Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Exp Bot ; 74(8): 2653-2666, 2023 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-36629279

RESUMEN

In a previous study we used asymmetric-flow field-flow fractionation to determine the polymer mass (Mw), gyration radius (Rw) and the polydispersity index of glutenin polymers (GPs) in wheat (Triticum aestivum). Here, using the same multi-location trials (4 years, 11 locations, and 192 cultivars), we report the factors that are associated with the conformation (Conf) of the polymers, which is the slope of Log(Rw) versus a function of Log(Mw). We found that Conf varied between 0.285 and 0.740, it had low broad-sense heritability (H2=16.8), and it was significantly influenced by the temperature occurring over the last month of grain filling. Higher temperatures were found to increase Rw and the compactness and sphericity of GPs. Alleles for both high- and low-molecular-weight glutenin subunits had a significant influence on the Conf value. Assuming a Gaussian distribution for Mw, the number of polymers present in wheat grains was computed for different kernel weights and protein concentrations, and it was found to exceed 1012 GPs per grain. Using atomic force microscopy and cryo-TEM, images of GPs were obtained for the first time. Under higher average temperature, GPs became larger and more spherical and consequently less prone to rapid hydrolysis. We propose some orientations that could be aimed at potentially reducing the impact of numerous GPs on people suffering from non-celiac gluten sensitivity.


Asunto(s)
Polímeros , Triticum , Triticum/genética , Triticum/metabolismo , Polímeros/metabolismo , Glútenes/genética , Glútenes/metabolismo , Grano Comestible/genética , Grano Comestible/metabolismo
2.
Foods ; 12(14)2023 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-37509785

RESUMEN

Wheat bran (WB) consists mainly of different histological cell layers (pericarp, testa, hyaline layer and aleurone). WB contains large quantities of non-starch polysaccharides (NSP), including arabinoxylans (AX) and ß-glucans. These dietary fibres have long been studied for their health effects on management and prevention of cardiovascular diseases, cholesterol, obesity, type-2 diabetes, and cancer. NSP benefits depend on their dose and molecular characteristics, including concentration, viscosity, molecular weight, and linked-polyphenols bioavailability. Given the positive health effects of WB, its incorporation in different food products is steadily increasing. However, the rheological, organoleptic and other problems associated with WB integration are numerous. Biological, physical, chemical and combined methods have been developed to optimise and modify NSP molecular characteristics. Most of these techniques aimed to potentially improve food processing, nutritional and health benefits. In this review, the physicochemical, molecular and functional properties of modified and unmodified WB are highlighted and explored. Up-to-date research findings from the clinical trials on mechanisms that WB have and their effects on health markers are critically reviewed. The review points out the lack of research using WB or purified WB fibre components in randomized, controlled clinical trials.

3.
Biology (Basel) ; 12(11)2023 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-37998015

RESUMEN

The efficiency of plant-growth-promoting rhizobacteria (PGPR) may not be consistently maintained under field conditions due to the influence of soil microbial communities. The present study aims to investigate their impact on three PGPR-based biofertilizers in wheat. We used the PGPR Paenibacillus sp. strain B2 (PB2), PB2 in co-inoculation with Arthrobacter agilis 4042 (Mix 2), or with Arthrobacter sp. SSM-004 and Microbacterium sp. SSM-001 (Mix 3). Inoculation of PB2, Mix 2, and Mix 3 into non-sterile field soil had a positive effect on root and aboveground dry biomass, depending on the wheat cultivar. The efficiency of the PGPR was further confirmed by the protection they provided against Mycosphaerella graminicola, the causal agent of Septoria leaf blotch disease. PB2 exhibited protection of ≥37.8%, while Mix 2 showed ≥47.9% protection in the four cultivars tested. These results suggest that the interactions between PGPR and native soil microbial communities are crucial for promoting wheat growth and protection. Additionally, high-throughput sequencing of microbial communities conducted 7 days after PGPR inoculations revealed no negative effects of PB2, Mix 2, and Mix 3 on the soil microbial community structure. Interestingly, the presence of Arthrobacter spp. appeared to mitigate the potential negative effect of PB2 on bacterial community and foster root colonization by other beneficial bacterial strains.

4.
Foods ; 12(11)2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-37297464

RESUMEN

Canola, Brassica napus L., is a major oilseed crop that has various uses in the food, feed, and industrial sectors. It is one of the most widely produced and consumed oilseeds in the world because of its high oil content and favorable fatty acid composition. Canola grains and their derived products, such as canola oil, meal, flour, and bakery products, have a high potential for food applications as they offer various nutritional and functional benefits. However, they are affected by various factors during the production cycle, post-harvest processing, and storage. These factors may compromise their quality and quantity by affecting their chemical composition, physical properties, functional characteristics, and sensory attributes. Therefore, it is important to optimize the production and processing methods of canola grains and their derived products to ensure their safety, stability, and suitability for different food applications. This literature review provides a comprehensive overview of how these factors affect the quality of canola grains and their derived products. The review also suggests future research needs and challenges for enhancing canola quality and its utilization in food.

5.
Foods ; 11(22)2022 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-36429143

RESUMEN

The wheat aleurone layer is, according to millers, the main bran fraction. It is a source of nutritionally valuable compounds, such as dietary fibres, proteins, minerals and vitamins, that may exhibit health benefits. Despite these advantages, the aleurone layer is scarce on the market, probably due to issues related to its extraction. Many processes exist with some patents, but a choice must be made between the quality and quantity of the resulting product. Nonetheless, its potential has been studied mainly in bread and pasta. While the nutritional benefits of aleurone-rich flour addition to bread agree, opposite results have been obtained concerning its effects on end-product characteristics (namely loaf volume and sensory characteristics), thus ensuing different acceptability responses from consumers. However, the observed negative effects of aleurone-rich flour on bread dough could be reduced by subjecting it to pre- or post-extracting treatments meant to either reduce the particle size of the aleurone's fibres or to change the conformation of its components.

6.
Foods ; 10(3)2021 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-33809297

RESUMEN

Ozone is recognized as an antimicrobial agent for vegetables storage, washing, and processing. This strong disinfectant is now being used in the food industry. In this review, the chemical and physical properties of ozone, its generation, and factors affecting ozone processing efficiency were explained as well as recent regulatory developments in the food industry. By then selecting three vegetables, we show that ozone avoids and controls biological growth on vegetables, keeping their attractive appearance and sensorial qualities, assuring nutritional characteristics' retention and maintaining and increasing the shelf-life. In liquid solution, ozone can be used to disinfect processing water and vegetables, and in gaseous form, ozone helps to sanitize and preserve vegetables during storage. The multifunctionality of ozone makes it a promising food processing agent. However, if ozone is improperly used, it causes some deleterious effects on products, such as losses in their sensory quality. For an effective and a safe use of ozone, specific treatment conditions should be determined for all kinds of vegetables. In a last step, we propose highlighting the different essential characteristics of ozone treatment in order to internationally harmonize the data relating to the treatments carried-out.

7.
Foods ; 10(2)2021 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-33498368

RESUMEN

This study investigates genetic and environmental variation in starch content and characteristics of 14 French bread cultivars. Understanding the impact of these factors on wheat quality is important for processors and especially bakers to maintain and meet the requirements of industrial specifications. Different traits were evaluated: starch content, distribution of starch granules, percentage of amylose and amylopectin and their molecular characteristics (weight-average molar mass, number-average molar mass, polydispersity and gyration radius). Genetic, environment and their interaction had significant effects on all parameters. The relative magnitude of variance attributed to growth conditions, for most traits, was substantially higher (21% to 95%) than that attributed to either genotype (2% to 73%) or G × E interaction (2% to 17%). The largest environmental contribution (95%) to total variance was found for starch dispersity. The highest genetic influence was found for the percentage of A-type starch granules. G × E interaction had relatively little influence (≈7%) on total phenotypic variance. All molecular characteristics were much more influenced by environment than the respective percentages of amylose and amylopectin were. This huge difference in variance between factors obviously revealed the importance of the effect of growing conditions on characteristics of cultivars.

8.
Foods ; 9(11)2020 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-33207650

RESUMEN

We characterized the molecular weight distribution of polymeric proteins (PP) of bread wheat grains using asymmetric flow field flow fractionation (A4F). The experiment, involving six environmental conditions and 130 cultivars, offered the opportunity to approach the phenotypic values of the polymer characteristics and their contribution of the rheological properties of flours and/or doughs. The contents of high-molecular-weight polymers (MW > 2 × 106 g·mol-1) that can be considered as "rheologically active polymers" (RAPP) for their major contribution to dough baking strength and mixing tolerance were mainly controlled by environmental factors. Under the influence of the growing conditions, at the cellular level, the redox status of non-protein free thiol, such as glutathione, is modified and leads to the formation of polymeric protein-bound glutathione conjugates (PPSSG). The accumulation of these conjugates reduces the formation of the RAPP by limiting the intermolecular interactions between PP in the grain during desiccation. This phenomenon is, therefore, potentially responsible for decreases in the technological properties of the wheat genotypes concerned. These first results invite us to continue our investigations to fully confirm this phenomenon, with emphasis on the behavior of wheat genotypes under various growing conditions.

9.
Foods ; 9(5)2020 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-32466243

RESUMEN

The polymers of wheat glutenins are studied here using asymmetric flow field flow fractionation (A4F). Molecular mass (Mw), gyration radius (Rw), and the polydispersity index (PI) of polymers were measured over a four-year, multi-local wheat trial in France. The experiment, involving 11 locations and 192 cultivars, offered the opportunity to approach the genetic and environmental factors associated with the phenotypic values of the polymer characteristics. These characteristics, which were all highly influenced by environmental factors, exhibited low broad-sense heritability coefficients and were not influenced by grain protein content and grain hardness. The 31 alleles encoding the glutenin subunits explained only 17.1, 25.4, and 16.8% of the phenotypic values of Mw, Rw, and PI, respectively. The climatic data revealed that a 3.5 °C increase between locations of the daily average temperature, during the last month of the grain development, caused an increase of more than 189%, 242%, and 434% of the Mw, Rw, and PI, respectively. These findings have to be considered in regard to possible consequences of global warming and health concerns assigned to gluten. It is suggested that the molecular characteristics of glutenins be measured today, especially for research addressing non-celiac gluten sensitivity (NCGS).

10.
Front Plant Sci ; 10: 587, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31143198

RESUMEN

Plant-growth-promoting rhizobacteria are known as potential biofertilizers and plant-resistance inducers. The current work aims to study the durability of the resistance induced as a response to the inoculation of wheat grains with Paenibacillus sp. strain B2 (PB2) and its influence by plant genotype, growth stage, and Mycosphaerella graminicola strain (the causal agent of Septoria tritici blotch or STB). The results of the plate-counting method showed that PB2 has high potential for wheat-root external colonization [>106 colony-forming unit (CFU)/g of root], and the quantitative real-time polymerase chain reaction (qPCR) analysis demonstrated its internal root-colonization capacity on all tested cultivars. However, the colonization seems to be dependent on wheat-growth stage. The durability of PB2-induced resistance (PB2-IR) was tested at the 3-leaf, tillering, and flag-leaf-growth stages. Additionally, the results showed that the PB2-IR is durable and able to protect the flag leaf, the most important leaf layer during grain fill. It conferred a high protection efficiency (55-94%) against four virulent strains of M. graminicola and over 11 wheat cultivars with different resistance levels to STB. Although, PB2-IR is dependent on M. graminicola strains, wheat genotypes and growth stages, its efficiency, under field conditions, at protecting the last wheat-leaf layers was not an influence. However, it showed 71-79% of protection and reached 81-94% in association with half of the recommended dose of Cherokee® fungicide. This may be explained using laboratory results by its direct impact on M. graminicola strains in these leaf layers and by the indirect reduction of the inoculum coming from leaves infected during the earlier growth stages. Gene expression results showed that PB2-IR is correlated to upregulation of genes involved in defense and cell rescue and a priming effect in the basal defense, jasmonic acid signaling, phenylpropanoids and phytoalexins, and reactive oxygen species gene markers. To conclude, PB2 induces a high and durable resistance against M. graminicola under controlled and field conditions. The PB2-IR is a pathogen strain and is plant-growth-stage and genotype dependent. These results highlight the importance of taking into consideration these factors so as to avoid losing the effectiveness of induced resistance under field conditions.

11.
Protein Sci ; 12(1): 34-43, 2003 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-12493826

RESUMEN

High molecular weight glutenin subunits (HMW-GS) are of a particular interest because of their biomechanical properties, which are important in many food systems such as breadmaking. Using fold-recognition techniques, we identified a fold compatible with the N-terminal domain of HMW-GS Dy10. This fold corresponds to the one adopted by proteins belonging to the cereal inhibitor family. Starting from three known protein structures of this family as templates, we built three models for the N-terminal domain of HMW-GS Dy10. We analyzed these models, and we propose a number of hypotheses regarding the N-terminal domain properties that can be tested experimentally. In particular, we discuss two possible ways of interaction between the N-terminal domains of the y-type HMW glutenin subunits. The first way consists in the creation of interchain disulfide bridges. According to our models, we propose two plausible scenarios: (1) the existence of an intrachain disulfide bridge between cysteines 22 and 44, leaving the three other cysteines free of engaging in intermolecular bonds; and (2) the creation of two intrachain disulfide bridges (involving cysteines 22-44 and cysteines 10-55), leaving a single cysteine (45) for creating an intermolecular disulfide bridge. We discuss these scenarios in relation to contradictory experimental results. The second way, although less likely, is nevertheless worth considering. There might exist a possibility for the N-terminal domain of Dy10, Nt-Dy10, to create oligomers, because homologous cereal inhibitor proteins are known to exist as monomers, homodimers, and heterooligomers. We also discuss, in relation to the function of the cereal inhibitor proteins, the possibility that this N-terminal domain has retained similar inhibitory functions.


Asunto(s)
Glútenes/análogos & derivados , Glútenes/química , Triticum/química , Secuencia de Aminoácidos , Sitios de Unión , Simulación por Computador , Cisteína/química , Dimerización , Disulfuros/química , Modelos Moleculares , Datos de Secuencia Molecular , Peso Molecular , Conformación Proteica , Estructura Terciaria de Proteína , Subunidades de Proteína/química , Homología de Secuencia de Aminoácido , Inhibidores de Tripsina/genética , alfa-Amilasas/genética
12.
Appl Spectrosc ; 68(7): 697-711, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25014836

RESUMEN

In excitation-emission fluorescence spectroscopy, the simultaneous quantitative prediction and qualitative resolution of mixtures of fluorophores using chemometrics is a major challenge because of the scattering and reabsorption effects (turbidity) presented mainly in biomaterials. The measured fluorescence spectra are distorted by multiple scattering and reabsorption events in the surrounding medium, thereby diminishing the performance of the commonly used three-way resolution methods such as parallel factor (PARAFAC) analysis or multivariate curve resolution-alternating least squares (MCR-ALS). In this work we show that spectral loadings and concentration profiles from model mixtures provided using PARAFAC and MCR-ALS are severely distorted by reabsorption and scattering phenomena, although both models fit rather well the experimental data in terms of percentage of the explained variance. The method to correct the fluorescence excitation-emission matrix (EEM) consisted in measuring the optical properties (absorption parameter µa , scattering parameter µs, and anisotropy factor g) of samples and calculating the corresponding transfer function by means of the Monte Carlo simulation method. By applying this transfer function to the measured EEM, it was possible to compensate for reabsorption and scattering effects and to restore the ideal EEM, i.e., the EEM that is due only to fluorophores, without distortions from the absorbers and scatterers that are present. The PARAFAC and MCR-ALS decomposition of the resulting ideal EEMs provided spectral loadings and concentration profiles that matched the true profiles.


Asunto(s)
Colorantes Fluorescentes/análisis , Espectrometría de Fluorescencia/métodos , Absorción de Radiación , Algoritmos , Anisotropía , Simulación por Computador , Emulsiones/química , Eosina Amarillenta-(YS)/análisis , Fluoresceína/análisis , Análisis de los Mínimos Cuadrados , Método de Montecarlo , Fosfolípidos/química , Quinolinas/química , Rodaminas/análisis , Dispersión de Radiación , Soluciones , Aceite de Soja/química , Espectrometría de Fluorescencia/instrumentación
13.
J Exp Bot ; 57(10): 2165-72, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16720611

RESUMEN

Plants contain several genes encoding thioredoxin h. In cereals, type-h thioredoxins are abundant in developing and germinating grains, but the mechanism regulating the expression of these genes and their specific function is poorly known. The cloning of three full-length cDNAs encoding thioredoxin h, stated Trxh1, Trxh2 and Trxh3, from wheat (Triticum aestivum cv. Soissons) seeds is described here. TRXh2 and TRXh3 deduced proteins show high identity between them and with other thioredoxins h previously described from wheat, and contain exclusively the two Cys residues forming part of the active site. By contrast, TRXh1 shows a lower level of identity and contains an additional Cys residue. The three wheat thioredoxins were expressed in E. coli and their activity was demonstrated using both the DTT-dependent insulin assay and a coupled assay with recombinant NTR from wheat. Site-directed mutagenesis showed that the additional Cys residue of TRXh1 has a low effect on its activity but is essential for dimerization. Specific expression of the three thioredoxin genes was analysed by real-time RT-PCR in developing and germinating seeds and seedlings under stressed and unstressed conditions. An increase of Trxh1, Trxh2, and Trxh3 transcripts was detected at the beginning of the desiccation phase during seed development. Early after imbibition, Trxh1, but not Trxh2 or Trxh3, transcripts showed a transient increase. Treatment of wheat seedlings with salt or hydrogen peroxide caused a differential pattern of expression of the three Trxh genes between and within tissues, hence suggesting specific functions for these thioredoxins during germination and early seedling growth.


Asunto(s)
Semillas/química , Tiorredoxinas/aislamiento & purificación , Triticum/química , Adaptación Fisiológica/fisiología , Secuencia de Aminoácidos , Análisis Mutacional de ADN , ADN Complementario/química , ADN Complementario/aislamiento & purificación , Escherichia coli/genética , Expresión Génica , Regulación de la Expresión Génica de las Plantas , Datos de Secuencia Molecular , Isoformas de Proteínas/química , Isoformas de Proteínas/aislamiento & purificación , Semillas/metabolismo , Tiorredoxina h , Tiorredoxinas/química , Triticum/genética , Triticum/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA