RESUMEN
Renal disease has a high incidence in cats, and some evidence implicates dietary P as well. To investigate this further, two studies in healthy adult cats were conducted. Study 1 (36 weeks) included forty-eight cats, stratified to control or test diets providing 1·2 or 4·8 g/1000 kcal (4184 kJ) P (0 or approximately 3·6 g/1000 kcal (4184 kJ) inorganic P, Ca:P 1·2, 0·6). Study 2 (29 weeks) included fifty cats, stratified to control or test diets, providing 1·3 or 3·6 g/1000 kcal (4184 kJ) P (0 or approximately 1·5 g/1000 kcal (4184 kJ) inorganic P, Ca:P 1·2, 0·9). Health markers, glomerular filtration rate (GFR) and mineral balance were measured regularly, with abdominal ultrasound. Study 1 was halted after 4 weeks as the test group GFR reduced by 0·4 (95 % CI 0·3, 0·5) ml/min per kg, and ultrasound revealed changes in renal echogenicity. In study 2, at week 28, no change in mean GFR was observed (P >0·05); however, altered renal echogenicity was detected in 36 % of test cats. In agreement with previous studies, feeding a diet with Ca:P <1·0, a high total and inorganic P inclusion resulted in loss of renal function and changes in echogenicity suggestive of renal pathology. Feeding a diet containing lower total and inorganic P with Ca:P close to 1·0 led to more subtle structural changes in a third of test cats; however, nephrolithiasis occurred in both diet groups, complicating data interpretation. We conclude that the no observed adverse effects level for total dietary P in adult cats is lower than 3·6 g/1000 kcal (4184 kJ), however the effect of inorganic P sources and Ca:P require further investigation.
RESUMEN
Although the implications of long-term high Ca intakes have been well documented in growing dogs, the health consequences of Ca excess in adult dogs remain to be established. To evaluate the impact of feeding a diet containing 7·1 g/4184 kJ (1000 kcal) Ca for 40 weeks on Ca balance and health parameters in adult dogs, eighteen neutered adult Labrador Retrievers, (nine males and nine females) aged 2·5-7·4 years were randomised to one of two customised diets for 40 weeks. The diets were manufactured according to similar nutritional specifications, with the exception of Ca and P levels. The diets provided 1·7 and 7·1 g/4184 kJ (1000 kcal) (200(SD26) and 881(SD145) mg/kg body weight0·75 per d, respectively) Ca, respectively, with a Ca:P ratio of 1·6. Clinical examinations, ultrasound scans, radiographs, health parameters, metabolic effects and mineral balance were recorded at baseline and at 8-week intervals throughout the study. Dogs in both groups were healthy throughout the trial without evidence of urinary, renal or orthopaedic disease. In addition, there were no clinically relevant changes in any of the measures made in either group (all P>0·05). The high-Ca diet resulted in a 3·3-fold increase in faecal Ca excretion (P0·05). Ca intakes of up to 7·1 g/4184 kJ (1000 kcal) are well tolerated over a period of 40 weeks, with no adverse effects that could be attributed to the diet or to a high mineral intake.
Asunto(s)
Alimentación Animal/análisis , Calcio de la Dieta/administración & dosificación , Calcio/metabolismo , Dieta/veterinaria , Perros/fisiología , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Digestión , Femenino , Riñón/fisiología , Masculino , Fósforo DietéticoRESUMEN
AIM: Inflammatory periodontal disease is widespread in dogs. This study evaluated site-specific changes in the canine gingival crevicular fluid (GCF) proteome during longitudinal progression from very mild gingivitis to mild periodontitis. Periodontitis diagnosis in dogs requires general anaesthesia with associated risks and costs; our ultimate aim was to develop a periodontitis diagnostic for application in conscious dogs. The objective of this work was to identify potential biomarkers of periodontal disease progression in dogs. MATERIAL AND METHODS: Gingival crevicular fluid was sampled from a total of 10 teeth in eight dogs at three different stages of health/disease and samples prepared for quantitative mass spectrometry (data available via ProteomeXchange; identifier PXD003337). A univariate mixed model analysis determined significantly altered proteins between health states and six were evaluated by ELISA. RESULTS: Four hundred and six proteins were identified with 84 present in all samples. The prevalence of 40 proteins was found to be significantly changed in periodontitis relative to gingivitis. ELISA measurements confirmed that haptoglobin was significantly increased. CONCLUSIONS: This study demonstrates for the first time that proteins detected by mass spectrometry have potential to identify novel biomarkers for canine periodontal disease. Further work is required to validate additional biomarkers for a periodontitis diagnostic.
Asunto(s)
Gingivitis , Periodontitis , Animales , Modelos Animales de Enfermedad , Perros , Líquido del Surco Gingival , Pérdida de la Inserción Periodontal , ProteomaRESUMEN
Nucleotides, short-chain fructooligosaccharides (scFOS), xylooligosaccharides (XOS), ß-carotene and vitamin E are reported to enhance immune function; however, the evidence of this in cats is limited. The aim of this study was to determine the immunomodulatory effects of these ingredients in kittens. Forty domestic short hair kittens were designated in litters to control or test diet for 28 weeks. Test diet was fortified with 0.33 g nucleotides, 0.45 g scFOS, 0.3 g XOS, 0.7 mg ß-carotene and 66.5 mg vitamin E per 100 g diet. Kittens were vaccinated against feline parvovirus (FPV) and herpesvirus (FHV) at 10, 14 and 18 weeks. Kittens remained healthy, with no measured evidence of adverse health. Serum FPV and FHV antibody titres were significantly (p < 0.05) higher in the test diet group at week 23 and 27, respectively. A significantly (p < 0.05) higher proportion of test diet group kittens demonstrated an adequate response (four-fold titre increase) to FHV vaccination and a significantly (p < 0.05) higher proportion reached a protective antibody titre for FHV. Serum IgM was significantly (p < 0.05) higher in the test diet group. The test diet group demonstrated a stronger humoral immune response to vaccination, suggesting the diet supports immune defence, enabling a greater response to immune challenges.
RESUMEN
The implications of long-term high calcium (Ca) intake are well documented in growing dogs and in adult dogs of large breed size, however, the consequences on other breeds and breed sizes are yet to be determined. Eighteen neutered adult beagles, nine males and nine females aged 1.4-4.4 years, were randomized to control or test diets providing in gâ4184 kJ-1 (1000 kcal-1): 1.44 and 7.19 total Ca balanced with 1.05 and 4.25 total phosphorus, respectively, for 40 weeks. Health parameters, ultrasound scans, radiographs, glomerular filtration rate, and mineral balance were measured at eight-week intervals. All dogs remained healthy with no measured evidence of orthopedic, urinary, or renal disease. The test diet resulted in a 5.2 fold increase in fecal Ca excretion. Apparent Ca digestibility (%) and Ca balance (g/d) did not significantly (p > 0.05) change from baseline in the test diet group, although dogs displayed a positive Ca balance (maximum at week 8, 1.11 g/d with 95% CI (0.41, 1.80)) before a neutral Ca balance was restored at week 32. Despite an initial positive Ca balance, we can conclude that no measurable adverse health effects were observed as a result of the test diet fed in this study in beagles over a period of 40 weeks.
RESUMEN
BACKGROUND: Dietary protein and phosphorus (P) restriction is the mainstay for nutritional management of chronic kidney disease (CKD). However, adequate restriction levels for cats with early CKD remain unclear. OBJECTIVES: To investigate responses in cats with early CKD to varying dietary protein, P, and calcium (Ca) : P ratio. ANIMALS: Nineteen research colony cats with International Renal Interest Society stages 1-2 CKD. METHODS: In an opportunistic longitudinal case study, cats were fed a low protein (59 g/Mcal), low P (0.84 g/Mcal) dry diet (LP-LP; Ca : P = 1.9) for 18 months and later transitioned onto a moderate protein (76-98 g/Mcal), moderate P (1.4-1.6 g/Mcal) dry-wet diet regimen (MP-MP; Ca : P = 1.4-1.6) for 22 months. Fold-changes in serum creatinine, total Ca (tCa) and P (primary outcomes) and fibroblast growth factor 23 (FGF23) were assessed by linear-mixed models. RESULTS: While feeding LP-LP, mean serum creatinine decreased (0.87-fold, 95% confidence interval [CI] 0.81, 0.93, P < .001) to within reference range after 6 months, while increases in total Ca (tCa; 1.16-fold, 95% CI 1.11, 1.22, P < .001) and FGF23 (2.72-fold, 95% CI 1.72, 4.31, P < .001), but not in P (1.03-fold, 95% CI 0.945, 1.124, P = .94), were observed after 17 months. On MP-MP, mean creatinine, tCa and P remained within reference ranges and did not significantly change (P = .11, P = .98, and P = 1, respectively), while FGF23 significantly decreased (0.58-fold, 95% CI 0.36, 0.95, P = .02) after 22 months. CONCLUSIONS AND CLINICAL IMPORTANCE: Cats with early CKD developed hypercalcemia after long-term feeding of a highly P-restricted diet. Increasing dietary P and reducing Ca : P ratio maintained renal markers, while improving Ca-P balance. Cats with early CKD could benefit from moderately protein- and P-restricted diets.