Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
EMBO J ; 29(13): 2114-25, 2010 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-20495530

RESUMEN

Wingless (Wg)/Wnt has been proposed to exert various functions as a morphogen depending on the levels of its signalling. Therefore, not just the concentration of Wg/Wnt, but also the responsiveness of Wg/Wnt-target cells to the ligand, must have a crucial function in controlling cellular outputs. Here, we show that a balance of ubiquitylation and deubiquitylation of the Wg/Wnt receptor Frizzled determines the cellular responsiveness to Wg/Wnt both in mammalian cells and in Drosophila, and that the cell surface level of Frizzled is regulated by deubiquitylating enzyme UBPY/ubiquitin-specific protease 8 (USP8). Although ubiquitylated Frizzled underwent lysosomal trafficking and degradation, UBPY/USP8-dependent deubiquitylation led to recycling of Frizzled to the plasma membrane, thereby elevating its surface level. Importantly, a gain and loss of UBPY/USP8 function led to up- and down-regulation, respectively, of canonical Wg/Wnt signalling. These results unveil a novel mechanism that regulates the cellular responsiveness to Wg/Wnt by controlling the cell surface level of Frizzled.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila/embriología , Drosophila/metabolismo , Receptores Frizzled/metabolismo , Proteasas Ubiquitina-Específicas/metabolismo , Ubiquitinación , Proteína Wnt1/metabolismo , Animales , Línea Celular , Endocitosis , Regulación de la Expresión Génica , Humanos , Larva/metabolismo , Transporte de Proteínas , Ubiquitina Tiolesterasa/genética , Ubiquitina Tiolesterasa/metabolismo , Alas de Animales/embriología , Alas de Animales/metabolismo , Proteínas Wnt/metabolismo
2.
PLoS Genet ; 6(12): e1001254, 2010 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-21203496

RESUMEN

Glycosylation plays crucial regulatory roles in various biological processes such as development, immunity, and neural functions. For example, α1,3-fucosylation, the addition of a fucose moiety abundant in Drosophila neural cells, is essential for neural development, function, and behavior. However, it remains largely unknown how neural-specific α1,3-fucosylation is regulated. In the present study, we searched for genes involved in the glycosylation of a neural-specific protein using a Drosophila RNAi library. We obtained 109 genes affecting glycosylation that clustered into nine functional groups. Among them, members of the RNA regulation group were enriched by a secondary screen that identified genes specifically regulating α1,3-fucosylation. Further analyses revealed that an RNA-binding protein, second mitotic wave missing (Swm), upregulates expression of the neural-specific glycosyltransferase FucTA and facilitates its mRNA export from the nucleus. This first large-scale genetic screen for glycosylation-related genes has revealed novel regulation of fucTA mRNA in neural cells.


Asunto(s)
Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Genómica , Animales , Drosophila melanogaster/genética , Glicosilación , Sistema Nervioso/metabolismo , Especificidad de Órganos
3.
Cell Struct Funct ; 37(1): 55-63, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22251795

RESUMEN

The Golgi apparatus is an intracellular organelle playing central roles in post-translational modification and in the secretion of membrane and secretory proteins. These proteins are synthesized in the endoplasmic reticulum (ER) and transported to the cis-, medial-and trans-cisternae of the Golgi. While trafficking through the Golgi, proteins are sequentially modified with glycan moieties by different glycosyltransferases. Therefore, it is important to analyze the glycosylation function of the Golgi at the level of cisternae. Markers widely used for cis-, medial- and trans-cisternae/trans Golgi network (TGN) in Drosophila are GM130, 120 kDa and Syntaxin16 (Syx16); however the anti-120 kDa antibody is no longer available. In the present study, Drosophila Golgi complex-localized glycoprotein-1 (dGLG1) was identified as an antigen recognized by the anti-120 kDa antibody. A monoclonal anti-dGLG1 antibody suitable for immunohistochemistry was raised in rat. Using these markers, the localization of glycosyltransferases and nucleotide-sugar transporters (NSTs) was studied at the cisternal level. Results showed that glycosyltransferases and NSTs involved in the same sugar modification are localized to the same cisternae. Furthermore, valuable functional information was obtained on the localization of novel NSTs with as yet incompletely characterized biochemical properties.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Aparato de Golgi/metabolismo , Receptores de Factores de Crecimiento de Fibroblastos/biosíntesis , Sialoglicoproteínas/biosíntesis , Animales , Anticuerpos Monoclonales , Transporte Biológico , Biomarcadores , Células Cultivadas , Drosophila melanogaster/citología , Glicosilación , Glicosiltransferasas/metabolismo , Aparato de Golgi/ultraestructura , Inmunohistoquímica , Procesamiento Proteico-Postraduccional , Ratas , Receptores de Factores de Crecimiento de Fibroblastos/inmunología , Sialoglicoproteínas/inmunología
4.
J Neurogenet ; 26(1): 53-63, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22417167

RESUMEN

Abstract: the distinct localization of membrane proteins with regard to cell polarity is crucial for the structure and function of various organs in multicellular organisms. However, the molecules and mechanisms that regulate protein localization to particular subcellular domains are still largely unknown. To identify the genes involved in regulation of protein localization, the authors performed a large-scale screen using a Drosophila RNA interference (RNAi) library, by which Drosophila genes could be knocked down in a tissue- and stage-specific manner. Drosophila photoreceptor cells have a morphologically distinct apicobasal polarity, along which Chaoptin (Chp), a glycosylphosphatidylinositol (GPI)-anchored membrane protein, and the Na (+) , K(+) -ATPase are localized to the apical and basolateral domains, respectively. By examining the subcellular localization of these proteins, the authors identified 106 genes whose knockdown resulted in mislocalization of Chp and Na(+) , K(+) -ATPase. Gene ontology analysis revealed that the knockdown of proteasome components resulted in mislocalization of Chp to the basolateral plasma membrane. These results suggest that the proteasome is involved, directly or indirectly, in selective localization of Chp to the apical plasma membrane of Drosophila photoreceptor cells.


Asunto(s)
Polaridad Celular/genética , Proteínas de Drosophila/metabolismo , Glicoproteínas de Membrana/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Animales , Bases de Datos Genéticas , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Genómica , Glicoproteínas de Membrana/genética , Complejo de la Endopetidasa Proteasomal/genética , Interferencia de ARN , Fracciones Subcelulares/metabolismo
5.
J Neurosci ; 30(32): 10703-19, 2010 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-20702701

RESUMEN

Recent studies have demonstrated protective roles for autophagy in various neurodegenerative disorders, including the polyglutamine diseases; however, the role of autophagy in retinal degeneration has remained unclear. Accumulation of activated rhodopsin in some Drosophila mutants leads to retinal degeneration, and although it is known that activated rhodopsin is degraded in endosomal pathways in normal photoreceptor cells, the contribution of autophagy to rhodopsin regulation has remained elusive. This study reveals that activated rhodopsin is degraded by autophagy in collaboration with endosomal pathways to prevent retinal degeneration. Light-dependent retinal degeneration in the Drosophila visual system is caused by the knockdown or mutation of autophagy-essential components, such as autophagy-related protein 7 and 8 (atg-7/atg-8), or genes essential for PE (phosphatidylethanolamine) biogenesis and autophagosome formation, including Phosphatidylserine decarboxylase (Psd) and CDP-ethanolamine:diacylglycerol ethanolaminephosphotransferase (Ept). The knockdown of atg-7/8 or Psd/Ept produced an increase in the amount of rhodopsin localized to Rab7-positive late endosomes. This rhodopsin accumulation, followed by retinal degeneration, was suppressed by overexpression of Rab7, which accelerated the endosomal degradation pathway. These results indicate a degree of cross talk between the autophagic and endosomal/lysosomal pathways. Importantly, a reduction in rhodopsin levels rescued Psd knockdown-induced retinal degeneration. Additionally, the Psd knockdown-induced retinal degeneration phenotype was enhanced by Ppt1 inactivation, which causes infantile neuronal ceroid lipofuscinosis, implying that autophagy plays a significant role in its pathogenesis. Collectively, the current data reveal that autophagy suppresses light-dependent retinal degeneration in collaboration with the endosomal degradation pathway and that rhodopsin is a key substrate for autophagic degradation in this context.


Asunto(s)
Autofagia/fisiología , Células Fotorreceptoras de Invertebrados/metabolismo , Degeneración Retiniana/prevención & control , Rodopsina/metabolismo , Animales , Animales Modificados Genéticamente , Modelos Animales de Enfermedad , Drosophila , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Endosomas/metabolismo , Endosomas/ultraestructura , Regulación de la Expresión Génica/genética , Regulación de la Expresión Génica/fisiología , Proteínas Fluorescentes Verdes/genética , Etiquetado Corte-Fin in Situ/métodos , Larva , Luz/efectos adversos , Lisosomas/metabolismo , Lisosomas/ultraestructura , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Microscopía Electrónica de Transmisión/métodos , Microscopía Inmunoelectrónica/métodos , Mutación/genética , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Células Fotorreceptoras de Invertebrados/ultraestructura , Interferencia de ARN/fisiología , Degeneración Retiniana/etiología , Degeneración Retiniana/genética , Rodopsina/genética , Estadísticas no Paramétricas , Tioléster Hidrolasas , Factores de Tiempo , Proteínas de Unión al GTP rab/metabolismo , Proteínas de Unión a GTP rab7
6.
Genetics ; 162(4): 1775-89, 2002 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-12524348

RESUMEN

In an effort to uncover genetic components underlying the courtship behavior of Drosophila melanogaster, we have characterized a novel gene, lingerer (lig), mutations of which result in abnormal copulation. Males carrying a hypomorphic mutation in lig fail to withdraw their genitalia upon termination of copulation, but display no overt abnormalities in their genitalia. A severe reduction in the dosage of the lig gene causes repeated attempted copulations but no successful copulations. Complete loss of lig function results in lethality during early pupal stages. lig is localized to polytene segment 44A on the second chromosome and encodes three alternatively spliced transcripts that generate two types of 150-kD proteins, Lig-A and Lig-B, differing only at the C terminus. Lig proteins show no similarity to known proteins. However, a set of homologous proteins in mammals suggest that Drosophila Lig belongs to a family of proteins that share five highly conserved domains. Lig is a cytoplasmic protein expressed in the central nervous system (CNS), imaginal discs, and gonads. Lig-A expression is selectively reduced in lig mutants and the ubiquitous supply of this protein at the beginning of metamorphosis restores the copulatory defects of the lig mutant. We propose that lig may act in the nervous system to mediate the control of copulatory organs during courtship.


Asunto(s)
Copulación/fisiología , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/fisiología , Genes de Insecto , Secuencia de Aminoácidos , Animales , Animales Modificados Genéticamente , Secuencia de Bases , Clonación Molecular , ADN Complementario/genética , Proteínas de Drosophila/fisiología , Drosophila melanogaster/crecimiento & desarrollo , Exones , Femenino , Regulación del Desarrollo de la Expresión Génica , Intrones , Masculino , Datos de Secuencia Molecular , Mutación , Fenotipo , Homología de Secuencia de Aminoácido
7.
PLoS One ; 4(10): e7306, 2009 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-19798413

RESUMEN

The class III phosphatidylinositol-3 kinase (PI3K (III)) regulates intracellular vesicular transport at multiple steps through the production of phosphatidylinositol-3-phosphate (PI(3)P). While the localization of proteins at distinct membrane domains are likely regulated in different ways, the roles of PI3K (III) and its effectors have not been extensively investigated in a polarized cell during tissue development. In this study, we examined in vivo functions of PI3K (III) and its effector candidate Rabenosyn-5 (Rbsn-5) in Drosophila wing primordial cells, which are polarized along the apical-basal axis. Knockdown of the PI3K (III) subunit Vps15 resulted in an accumulation of the apical junctional proteins DE-cadherin and Flamingo and also the basal membrane protein beta-integrin in intracellular vesicles. By contrast, knockdown of PI3K (III) increased lateral membrane-localized Fasciclin III (Fas III). Importantly, loss-of-function mutation of Rbsn-5 recapitulated the aberrant localization phenotypes of beta-integrin and Fas III, but not those of DE-cadherin and Flamingo. These results suggest that PI3K (III) differentially regulates localization of proteins at distinct membrane domains and that Rbsn-5 mediates only a part of the PI3K (III)-dependent processes.


Asunto(s)
Membrana Celular/metabolismo , Proteínas de Drosophila/metabolismo , Regulación del Desarrollo de la Expresión Génica , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Alas de Animales/metabolismo , Animales , Animales Modificados Genéticamente , Cadherinas/metabolismo , Drosophila , Drosophila melanogaster/metabolismo , Endocitosis , Lisosomas/metabolismo , Mutación , Fenotipo , Estructura Terciaria de Proteína
8.
Science ; 323(5922): 1740-3, 2009 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-19325118

RESUMEN

Temperature affects the physiology, behavior, and evolution of organisms. We conducted mutagenesis and screens for mutants with altered temperature preference in Drosophila melanogaster and identified a cryophilic (cold-seeking) mutant, named atsugari (atu). Reduced expression of the Drosophila ortholog of dystroglycan (DmDG) induced tolerance to cold as well as preference for the low temperature. A sustained increase in mitochondrial oxidative metabolism caused by the reduced expression of DmDG accounted for the cryophilic phenotype of the atu mutant. Although most ectothermic animals do not use metabolically produced heat to regulate body temperature, our results indicate that their thermoregulatory behavior is closely linked to rates of mitochondrial oxidative metabolism and that a mutation in a single gene can induce a sustained change in energy homeostasis and the thermal responses.


Asunto(s)
Frío , Proteínas de Drosophila/fisiología , Drosophila melanogaster/fisiología , Distroglicanos/fisiología , Metabolismo Energético , Adenosina Trifosfato/metabolismo , Animales , Animales Modificados Genéticamente , Regulación de la Temperatura Corporal , Calcio/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Distroglicanos/genética , Homeostasis , Mitocondrias/metabolismo , Proteínas Mutantes , Mutación , Consumo de Oxígeno , Fenotipo , Complejo Piruvato Deshidrogenasa/metabolismo , Temperatura
9.
Proc Natl Acad Sci U S A ; 102(38): 13467-72, 2005 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-16174741

RESUMEN

A striking variety of glycosylation occur in the Golgi complex in a protein-specific manner, but how this diversity and specificity are achieved remains unclear. Here we show that stacked fragments (units) of the Golgi complex dispersed in Drosophila imaginal disk cells are functionally diverse. The UDP-sugar transporter FRINGE-CONNECTION (FRC) is localized to a subset of the Golgi units distinct from those harboring SULFATELESS (SFL), which modifies glucosaminoglycans (GAGs), and from those harboring the protease RHOMBOID (RHO), which processes the glycoprotein SPITZ (SPI). Whereas the glycosylation and function of NOTCH are affected in imaginal disks of frc mutants, those of SPI and of GAG core proteins are not, even though FRC transports a broad range of glycosylation substrates, suggesting that Golgi units containing FRC and those containing SFL or RHO are functionally separable. Distinct Golgi units containing FRC and RHO in embryos could also be separated biochemically by immunoisolation techniques. We also show that Tn-antigen glycan is localized only in a subset of the Golgi units distributed basally in a polarized cell. We propose that the different localizations among distinct Golgi units of molecules involved in glycosylation underlie the diversity of glycan modification.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila/embriología , Aparato de Golgi/metabolismo , Polisacáridos/metabolismo , Procesamiento Proteico-Postraduccional/fisiología , Animales , Proteínas de Drosophila/genética , Glicosilación , Transporte de Proteínas/fisiología
10.
Arch Insect Biochem Physiol ; 54(2): 77-94, 2003 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-14518006

RESUMEN

Mutations in the ken and barbie locus are accompanied by the malformation of terminalia in adult Drosophila. Male and female genitalia often remain inside the body, and the same portions of genitalia and analia are missing in a fraction of homozygous flies. Rotated and/or duplicated terminalia are also observed. Terminalia phenotypes are enhanced by mutations in the gap gene tailless, the homeobox gene caudal, and the decapentaplegic gene that encodes a TGFbeta-like morphogen. The ken and barbie gene encodes a protein with three CCHH-type zinc finger motifs that are conserved in several transcription factors such as Krüppel and BCL-6. All defects in ken and barbie mutants are fully rescued by the expression of a wild-type genomic construct, which establishes the causality between phenotypes and the gene.


Asunto(s)
Proteínas de Unión al ADN/genética , Drosophila/crecimiento & desarrollo , Drosophila/genética , Genitales/crecimiento & desarrollo , Factores de Transcripción/genética , Dedos de Zinc/genética , Acetil-CoA C-Acetiltransferasa/biosíntesis , Acetil-CoA C-Acetiltransferasa/genética , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Proteínas de Unión al ADN/química , Drosophila/anatomía & histología , Drosophila/embriología , Femenino , Regulación del Desarrollo de la Expresión Génica/genética , Genes/genética , Masculino , Datos de Secuencia Molecular , ARN Mensajero/análisis , ARN Mensajero/biosíntesis , Homología de Secuencia de Aminoácido , Diferenciación Sexual/genética , Factores de Transcripción/química , beta-Galactosidasa/biosíntesis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA