is feasible and affects parental decision making or pre- and perinatal management supporting further implementation of ES in the prenatal setting.


Asunto(s)
Secuenciación del Exoma/ética , Secuenciación del Exoma/métodos , Diagnóstico Prenatal/métodos , Exoma/genética , Femenino , Feto/diagnóstico por imagen , Asesoramiento Genético/métodos , Humanos , Proyectos Piloto , Embarazo , Estudios Retrospectivos , Ultrasonografía Prenatal/métodos
6.
Genet Med ; 21(5): 1074-1082, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30287924

RESUMEN

PURPOSE: Several studies have reported diagnostic yields up to 57% for rapid exome or genome sequencing (rES/GS) as a single test in neonatal intensive care unit (NICU) patients, but the additional yield of rES/GS compared with other available diagnostic options still remains unquantified in this population. METHODS: We retrospectively evaluated all genetic NICU consultations in a 2-year period. RESULTS: In 132 retrospectively evaluated NICU consultations 27 of 32 diagnoses (84.4%) were made using standard genetic workup. Most diagnoses (65.6%) were made within 16 days. Diagnostic ES yield was 5/29 (17.2%). Genetic diagnoses had a direct effect on clinical management in 90.6% (29/32) of patients. CONCLUSIONS: Our study shows that exome sequencing has a place in NICU diagnostics, but given the associated costs and the high yield of alternative diagnostic strategies, we recommend to first perform clinical genetic consultation.


Asunto(s)
Enfermedades del Recién Nacido/diagnóstico , Enfermedades del Recién Nacido/genética , Mapeo Cromosómico/métodos , Exoma/genética , Femenino , Pruebas Genéticas/economía , Estudio de Asociación del Genoma Completo/métodos , Humanos , Recién Nacido , Cuidado Intensivo Neonatal , Masculino , Estudios Retrospectivos , Secuenciación del Exoma/economía , Secuenciación del Exoma/métodos
8.
Genet Med ; 19(1): 45-52, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27195816

RESUMEN

PURPOSE: Truncating mutations in the maternally imprinted, paternally expressed gene MAGEL2, which is located in the Prader-Willi critical region 15q11-13, have recently been reported to cause Schaaf-Yang syndrome, a Prader-Willi-like disease that manifests as developmental delay/intellectual disability, hypotonia, feeding difficulties, and autism spectrum disorder. The causality of the reported variants in the context of the patients' phenotypes was questioned, as MAGEL2 whole-gene deletions seem to cause little or no clinical phenotype. METHODS: Here we report a total of 18 newly identified individuals with Schaaf-Yang syndrome from 14 families, including 1 family with 3 individuals found to be affected with a truncating variant of MAGEL2, 11 individuals who are clinically affected but were not tested molecularly, and a presymptomatic fetal sibling carrying the pathogenic MAGEL2 variant. RESULTS: All cases harbor truncating mutations of MAGEL2, and nucleotides c.1990-1996 arise as a mutational hotspot, with 10 individuals and 1 fetus harboring a c.1996dupC (p.Q666fs) mutation and 2 fetuses harboring a c.1996delC (p.Q666fs) mutation. The phenotypic spectrum of Schaaf-Yang syndrome ranges from fetal akinesia to neurobehavioral disease and contractures of the small finger joints. CONCLUSION: This study provides strong evidence for the pathogenicity of truncating mutations of the paternal allele of MAGEL2, refines the associated clinical phenotypes, and highlights implications for genetic counseling for affected families.Genet Med 19 1, 45-52.


Asunto(s)
Trastorno del Espectro Autista/genética , Discapacidades del Desarrollo/genética , Discapacidad Intelectual/genética , Síndrome de Prader-Willi/genética , Proteínas/genética , Adolescente , Adulto , Trastorno del Espectro Autista/fisiopatología , Niño , Preescolar , Cromosomas Humanos Par 15 , Discapacidades del Desarrollo/fisiopatología , Femenino , Expresión Génica , Impresión Genómica , Humanos , Lactante , Recién Nacido , Discapacidad Intelectual/fisiopatología , Masculino , Mutación , Fenotipo , Síndrome de Prader-Willi/fisiopatología
10.
J Cardiovasc Dev Dis ; 11(3)2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38535109

RESUMEN

Mutations in the LMNA-gene can cause a variety of 'laminopathies'. These laminopathies are associated with a range of phenotypes, including disorders affecting the adipose tissue, peripheral nerves, the heart, such as dilated cardiomyopathy and conduction system abnormalities, and less commonly, progeroid disorders. This case series describes two families in which two novel LMNA-gene variants were identified, and who presented with an atypical progeroid phenotype with primarily premature aortic and mitral valve stenosis. Interestingly, these families exhibited no clear evidence of multisystem involvement, illustrating the complex role of lamins A/C.

11.
Hum Mutat ; 34(3): 430-4, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23169394

RESUMEN

Aarskog-Scott syndrome (ASS) is a rare disorder with characteristic facial, skeletal, and genital abnormalities. Mutations in the FGD1 gene (Xp11.21) are responsible for ASS. However, mutation detection rates are low. Here, we report a family with ASS where conventional Sanger sequencing failed to detect a pathogenic change in FGD1. To identify the causative gene, we performed whole-exome sequencing in two patients. An initial analysis did not reveal a likely candidate gene. After relaxing our filtering criteria, accepting larger intronic segments, we unexpectedly identified a branch point (BP) variant in FGD1. Analysis of patient-derived RNA showed complete skipping of exon 13, leading to premature translation termination. The BP variant detected is one of very few reported so far proven to affect splicing. Our results show that besides digging deeper to reveal nonobvious variants, isolation and analysis of RNA provides a valuable but under-appreciated tool to resolve cases with unknown genetic defects.


Asunto(s)
Enanismo/diagnóstico , Enanismo/genética , Exoma , Enfermedades Genéticas Ligadas al Cromosoma X/diagnóstico , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Deformidades Congénitas de la Mano/diagnóstico , Deformidades Congénitas de la Mano/genética , Cardiopatías Congénitas/diagnóstico , Cardiopatías Congénitas/genética , Análisis de Secuencia de ADN/métodos , Anomalías Múltiples/diagnóstico , Anomalías Múltiples/genética , Exones , Cara/anomalías , Femenino , Genitales Masculinos/anomalías , Factores de Intercambio de Guanina Nucleótido/genética , Humanos , Masculino , Mutación , Fenotipo , Polimorfismo de Nucleótido Simple , Análisis de Secuencia de ARN/métodos
12.
Hum Mutat ; 34(5): 706-13, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23418007

RESUMEN

Spinocerebellar ataxias are phenotypically, neuropathologically, and genetically heterogeneous. The locus of autosomal recessive spinocerebellar ataxia type 7 (SCAR7) was previously linked to chromosome band 11p15. We have identified TPP1 as the causative gene for SCAR7 by exome sequencing. A missense and a splice site variant in TPP1, cosegregating with the disease, were found in a previously described SCAR7 family and also in another patient with a SCAR7 phenotype. TPP1, encoding the tripeptidyl-peptidase 1 enzyme, is known as the causative gene for late infantile neuronal ceroid lipofuscinosis disease 2 (CLN2 disease). CLN2 disease is characterized by epilepsy, loss of vision, ataxia, and a rapidly progressive course, leading to early death. SCAR7 patients showed ataxia and low activity of tripeptidyl-peptidase 1, but no ophthalmologic abnormalities or epilepsy. Also, the slowly progressive evolution of the disease until old age and absence of ultra structural curvilinear profiles is different from the known CLN2 phenotypes. Our findings now expand the phenotypes related to TPP1-variants to SCAR7. In spite of the limited sample size and measurements, a putative genotype-phenotype correlation may be drawn: we hypothesize that loss of function variants abolishing TPP1 enzyme activity lead to CLN2 disease, whereas variants that diminish TPP1 enzyme activity lead to SCAR7.


Asunto(s)
Aminopeptidasas/genética , Dipeptidil-Peptidasas y Tripeptidil-Peptidasas/genética , Lipofuscinosis Ceroideas Neuronales/genética , Serina Proteasas/genética , Ataxias Espinocerebelosas/genética , Secuencia de Aminoácidos , Aminopeptidasas/química , Animales , Dipeptidil-Peptidasas y Tripeptidil-Peptidasas/química , Exoma , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Microscopía Electrónica , Persona de Mediana Edad , Datos de Secuencia Molecular , Lipofuscinosis Ceroideas Neuronales/patología , Linaje , ARN/genética , Homología de Secuencia de Aminoácido , Serina Proteasas/química , Tripeptidil Peptidasa 1
13.
Hum Mutat ; 34(11): 1519-28, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23929686

RESUMEN

De novo germline variants in several components of the SWI/SNF-like BAF complex can cause Coffin-Siris syndrome (CSS), Nicolaides-Baraitser syndrome (NCBRS), and nonsyndromic intellectual disability. We screened 63 patients with a clinical diagnosis of CSS for these genes (ARID1A, ARID1B, SMARCA2, SMARCA4, SMARCB1, and SMARCE1) and identified pathogenic variants in 45 (71%) patients. We found a high proportion of variants in ARID1B (68%). All four pathogenic variants in ARID1A appeared to be mosaic. By using all variants from the Exome Variant Server as test data, we were able to classify variants in ARID1A, ARID1B, and SMARCB1 reliably as being pathogenic or nonpathogenic. For SMARCA2, SMARCA4, and SMARCE1 several variants in the EVS remained unclassified, underlining the importance of parental testing. We have entered all variant and clinical information in LOVD-powered databases to facilitate further genotype-phenotype correlations, as these will become increasingly important because of the uptake of targeted and untargeted next generation sequencing in diagnostics. The emerging phenotype-genotype correlation is that SMARCB1 patients have the most marked physical phenotype and severe cognitive and growth delay. The variability in phenotype seems most marked in ARID1A and ARID1B patients. Distal limbs anomalies are most marked in ARID1A patients and least in SMARCB1 patients. Numbers are small however, and larger series are needed to confirm this correlation.


Asunto(s)
Anomalías Múltiples/diagnóstico , Anomalías Múltiples/genética , Cara/anomalías , Estudios de Asociación Genética , Deformidades Congénitas de la Mano/diagnóstico , Deformidades Congénitas de la Mano/genética , Discapacidad Intelectual/diagnóstico , Discapacidad Intelectual/genética , Micrognatismo/diagnóstico , Micrognatismo/genética , Complejos Multiproteicos/genética , Cuello/anomalías , Proteínas Cromosómicas no Histona/genética , ADN Helicasas/genética , Proteínas de Unión al ADN/genética , Exones , Facies , Orden Génico , Humanos , Proteínas Nucleares/genética , Fenotipo , Proteína SMARCB1 , Factores de Transcripción/genética
14.
Am J Hum Genet ; 87(1): 146-53, 2010 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-20598277

RESUMEN

Terminal osseous dysplasia (TOD) is an X-linked dominant male-lethal disease characterized by skeletal dysplasia of the limbs, pigmentary defects of the skin, and recurrent digital fibroma with onset in female infancy. After performing X-exome capture and sequencing, we identified a mutation at the last nucleotide of exon 31 of the FLNA gene as the most likely cause of the disease. The variant c.5217G>A was found in six unrelated cases (three families and three sporadic cases) and was not found in 400 control X chromosomes, pilot data from the 1000 Genomes Project, or the FLNA gene variant database. In the families, the variant segregated with the disease, and it was transmitted four times from a mildly affected mother to a more seriously affected daughter. We show that, because of nonrandom X chromosome inactivation, the mutant allele was not expressed in patient fibroblasts. RNA expression of the mutant allele was detected only in cultured fibroma cells obtained from 15-year-old surgically removed material. The variant activates a cryptic splice site, removing the last 48 nucleotides from exon 31. At the protein level, this results in a loss of 16 amino acids (p.Val1724_Thr1739del), predicted to remove a sequence at the surface of filamin repeat 15. Our data show that TOD is caused by this single recurrent mutation in the FLNA gene.


Asunto(s)
Enfermedades del Desarrollo Óseo/genética , Neoplasias Óseas/genética , Proteínas Contráctiles/genética , Fibroma/genética , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Proteínas de Microfilamentos/genética , Trastornos de la Pigmentación/genética , Adulto , Enfermedades del Desarrollo Óseo/complicaciones , Neoplasias Óseas/complicaciones , Preescolar , Femenino , Fibroma/complicaciones , Filaminas , Estudios de Asociación Genética , Humanos , Lactante , Recién Nacido , Masculino , Mutación , Recurrencia Local de Neoplasia , Linaje , Trastornos de la Pigmentación/complicaciones , Pigmentación de la Piel
15.
Am J Med Genet A ; 161A(5): 973-6, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23494849

RESUMEN

Chudley-McCullough syndrome (CMS) is characterized by profound sensorineural hearing loss and brain anomalies. Variants in GPSM2 have recently been reported as a cause of CMS by Doherty et al. In this study we have performed exome sequencing of three CMS patients from two unrelated families from the same Dutch village. We identified one homozygous frameshift GPSM2 variants c.1473delG in all patients. We show that this variant arises from a shared, rare haplotype. Since the c.1473delG variant was found in Mennonite settlers, it likely originated in Europe. To support DNA diagnostics, we established an LOVD database for GPSM2 containing all variants thus far described.


Asunto(s)
Agenesia del Cuerpo Calloso/genética , Quistes Aracnoideos/genética , Exoma/genética , Pérdida Auditiva Sensorineural/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Adolescente , Adulto , Preescolar , Europa (Continente) , Femenino , Efecto Fundador , Humanos , Lactante , Masculino , Mutación , Países Bajos , América del Norte , Linaje , Análisis de Secuencia de ADN
16.
J Med Genet ; 49(9): 598-600, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22972950

RESUMEN

BACKGROUND: Gene-targeting studies in mice have revealed a key role for EVI1 protein in the maintenance of haematopoiesis, and argue in favour of a gene dosage requirement for EVI1 in the regulation of haematopoietic stem cells. Furthermore, a fusion transcript of MDS1 and EVI1 has been shown to play a critical role in maintaining long-term haematopoietic stem cell function. Inappropriate activation of EVI1, usually due to a translocation, is a well known and unfavourable change in several myeloid malignancies. It is not known whether haploinsufficiency of any of these genes leads to disease in humans. METHODS: SNP array analysis in a patient with in a neonate with congenital thrombocytopenia and subsequent aplastic anaemia RESULTS AND CONCLUSIONS: We report for the first time a constitutional deletion encompassing the EVI1 and MDS1 genes in a human, and argue that the deletion causes congenital bone marrow failure in this patient.


Asunto(s)
Anemia Aplásica/genética , Cromosomas Humanos Par 3/genética , Proteínas de Unión al ADN/genética , Proto-Oncogenes/genética , Eliminación de Secuencia/genética , Trombocitopenia/congénito , Trombocitopenia/genética , Factores de Transcripción/genética , Adulto , Anemia Aplásica/complicaciones , Femenino , Humanos , Lactante , Recién Nacido , Proteína del Locus del Complejo MDS1 y EV11 , Masculino , Polimorfismo de Nucleótido Simple/genética , Embarazo
17.
Eur J Med Genet ; 66(7): 104773, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37120077

RESUMEN

This paper focuses on genetic counselling in Phelan-McDermid syndrome (PMS), a rare neurodevelopmental disorder caused by a deletion 22q13.3 or a pathogenic variant in SHANK3. It is one of a series of papers written by the European PMS consortium as a consensus guideline. We reviewed the available literature based on pre-set questions to formulate recommendations on counselling, diagnostic work-up and surveillance for tumours related to ring chromosome 22. All recommendations were approved by the consortium, which consists of professionals and patient representatives, using a voting procedure. PMS can only rarely be diagnosed based solely on clinical features and requires confirmation via genetic testing. In most cases, the family will be referred to a clinical geneticist for counselling after the genetic diagnosis has been made. Family members will be investigated and, if indicated, the chance of recurrence discussed with them. Most individuals with PMS have a de novo deletion or a pathogenic variant of SHANK3. The 22q13.3 deletion can be a simple deletion, a ring chromosome 22, or the result of a parental balanced chromosomal anomaly, influencing the risk of recurrence. Individuals with a ring chromosome 22 have an increased risk of NF2-related schwannomatosis (formerly neurofibromatosis type 2) and atypical teratoid rhabdoid tumours, which are associated with the tumour-suppressor genes NF2 and SMARCB1, respectively, and both genes are located on chromosome 22. The prevalence of PMS due to a ring chromosome 22 is estimated to be 10-20%. The risk of developing a tumour in an individual with a ring chromosome 22 can be calculated as 2-4%. However, those individuals who do develop tumours often have multiple. We recommend referring all individuals with PMS and their parents to a clinical geneticist or a comparably experienced medical specialist for genetic counselling, further genetic testing, follow-up and discussion of prenatal diagnostic testing in subsequent pregnancies. We also recommend karyotyping to diagnose or exclude a ring chromosome 22 in individuals with a deletion 22q13.3 detected by molecular tests. If a ring chromosome 22 is found, we recommend discussing personalised follow-up for NF2-related tumours and specifically cerebral imaging between the age of 14 and 16 years.


Asunto(s)
Trastornos de los Cromosomas , Neurofibromatosis 2 , Cromosomas en Anillo , Adolescente , Femenino , Humanos , Embarazo , Deleción Cromosómica , Trastornos de los Cromosomas/genética , Cromosomas Humanos Par 22/genética , Consejo , Neurofibromatosis 2/genética
19.
Hum Mutat ; 31(10): 1125-33, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20672378

RESUMEN

Keratosis Follicularis Spinulosa Decalvans (KFSD) is a rare genetic disorder characterized by development of hyperkeratotic follicular papules on the scalp followed by progressive alopecia of the scalp, eyelashes, and eyebrows. Associated eye findings include photophobia in childhood and corneal dystrophy. Due to the genetic and clinical heterogeneity of similar disorders, a definitive diagnosis of KFSD is often challenging. Toward identification of the causative gene we reanalyzed a large Dutch KFSD family. SNP arrays (1 M) redefined the locus to a 2.9-Mb region at Xp22.12-Xp22.11. Screening of all 14 genes in the candidate region identified MBTPS2 as the candidate gene carrying a c.1523A>G (p.Asn508Ser) missense mutation. The variant was also identified in two unrelated X-linked KFSD families and cosegregated with KFSD in all families. In symptomatic female carriers, skewed X-inactivation of the normal allele matched with increased severity of symptoms. MBTPS2 is required for cleavage of sterol regulatory element-binding proteins (SREBPs). In vitro functional expression studies of the c.1523A>G mutation showed that sterol responsiveness was reduced by half. Other missense mutations in MBTPS2 have recently been identified in patients with IFAP syndrome. We postulate that both phenotypes are in the spectrum of one genetic disorder with a partially overlapping phenotype.


Asunto(s)
Enfermedad de Darier/genética , Metaloendopeptidasas/genética , Mutación Missense , Cromosomas Humanos X/genética , Enfermedad de Darier/diagnóstico , Enfermedad de Darier/patología , Femenino , Humanos , Masculino , Países Bajos , Análisis de Secuencia por Matrices de Oligonucleótidos , Linaje , Polimorfismo de Nucleótido Simple
20.
Hum Mutat ; 30(6): 860-6, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19418555

RESUMEN

Transition of the double-stranded DNA molecule to its two single strands, DNA denaturation or melting, has been used for many years to study DNA structure and composition. Recent technological advances have improved the potential of this technology, especially to detect variants in the DNA sequence. Sensitivity and specificity were increased significantly by the development of so-called saturating DNA dyes and by improvements in the instrumentation to measure the melting behavior (improved temperature precision combined with increased measurements per time unit and drop in temperature). Melt analysis using these new instruments has been designated high-resolution melting curve analysis (HRM or HRMA). Based on its ease of use, simplicity, flexibility, low cost, nondestructive nature, superb sensitivity, and specificity, HRMA is quickly becoming the tool of choice to screen patients for pathogenic variants. Here we will briefly discuss the latest developments in HRMA and review in particular other applications that have thus far received less attention, including presequence screening, single nucleotide polymorphism (SNP) typing, methylation analysis, quantification (copy number variants and mosaicism), an alternative to gel-electrophoresis and clone characterization. Together, these diverse applications make HRMA a multipurpose technology and a standard tool that should be present in any laboratory studying nucleic acids.


Asunto(s)
Análisis Mutacional de ADN/métodos , Desnaturalización de Ácido Nucleico , Metilación de ADN , Dosificación de Gen , Humanos , Mosaicismo , Polimorfismo de Nucleótido Simple/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA