Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Am J Hum Genet ; 109(8): 1484-1499, 2022 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-35896117

RESUMEN

Disorders of the autosomal dominant polycystic kidney disease (ADPKD) spectrum are characterized by the development of kidney cysts and progressive kidney function decline. PKD1 and PKD2, encoding polycystin (PC)1 and 2, are the two major genes associated with ADPKD; other genes include IFT140, GANAB, DNAJB11, and ALG9. Genetic testing remains inconclusive in ∼7% of the families. We performed whole-exome sequencing in a large multiplex genetically unresolved (GUR) family affected by ADPKD-like symptoms and identified a monoallelic frameshift variant (c.703_704delCA) in ALG5. ALG5 encodes an endoplasmic-reticulum-resident enzyme required for addition of glucose molecules to the assembling N-glycan precursors. To identify additional families, we screened a cohort of 1,213 families with ADPKD-like and/or autosomal-dominant tubulointerstitial kidney diseases (ADTKD), GUR (n = 137) or naive to genetic testing (n = 1,076), by targeted massively parallel sequencing, and we accessed Genomics England 100,000 Genomes Project data. Four additional families with pathogenic variants in ALG5 were identified. Clinical presentation was consistent in the 23 affected members, with non-enlarged cystic kidneys and few or no liver cysts; 8 subjects reached end-stage kidney disease from 62 to 91 years of age. We demonstrate that ALG5 haploinsufficiency is sufficient to alter the synthesis of the N-glycan chain in renal epithelial cells. We also show that ALG5 is required for PC1 maturation and membrane and ciliary localization and that heterozygous loss of ALG5 affects PC1 maturation. Overall, our results indicate that monoallelic variants of ALG5 lead to a disorder of the ADPKD-spectrum characterized by multiple small kidney cysts, progressive interstitial fibrosis, and kidney function decline.


Asunto(s)
Quistes , Riñón Poliquístico Autosómico Dominante , Quistes/genética , Fibrosis , Humanos , Riñón/patología , Mutación/genética , Riñón Poliquístico Autosómico Dominante/genética , Riñón Poliquístico Autosómico Dominante/patología , Secuenciación del Exoma
2.
Am J Hum Genet ; 109(1): 136-156, 2022 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-34890546

RESUMEN

Autosomal dominant polycystic kidney disease (ADPKD), characterized by progressive cyst formation/expansion, results in enlarged kidneys and often end stage kidney disease. ADPKD is genetically heterogeneous; PKD1 and PKD2 are the common loci (∼78% and ∼15% of families) and GANAB, DNAJB11, and ALG9 are minor genes. PKD is a ciliary-associated disease, a ciliopathy, and many syndromic ciliopathies have a PKD phenotype. In a multi-cohort/-site collaboration, we screened ADPKD-diagnosed families that were naive to genetic testing (n = 834) or for whom no PKD1 and PKD2 pathogenic variants had been identified (n = 381) with a PKD targeted next-generation sequencing panel (tNGS; n = 1,186) or whole-exome sequencing (WES; n = 29). We identified monoallelic IFT140 loss-of-function (LoF) variants in 12 multiplex families and 26 singletons (1.9% of naive families). IFT140 is a core component of the intraflagellar transport-complex A, responsible for retrograde ciliary trafficking and ciliary entry of membrane proteins; bi-allelic IFT140 variants cause the syndromic ciliopathy, short-rib thoracic dysplasia (SRTD9). The distinctive monoallelic phenotype is mild PKD with large cysts, limited kidney insufficiency, and few liver cysts. Analyses of the cystic kidney disease probands of Genomics England 100K showed that 2.1% had IFT140 LoF variants. Analysis of the UK Biobank cystic kidney disease group showed probands with IFT140 LoF variants as the third most common group, after PKD1 and PKD2. The proximity of IFT140 to PKD1 (∼0.5 Mb) in 16p13.3 can cause diagnostic confusion, and PKD1 variants could modify the IFT140 phenotype. Importantly, our studies link a ciliary structural protein to the ADPKD spectrum.


Asunto(s)
Alelos , Proteínas Portadoras , Predisposición Genética a la Enfermedad , Mutación , Riñón Poliquístico Autosómico Dominante/genética , Adulto , Anciano , Sustitución de Aminoácidos , Bancos de Muestras Biológicas , Cilios/patología , Variaciones en el Número de Copia de ADN , Femenino , Estudios de Asociación Genética , Pruebas Genéticas , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Pruebas de Función Renal , Masculino , Persona de Mediana Edad , Linaje , Fenotipo , Riñón Poliquístico Autosómico Dominante/diagnóstico , Análisis de Secuencia de ADN , Reino Unido , Secuenciación del Exoma
3.
Gastroenterology ; 166(5): 902-914, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38101549

RESUMEN

BACKGROUND & AIMS: Autosomal dominant polycystic liver disease is a rare condition with a female preponderance, based mainly on pathogenic variants in 2 genes, PRKCSH and SEC63. Clinically, autosomal dominant polycystic liver disease is characterized by vast heterogeneity, ranging from asymptomatic to highly symptomatic hepatomegaly. To date, little is known about the prediction of disease progression at early stages, hindering clinical management, genetic counseling, and the design of randomized controlled trials. To improve disease prognostication, we built a consortium of European and US centers to recruit the largest cohort of patients with PRKCSH and SEC63 liver disease. METHODS: We analyzed an international multicenter cohort of 265 patients with autosomal dominant polycystic liver disease harboring pathogenic variants in PRKCSH or SEC63 for genotype-phenotype correlations, including normalized age-adjusted total liver volumes and polycystic liver disease-related hospitalization (liver event) as primary clinical end points. RESULTS: Classifying individual total liver volumes into predefined progression groups yielded predictive risk discrimination for future liver events independent of sex and underlying genetic defects. In addition, disease severity, defined by age at first liver event, was considerably more pronounced in female patients and patients with PRKCSH variants than in those with SEC63 variants. A newly developed sex-gene score was effective in distinguishing mild, moderate, and severe disease, in addition to imaging-based prognostication. CONCLUSIONS: Both imaging and clinical genetic scoring have the potential to inform patients about the risk of developing symptomatic disease throughout their lives. The combination of female sex, germline PRKCSH alteration, and rapid total liver volume progression is associated with the greatest odds of polycystic liver disease-related hospitalization.


Asunto(s)
Hospitalización , Hepatopatías , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Proteínas de Unión al Calcio , Quistes/genética , Quistes/diagnóstico por imagen , Quistes/patología , Progresión de la Enfermedad , Europa (Continente) , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Genotipo , Glucosidasas/genética , Hepatomegalia/genética , Hepatomegalia/diagnóstico por imagen , Hospitalización/estadística & datos numéricos , Hígado/patología , Hígado/diagnóstico por imagen , Hepatopatías/genética , Hepatopatías/patología , Hepatopatías/diagnóstico por imagen , Chaperonas Moleculares , Tamaño de los Órganos , Pronóstico , Medición de Riesgo , Factores de Riesgo , Proteínas de Unión al ARN , Índice de Severidad de la Enfermedad , Factores Sexuales , Estados Unidos/epidemiología
4.
Hum Mutat ; 43(3): 347-361, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35005812

RESUMEN

We report the screening of a large panel of genes in a series of 100 fetuses (98 families) affected with severe renal defects. Causative variants were identified in 22% of cases, greatly improving genetic counseling. The percentage of variants explaining the phenotype was different according to the type of phenotype. The highest diagnostic yield was found in cases affected with the ciliopathy-like phenotype (11/15 families and, in addition, a single heterozygous or a homozygous Class 3 variant in PKHD1 in three unrelated cases with autosomal recessive polycystic kidney disease). The lowest diagnostic yield was observed in cases with congenital anomalies of the kidney and urinary tract (9/78 families and, in addition, Class 3 variants in GREB1L in three unrelated cases with bilateral renal agenesis). Inheritance was autosomal recessive in nine genes (PKHD1, NPHP3, CEP290, TMEM67, DNAJB11, FRAS1, ACE, AGT, and AGTR1), and autosomal dominant in six genes (PKD1, PKD2, PAX2, EYA1, BICC1, and MYOCD). Finally, we developed an original approach of next-generation sequencing targeted RNA sequencing using the custom capture panel used for the sequencing of DNA, to validate one MYOCD heterozygous splicing variant identified in two male siblings with megabladder and inherited from their healthy mother.


Asunto(s)
Enfermedades Renales , Riñón Poliquístico Autosómico Dominante , Antígenos de Neoplasias , Proteínas de Ciclo Celular/genética , Proteínas del Citoesqueleto/genética , Femenino , Feto/anomalías , Secuenciación de Nucleótidos de Alto Rendimiento , Homocigoto , Humanos , Riñón/anomalías , Enfermedades Renales/congénito , Enfermedades Renales/diagnóstico , Enfermedades Renales/genética , Masculino , Mutación , Riñón Poliquístico Autosómico Dominante/genética
5.
Nephrol Dial Transplant ; 37(11): 2223-2233, 2022 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-35108395

RESUMEN

BACKGROUND: Autosomal dominant polycystic kidney disease (ADPKD) is associated with an increased risk for developing intracranial aneurysms (IAs). We aimed to evaluate the frequency of diagnosis of IAs in the cross-sectional, population-based, Genkyst cohort, to describe ADPKD-associated IAs and to analyse the risk factors associated with the occurrence of IAs in ADPKD patients. METHODS: A cross-sectional study was performed in 26 nephrology centres from the western part of France. All patients underwent genetic testing for PKD1/PKD2 and other cystogenes. RESULTS: Among the 2449 Genkyst participants, 114 (4.65%) had a previous diagnosis of ruptured or unruptured IAs at inclusion, and ∼47% of them had a positive familial history for IAs. Most aneurysms were small and saccular and located in the anterior circulation; 26.3% of the patients had multiple IAs. The cumulative probabilities of a previous diagnosis of IAs were 3.9%, 6.2% and 8.1% at 50, 60 and 70 years, respectively. While this risk appeared to be similar in male and female individuals <50 years, after that age, the risk continued to increase more markedly in female patients, reaching 10.8% versus 5.4% at 70 years. The diagnosis rate of IAs was >2-fold higher in PKD1 compared with PKD2, with no influence of PKD1 mutation type or location. In multivariate analysis, female sex, hypertension <35 years, smoking and PKD1 genotype were associated with an increased risk for diagnosis of IAs. CONCLUSIONS: This study presents epidemiological data reflecting real-life clinical practice. The increased risk for IAs in postmenopausal women suggests a possible protective role of oestrogen.


Asunto(s)
Aneurisma Intracraneal , Enfermedades Renales Poliquísticas , Riñón Poliquístico Autosómico Dominante , Humanos , Femenino , Masculino , Anciano , Aneurisma Intracraneal/complicaciones , Aneurisma Intracraneal/epidemiología , Riñón Poliquístico Autosómico Dominante/complicaciones , Riñón Poliquístico Autosómico Dominante/diagnóstico , Riñón Poliquístico Autosómico Dominante/epidemiología , Estudios Transversales , Enfermedades Renales Poliquísticas/complicaciones , Enfermedades Renales Poliquísticas/diagnóstico , Enfermedades Renales Poliquísticas/epidemiología , Factores de Riesgo , Estrógenos
6.
Am J Hum Genet ; 102(5): 832-844, 2018 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-29706351

RESUMEN

Autosomal-dominant polycystic kidney disease (ADPKD) is characterized by the progressive development of kidney cysts, often resulting in end-stage renal disease (ESRD). This disorder is genetically heterogeneous with ∼7% of families genetically unresolved. We performed whole-exome sequencing (WES) in two multiplex ADPKD-like pedigrees, and we analyzed a further 591 genetically unresolved, phenotypically similar families by targeted next-generation sequencing of 65 candidate genes. WES identified a DNAJB11 missense variant (p.Pro54Arg) in two family members presenting with non-enlarged polycystic kidneys and a frameshifting change (c.166_167insTT) in a second family with small renal and liver cysts. DNAJB11 is a co-factor of BiP, a key chaperone in the endoplasmic reticulum controlling folding, trafficking, and degradation of secreted and membrane proteins. Five additional multigenerational families carrying DNAJB11 mutations were identified by the targeted analysis. The clinical phenotype was consistent in the 23 affected members, with non-enlarged cystic kidneys that often evolved to kidney atrophy; 7 subjects reached ESRD from 59 to 89 years. The lack of kidney enlargement, histologically evident interstitial fibrosis in non-cystic parenchyma, and recurring episodes of gout (one family) suggested partial phenotypic overlap with autosomal-dominant tubulointerstitial diseases (ADTKD). Characterization of DNAJB11-null cells and kidney samples from affected individuals revealed a pathogenesis associated with maturation and trafficking defects involving the ADPKD protein, PC1, and ADTKD proteins, such as UMOD. DNAJB11-associated disease is a phenotypic hybrid of ADPKD and ADTKD, characterized by normal-sized cystic kidneys and progressive interstitial fibrosis resulting in late-onset ESRD.


Asunto(s)
Alelos , Proteínas del Choque Térmico HSP40/genética , Mutación/genética , Riñón Poliquístico Autosómico Dominante/genética , Adulto , Anciano , Anciano de 80 o más Años , Secuencia de Aminoácidos , Secuencia de Bases , Células Epiteliales/metabolismo , Familia , Femenino , Proteínas del Choque Térmico HSP40/química , Humanos , Asa de la Nefrona/patología , Masculino , Persona de Mediana Edad , Linaje , Riñón Poliquístico Autosómico Dominante/diagnóstico por imagen , Riñón Poliquístico Autosómico Dominante/patología , Canales Catiónicos TRPP/genética , Uromodulina/metabolismo , Secuenciación del Exoma , Adulto Joven
7.
Kidney Int ; 98(2): 476-487, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32631624

RESUMEN

Monoallelic mutations of DNAJB11 were recently described in seven pedigrees with atypical clinical presentations of autosomal dominant polycystic kidney disease. DNAJB11 encodes one of the main cofactors of the endoplasmic reticulum chaperon BiP, a heat-shock protein required for efficient protein folding and trafficking. Here we conducted an international collaborative study to better characterize the DNAJB11-associated phenotype. Thirteen different loss-of-function variants were identified in 20 new pedigrees (54 affected individuals) by targeted next-generation sequencing, whole-exome sequencing or whole-genome sequencing. Amongst the 77 patients (27 pedigrees) now in total reported, 32 reached end stage kidney disease (range, 55-89 years, median age 75); without a significant difference between males and females. While a majority of patients presented with non-enlarged polycystic kidneys, renal cysts were inconsistently identified in patients under age 45. Vascular phenotypes, including intracranial aneurysms, dilatation of the thoracic aorta and dissection of a carotid artery were present in four pedigrees. We accessed Genomics England 100,000 genomes project data, and identified pathogenic variants of DNAJB11 in nine of 3934 probands with various kidney and urinary tract disorders. The clinical diagnosis was cystic kidney disease for eight probands and nephrocalcinosis for one proband. No additional pathogenic variants likely explaining the kidney disease were identified. Using the publicly available GnomAD database, DNAJB11 genetic prevalence was calculated at 0.85/10.000 individuals. Thus, establishing a precise diagnosis in atypical cystic or interstitial kidney disease is crucial, with important implications in terms of follow-up, genetic counseling, prognostic evaluation, therapeutic management, and for selection of living kidney donors.


Asunto(s)
Riñón Poliquístico Autosómico Dominante , Canales Catiónicos TRPP , Anciano , Inglaterra , Femenino , Proteínas del Choque Térmico HSP40 , Humanos , Masculino , Persona de Mediana Edad , Mutación , Riñón Poliquístico Autosómico Dominante/diagnóstico , Riñón Poliquístico Autosómico Dominante/epidemiología , Riñón Poliquístico Autosómico Dominante/genética , Prevalencia , Pronóstico , Canales Catiónicos TRPP/genética
8.
Pediatr Nephrol ; 35(6): 1033-1040, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32040628

RESUMEN

BACKGROUND: While typical ultrasound patterns of ciliopathy-related cystic kidney diseases have been described in children, ultrasound findings can overlap between different diseases and atypical patterns exist. In this study, we assessed the presence of the "salt and pepper" pattern in different renal ciliopathies and looked for additional ultrasound features. METHODS: This single-center, retrospective study included all patients with a molecular-proven diagnosis of renal ciliopathy, referred to our center between 2007 and 2017. Images from the first and follow-up ultrasound exams were reviewed. Basic ultrasound features were grouped into patterns and compared to genetic diagnoses. The "salt and pepper" aspect was described as enlarged kidneys with heterogeneous, increased parenchymal echogenicity. RESULTS: A total of 41 children with 5 different renal ciliopathies were included (61% male; median age, 6 years [range, 3 days to 17 years]). The "salt and pepper" pattern was present in 14/15 patients with an autosomal recessive polycystic kidney disease (ARPKD). A similar pattern was found in 1/4 patients with an autosomal dominant polycystic kidney disease and in 1/11 patients with HNF1B mutation. Additional signs found were areas of cortical sparing, comet-tail artifacts, and color comet-tail artifacts. CONCLUSION: Although the "salt and pepper" ultrasound pattern is predominantly found in ARPKD, it may be detected in other ciliopathies. The color comet-tail artifact is an interesting sign when suspecting a renal ciliopathy in case of enlarged hyperechoic kidneys with no detectable microcysts on B-mode grayscale ultrasound.


Asunto(s)
Riñón Poliquístico Autosómico Dominante/patología , Adolescente , Niño , Preescolar , Bases de Datos Factuales , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Mutación , Riñón Poliquístico Autosómico Dominante/diagnóstico por imagen , Riñón Poliquístico Autosómico Dominante/genética , Estudios Retrospectivos , Ultrasonografía Doppler en Color
9.
Nucleic Acids Res ; 46(15): 7913-7923, 2018 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-29750258

RESUMEN

Variant interpretation is the key issue in molecular diagnosis. Spliceogenic variants exemplify this issue as each nucleotide variant can be deleterious via disruption or creation of splice site consensus sequences. Consequently, reliable in silico prediction of variant spliceogenicity would be a major improvement. Thanks to an international effort, a set of 395 variants studied at the mRNA level and occurring in 5' and 3' consensus regions (defined as the 11 and 14 bases surrounding the exon/intron junction, respectively) was collected for 11 different genes, including BRCA1, BRCA2, CFTR and RHD, and used to train and validate a new prediction protocol named Splicing Prediction in Consensus Elements (SPiCE). SPiCE combines in silico predictions from SpliceSiteFinder-like and MaxEntScan and uses logistic regression to define optimal decision thresholds. It revealed an unprecedented sensitivity and specificity of 99.5 and 95.2%, respectively, and the impact on splicing was correctly predicted for 98.8% of variants. We therefore propose SPiCE as the new tool for predicting variant spliceogenicity. It could be easily implemented in any diagnostic laboratory as a routine decision making tool to help geneticists to face the deluge of variants in the next-generation sequencing era. SPiCE is accessible at (https://sourceforge.net/projects/spicev2-1/).


Asunto(s)
Biología Computacional/métodos , Simulación por Computador , Variación Genética , Sitios de Empalme de ARN/genética , Empalme del ARN , Proteína BRCA1/genética , Proteína BRCA2/genética , Neoplasias de la Mama/diagnóstico , Neoplasias de la Mama/genética , Femenino , Humanos , Cooperación Internacional , Internet , Neoplasias Ováricas/diagnóstico , Neoplasias Ováricas/genética , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
10.
Hum Mutat ; 40(12): 2239-2246, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31350925

RESUMEN

Whole-exome/genome sequencing analyses lead to detect disease-causing variants that are unrelated to the initial clinical question. Irrespective of any actionable gene list, only pathogenic variants should be considered. The pathogenicity of 55 cystic fibrosis transmembrane conductance regulator (CFTR) variants of known various impacts was assessed by a group of experts by comparing data from specialized databases CFTR-France and CFTR2 with those of general clinical databases ClinVar and Human Gene Mutation Database (HGMD®) Professional and data aggregators VarSome and InterVar. The assessment of cystic fibrosis (CF) variants was correct with ClinVar and HGMD® Professional while less reliable with VarSome and InterVar. Conversely, the risk of overclassifying variants as CF-causing was up to 82% with HGMD® Professional. The concordance between data aggregators was only 50%. The use of general databases and aggregators is thus associated with a substantial risk of misclassifying variants. This evaluation may be extrapolated to other disease conditions and incites to remain cautious in interpreting and disclosing incidental findings.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Fibrosis Quística/genética , Mutación , Bases de Datos Genéticas , Predisposición Genética a la Enfermedad , Humanos , Hallazgos Incidentales , Secuenciación Completa del Genoma
12.
Am J Hum Genet ; 98(6): 1193-1207, 2016 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-27259053

RESUMEN

Autosomal-dominant polycystic kidney disease (ADPKD) is a common, progressive, adult-onset disease that is an important cause of end-stage renal disease (ESRD), which requires transplantation or dialysis. Mutations in PKD1 or PKD2 (∼85% and ∼15% of resolved cases, respectively) are the known causes of ADPKD. Extrarenal manifestations include an increased level of intracranial aneurysms and polycystic liver disease (PLD), which can be severe and associated with significant morbidity. Autosomal-dominant PLD (ADPLD) with no or very few renal cysts is a separate disorder caused by PRKCSH, SEC63, or LRP5 mutations. After screening, 7%-10% of ADPKD-affected and ∼50% of ADPLD-affected families were genetically unresolved (GUR), suggesting further genetic heterogeneity of both disorders. Whole-exome sequencing of six GUR ADPKD-affected families identified one with a missense mutation in GANAB, encoding glucosidase II subunit α (GIIα). Because PRKCSH encodes GIIß, GANAB is a strong ADPKD and ADPLD candidate gene. Sanger screening of 321 additional GUR families identified eight further likely mutations (six truncating), and a total of 20 affected individuals were identified in seven ADPKD- and two ADPLD-affected families. The phenotype was mild PKD and variable, including severe, PLD. Analysis of GANAB-null cells showed an absolute requirement of GIIα for maturation and surface and ciliary localization of the ADPKD proteins (PC1 and PC2), and reduced mature PC1 was seen in GANAB(+/-) cells. PC1 surface localization in GANAB(-/-) cells was rescued by wild-type, but not mutant, GIIα. Overall, we show that GANAB mutations cause ADPKD and ADPLD and that the cystogenesis is most likely driven by defects in PC1 maturation.


Asunto(s)
Quistes/genética , Hepatopatías/genética , Mutación/genética , Riñón Poliquístico Autosómico Dominante/genética , alfa-Glucosidasas/genética , Adulto , Anciano , Secuencia de Aminoácidos , Sistemas CRISPR-Cas , Células Cultivadas , Niño , Femenino , Técnica del Anticuerpo Fluorescente , Humanos , Inmunoprecipitación , Masculino , Microscopía Confocal , Persona de Mediana Edad , Linaje , Riñón Poliquístico Autosómico Dominante/patología , Homología de Secuencia de Aminoácido
13.
Prenat Diagn ; 39(11): 986-992, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31273809

RESUMEN

OBJECTIVE: Uniparental disomy (UPD) testing is currently recommended during pregnancy in fetuses carrying a balanced Robertsonian translocation (ROB) involving chromosome 14 or 15, both chromosomes containing imprinted genes. The overall risk that such a fetus presents a UPD has been previously estimated to be around ~0.6-0.8%. However, because UPD are rare events and this estimate has been calculated from a number of studies of limited size, we have reevaluated the risk of UPD in fetuses for whom one of the parents was known to carry a nonhomologous ROB (NHROB). METHOD: We focused our multicentric study on NHROB involving chromosome 14 and/or 15. A total of 1747 UPD testing were performed in fetuses during pregnancy for the presence of UPD(14) and/or UPD(15). RESULT: All fetuses were negative except one with a UPD(14) associated with a maternally inherited rob(13;14). CONCLUSION: Considering these data, the risk of UPD following prenatal diagnosis of an inherited ROB involving chromosome 14 and/or 15 could be estimated to be around 0.06%, far less than the previous estimation. Importantly, the risk of miscarriage following an invasive prenatal sampling is higher than the risk of UPD. Therefore, we do not recommend prenatal testing for UPD for these pregnancies and parents should be reassured.


Asunto(s)
Cromosomas Humanos Par 14 , Cromosomas Humanos Par 15 , Diagnóstico Prenatal , Translocación Genética , Disomía Uniparental , Adulto , Femenino , Humanos , Masculino , Embarazo , Estudios Retrospectivos , Medición de Riesgo
14.
BMC Genomics ; 19(1): 515, 2018 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-29986647

RESUMEN

BACKGROUND: Cis-regulatory elements control gene expression over large distances through the formation of chromatin loops, which allow contact between enhancers and gene promoters. Alterations in cis-acting regulatory systems could be linked to human genetic diseases. Here, we analyse the spatial organization of a large region spanning the polycystic kidney disease 2 (PKD2) gene, one of the genes responsible of autosomal dominant polycystic kidney disease (ADPKD). RESULTS: By using chromosome conformation capture carbon copy (5C) technology in primary human renal cyst epithelial cells, we identify novel contacts of the PKD2 promoter with chromatin regions, which display characteristics of regulatory elements. In parallel, by using functional analysis with a reporter assay, we demonstrate that three DNAse I hypersensitive sites regions are involved in the regulation of PKD2 gene expression. CONCLUSIONS: Finally, through alignment of CCCTC-binding factor (CTCF) sites, we suggest that these novel enhancer elements are brought to the PKD2 promoter by chromatin looping via the recruitment of CTCF.


Asunto(s)
Cromatina/metabolismo , Riñón Poliquístico Autosómico Dominante/genética , Canales Catiónicos TRPP/genética , Células A549 , Cromatina/química , Desoxirribonucleasa I/metabolismo , Elementos de Facilitación Genéticos , Células Epiteliales/citología , Células Epiteliales/metabolismo , Expresión Génica , Humanos , Riñón/citología , Riñón Poliquístico Autosómico Dominante/patología , Regiones Promotoras Genéticas , Canales Catiónicos TRPP/metabolismo
16.
Hum Mutat ; 38(10): 1297-1315, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28603918

RESUMEN

Most of the 2,000 variants identified in the CFTR (cystic fibrosis transmembrane regulator) gene are rare or private. Their interpretation is hampered by the lack of available data and resources, making patient care and genetic counseling challenging. We developed a patient-based database dedicated to the annotations of rare CFTR variants in the context of their cis- and trans-allelic combinations. Based on almost 30 years of experience of CFTR testing, CFTR-France (https://cftr.iurc.montp.inserm.fr/cftr) currently compiles 16,819 variant records from 4,615 individuals with cystic fibrosis (CF) or CFTR-RD (related disorders), fetuses with ultrasound bowel anomalies, newborns awaiting clinical diagnosis, and asymptomatic compound heterozygotes. For each of the 736 different variants reported in the database, patient characteristics and genetic information (other variations in cis or in trans) have been thoroughly checked by a dedicated curator. Combining updated clinical, epidemiological, in silico, or in vitro functional data helps to the interpretation of unclassified and the reassessment of misclassified variants. This comprehensive CFTR database is now an invaluable tool for diagnostic laboratories gathering information on rare variants, especially in the context of genetic counseling, prenatal and preimplantation genetic diagnosis. CFTR-France is thus highly complementary to the international database CFTR2 focused so far on the most common CF-causing alleles.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Fibrosis Quística/genética , Bases de Datos Genéticas , Mutación/genética , Alelos , Fibrosis Quística/diagnóstico , Francia , Asesoramiento Genético , Humanos , Recién Nacido , Fenotipo
17.
Am J Kidney Dis ; 70(4): 476-485, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28356211

RESUMEN

BACKGROUND: PKD2-related autosomal dominant polycystic kidney disease (ADPKD) is widely acknowledged to be of milder severity than PKD1-related disease, but population-based studies depicting the exact burden of the disease are lacking. We aimed to revisit PKD2 prevalence, clinical presentation, mutation spectrum, and prognosis through the Genkyst cohort. STUDY DESIGN: Case series, January 2010 to March 2016. SETTINGS & PARTICIPANTS: Genkyst study participants are individuals older than 18 years from 22 nephrology centers from western France with a diagnosis of ADPKD based on Pei criteria or at least 10 bilateral kidney cysts in the absence of a familial history. Publicly available whole-exome sequencing data from the ExAC database were used to provide an estimate of the genetic prevalence of the disease. OUTCOMES: Molecular analysis of PKD1 and PKD2 genes. Renal survival, age- and sex-adjusted estimated glomerular filtration rate. RESULTS: The Genkyst cohort included 293 patients with PKD2 mutations (203 pedigrees). PKD2 patients with a nephrology follow-up corresponded to 0.63 (95% CI, 0.54-0.72)/10,000 in Brittany, while PKD2 genetic prevalence was calculated at 1.64 (95% CI, 1.10-3.51)/10,000 inhabitants in the European population. Median age at diagnosis was 42 years. Flank pain was reported in 38.9%; macroscopic hematuria, in 31.1%; and cyst infections, in 15.3% of patients. At age 60 years, the cumulative probability of end-stage renal disease (ESRD) was 9.8% (95% CI, 5.2%-14.4%), whereas the probability of hypertension was 75.2% (95% CI, 68.5%-81.9%). Although there was no sex influence on renal survival, men had lower kidney function than women. Nontruncating mutations (n=36) were associated with higher age-adjusted estimated glomerular filtration rates. Among the 18 patients with more severe outcomes (ESRD before age 60), 44% had associated conditions or nephropathies likely to account for the early progression to ESRD. LIMITATIONS: Younger patients and patients presenting with milder forms of PKD2-related disease may not be diagnosed or referred to nephrology centers. CONCLUSIONS: Patients with PKD2-related ADPKD typically present with mild disease. In case of accelerated degradation of kidney function, a concomitant nephropathy should be ruled out.


Asunto(s)
Mutación , Riñón Poliquístico Autosómico Dominante/diagnóstico , Riñón Poliquístico Autosómico Dominante/genética , Canales Catiónicos TRPP/genética , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Estudios Transversales , Progresión de la Enfermedad , Femenino , Humanos , Masculino , Persona de Mediana Edad , Riñón Poliquístico Autosómico Dominante/complicaciones , Pronóstico , Insuficiencia Renal Crónica/etiología , Adulto Joven
19.
J Am Soc Nephrol ; 27(3): 722-9, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26139440

RESUMEN

Prenatal forms of autosomal dominant polycystic kidney disease (ADPKD) are rare but can be recurrent in some families, suggesting a common genetic modifying background. Few patients have been reported carrying, in addition to the familial mutation, variation(s) in polycystic kidney disease 1 (PKD1) or HNF1 homeobox B (HNF1B), inherited from the unaffected parent, or biallelic polycystic kidney and hepatic disease 1 (PKHD1) mutations. To assess the frequency of additional variations in PKD1, PKD2, HNF1B, and PKHD1 associated with the familial PKD mutation in early ADPKD, these four genes were screened in 42 patients with early ADPKD in 41 families. Two patients were associated with de novo PKD1 mutations. Forty patients occurred in 39 families with known ADPKD and were associated with PKD1 mutation in 36 families and with PKD2 mutation in two families (no mutation identified in one family). Additional PKD variation(s) (inherited from the unaffected parent when tested) were identified in 15 of 42 patients (37.2%), whereas these variations were observed in 25 of 174 (14.4%, P=0.001) patients with adult ADPKD. No HNF1B variations or PKHD1 biallelic mutations were identified. These results suggest that, at least in some patients, the severity of the cystic disease is inversely correlated with the level of polycystin 1 function.


Asunto(s)
Riñón Poliquístico Autosómico Dominante/genética , Canales Catiónicos TRPP/genética , Adolescente , Adulto , Anciano , Niño , Preescolar , Análisis Mutacional de ADN , Padre , Femenino , Factor Nuclear 1-beta del Hepatocito/genética , Humanos , Lactante , Fallo Renal Crónico/etiología , Masculino , Persona de Mediana Edad , Madres , Mutación , Linaje , Riñón Poliquístico Autosómico Dominante/complicaciones , Riñón Poliquístico Autosómico Dominante/diagnóstico por imagen , Receptores de Superficie Celular/genética , Estudios Retrospectivos , Ultrasonografía Prenatal , Adulto Joven
20.
J Am Soc Nephrol ; 27(3): 942-51, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26150605

RESUMEN

The course of autosomal dominant polycystic kidney disease (ADPKD) varies among individuals, with some reaching ESRD before 40 years of age and others never requiring RRT. In this study, we developed a prognostic model to predict renal outcomes in patients with ADPKD on the basis of genetic and clinical data. We conducted a cross-sectional study of 1341 patients from the Genkyst cohort and evaluated the influence of clinical and genetic factors on renal survival. Multivariate survival analysis identified four variables that were significantly associated with age at ESRD onset, and a scoring system from 0 to 9 was developed as follows: being male: 1 point; hypertension before 35 years of age: 2 points; first urologic event before 35 years of age: 2 points; PKD2 mutation: 0 points; nontruncating PKD1 mutation: 2 points; and truncating PKD1 mutation: 4 points. Three risk categories were subsequently defined as low risk (0-3 points), intermediate risk (4-6 points), and high risk (7-9 points) of progression to ESRD, with corresponding median ages for ESRD onset of 70.6, 56.9, and 49 years, respectively. Whereas a score ≤3 eliminates evolution to ESRD before 60 years of age with a negative predictive value of 81.4%, a score >6 forecasts ESRD onset before 60 years of age with a positive predictive value of 90.9%. This new prognostic score accurately predicts renal outcomes in patients with ADPKD and may enable the personalization of therapeutic management of ADPKD.


Asunto(s)
Algoritmos , Hipertensión/complicaciones , Fallo Renal Crónico/etiología , Riñón Poliquístico Autosómico Dominante/complicaciones , Riñón Poliquístico Autosómico Dominante/genética , Proteinuria/etiología , Adulto , Edad de Inicio , Anciano , Anciano de 80 o más Años , Área Bajo la Curva , Estudios Transversales , Progresión de la Enfermedad , Femenino , Genotipo , Tasa de Filtración Glomerular , Humanos , Masculino , Persona de Mediana Edad , Mutación , Riñón Poliquístico Autosómico Dominante/fisiopatología , Valor Predictivo de las Pruebas , Pronóstico , Modelos de Riesgos Proporcionales , Curva ROC , Factores de Riesgo , Factores Sexuales , Tasa de Supervivencia , Canales Catiónicos TRPP/genética , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA