Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
J Chem Phys ; 158(12): 124310, 2023 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-37003742

RESUMEN

In this work, we study the heat capacity contribution of a rigid water molecule encapsulated in C60 by performing six-dimensional eigenstate calculations with the inclusion of its quantized rotational and translational degrees of freedom. Two confinement model potentials are considered: in the first, confinement is described using distributed pairwise Lennard-Jones interactions, while in the second, the water molecule is trapped within an eccentric but isotropic 3D harmonic effective confinement potential [Wespiser et al., J. Chem. Phys. 156, 074304 (2022)]. Contributions to the heat capacity from both the ortho and para nuclear spin isomers of water are considered to enable the effects of their interconversion to be assessed. By including a symmetry-breaking quadrupolar potential energy term in the Hamiltonian, we can reproduce the experimentally observed Schottky anomaly at ∼2 K [Suzuki et al., J. Phys. Chem. Lett. 10, 1306 (2019)]. Furthermore, our calculations predict a second Schottky anomaly at ∼0.1 K resulting from the H configuration, a different orientational arrangement of the fullerene cages in crystalline solid C60. Contributions from the H configuration to CV also explain the second peak observed at ∼7 K in the experimentally measured heat capacity.

2.
J Phys Chem A ; 126(15): 2353-2360, 2022 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-35414177

RESUMEN

Under atmospheric conditions, NO2 is in equilibrium with its dimers, N2O4, which can exist in the form of constitutional isomers and stereoisomers whose relative stabilities and reactivities are still being debated. Experimental limitations facing the spectroscopic characterization of the isomers of N2O4 prevent us from determining their relative contributions to reaction mechanisms possibly causing discrepancies in the reported reaction orders and rates. Using reflection-absorption infrared spectroscopy, molecular beam deposition, and matrix isolation techniques, it is shown that the relative abundances of NO2 and its dimers can be controlled by heating or cooling the deposited gas. The comparison of spectra acquired from samples prepared using molecular beam deposition with those obtained using tube dosing deposition demonstrates how the N2O4 isomer distributions are sensitive to details of the experimental conditions and sample preparation protocols. These observations not only provide a better understanding of a possible source for the disagreements found in the literature, but also a methodology to control and quantify the chemical speciation in NO2 vapors in terms of the relative abundances of NO2 and of the various isomers of N2O4.

3.
J Chem Phys ; 156(7): 074304, 2022 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-35183072

RESUMEN

Confinement effects on the ro-translational (RT) dynamics of water, trapped in rare gas matrices or within endofullerenes (i.e., H2O@C60), can be experimentally assessed using rotationally resolved far-infrared, or mid-infrared, spectroscopy [Putaud et al., J. Chem. Phys. 156, 074305 (2022) (Paper II)]. The confined rotor model is used here to reveal how the quantized rotational and frustrated translational energy levels of confined water interact and mix by way of the confinement-induced rotation-translation coupling (RTC). An eccentric but otherwise isotropic 3D harmonic effective potential is used to account for confinement effects, thereby allowing the dependence of the magnitude of the RTC on the topology of the model confinement potential, the resulting intricate mixing schemes, and their impact on the RT energy levels to be examined in detail. The confined rotor model thus provides a convenient framework to investigate the matrix and isotope effects on the RT dynamics of water under extreme confinement probed spectroscopically, thereby potentially providing insight into the mechanisms and rates for ortho-H2O ↔ para-H2O nuclear spin isomer interconversion in confined water.

4.
J Chem Phys ; 152(7): 074202, 2020 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-32087646

RESUMEN

The spectroscopic detection of molecules adsorbed onto ice surfaces at coverages similar to those encountered under typical environmental conditions requires high surface selectivity and sensitivity that few techniques can afford. An experimental methodology allowing a significant enhancement in the absorbance from adsorbed molecules is demonstrated herein. It exploits Electric Field Standing Wave (EFSW) effects intrinsic to grazing incidence Reflection-Absorption Infrared (RAIR) spectroscopy, where film thickness dependent optical interferences occur between the multiple reflections of the IR beam at the film-vacuum and the substrate-film interfaces. In this case study, CH4 is used as a probe molecule and is deposited on a 20 ML coverage dense amorphous solid water film adsorbed onto solid Ar underlayers of various thicknesses. We observe that, at thicknesses where destructive interferences coincide with the absorption features from the CH stretching and HCH bending vibrational modes of methane, their intensity increases by a factor ranging from 10 to 25. Simulations of the RAIR spectra of the composite stratified films using a classical optics model reproduce the Ar underlayer coverage dependent enhancements of the absorbance features from CH4 adsorbed onto the ice surface. They also reveal that the enhancements occur when the square modulus of the total electric field at the film's surface reaches its minimum value. Exploiting the EFSW effect allows the limit of detection to be reduced to a coverage of (0.2 ± 0.2) ML CH4, which opens up interesting perspectives for spectroscopic studies of heterogeneous atmospheric chemistry at coverages that are more representative of those found in the natural environment.

5.
J Phys Chem A ; 123(42): 9234-9239, 2019 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-31577429

RESUMEN

Magnetic focusing of a molecular beam formed from a rotationally cooled supersonic jet of H2O seeded in argon is shown to yield water vapor highly enriched in the ortho-H2O nuclear spin isomer (NSI). Rotationally resolved resonance-enhanced multiphoton ionization time-of-flight mass spectrometry demonstrates that this methodology enables the preparation of a beam of water molecules enriched to >98% in the ortho-H2O NSI, that is, having an ortho-to-para ratio in excess of 50:1. The flux and quantum-state purity achieved through the methodology described herein could enable heterogeneous chemistry applications including the preparation of nuclear spin-polarized water adlayers, making nuclear magnetic resonance investigations amenable to surface science studies, as well as laboratory astrophysics investigations of NSI interconversion mechanisms and rates in ice and at its surface.

6.
J Phys Chem A ; 121(8): 1571-1576, 2017 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-28157310

RESUMEN

The mechanism for interconversion between the nuclear spin isomers (NSI) of H2O remains shrouded in uncertainties. The temperature dependence displayed by NSI interconversion rates for H2O isolated in an argon matrix provides evidence that confinement effects are responsible for the dramatic increase in their kinetics with respect to the gas phase, providing new pathways for o-H2O↔p-H2O conversion in endohedral compounds. This reveals intramolecular aspects of the interconversion mechanism which may improve methodologies for the separation and storage of NSI en route to applications ranging from magnetic resonance spectroscopy and imaging to interpretations of spin temperatures in the interstellar medium.

7.
J Phys Chem A ; 119(10): 1996-2005, 2015 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-25671500

RESUMEN

Heterogeneous nitrate photolysis is the trigger for many chemical processes occurring in the polar boundary layer and is widely believed to occur in a quasi-liquid layer (QLL) at the surface of ice. The dipole-forbidden character of the electronic transition relevant to boundary layer atmospheric chemistry and the small photolysis/photoproduct yields in ice (and in water) may confer a significant enhancement and interfacial specificity to this important photochemical reaction at the surface of ice. Using amorphous solid water films at cryogenic temperatures as models for the disordered interstitial air-ice interface within the snowpack suppresses the diffusive uptake kinetics, thereby prolonging the residence time of nitrate anions at the surface of ice. This approach allows their slow heterogeneous photolysis kinetics to be studied, providing the first direct evidence that nitrates adsorbed onto the first molecular layer at the surface of ice are photolyzed more effectively than those dissolved within the bulk. Vibrational spectroscopy allows the ∼3-fold enhancement in photolysis rates to be correlated with the nitrates' distorted intramolecular geometry, thereby hinting at the role played by the greater chemical heterogeneity in their solvation environment at the surface of ice than that in the bulk. A simple 1D kinetic model suggests (1) that a 3(6)-fold enhancement in photolysis rate for nitrates adsorbed onto the ice surface could increase the photochemical NO2 emissions from a 5(8) nm thick photochemically active interfacial layer by 30(60)%, and (2) that 25(40)% of the NO2 photochemical emissions to the snowpack interstitial air are released from the topmost molecularly thin surface layer on ice. These findings may provide a new paradigm for heterogeneous (photo)chemistry at temperatures below those required for a QLL to form at the ice surface.

8.
J Phys Chem A ; 116(49): 12112-22, 2012 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-23130955

RESUMEN

A detailed spectroscopic study of HNO(3):H(2)O binary amorphous mixtures, and of the adsorption of HNO(3) onto ice, is reported. Using a classical optics model, the extent of intermixing and of ionic dissociation of adsorbed HNO(3), which forms a strong acid with liquid water, is determined as a function of HNO(3) coverage and temperature. Even at temperatures as low as 45 K, where intermixing is limited to at most a few molecular layers at the interface, ionic dissociation of adsorbed HNO(3) is observed to be extensive. While some amount of molecularly adsorbed HNO(3) is observed at the surface of ice at 45 K, its ionic dissociation occurs irreversibly upon heating the ice substrate to 120 K. The molecularly adsorbed state of HNO(3) is not restored upon cooling, suggesting HNO(3) is a metastable entity at the surface of ice. Therefore, despite ionic dissociation of HNO(3) being thermodynamically favored, it appears to be kinetically inhibited at the surface of amorphous solid water at temperatures below 120 K.


Asunto(s)
Hielo , Ácido Nítrico/química , Adsorción , Espectroscopía Infrarroja por Transformada de Fourier , Propiedades de Superficie , Termodinámica
9.
Macromol Rapid Commun ; 32(13): 972-6, 2011 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-21618320

RESUMEN

We demonstrate a strategy for using an optical stimulus to trigger the dissociation of block copolymer (BCP) vesicles in aqueous solution. The BCP, comprising hydrophilic poly(ethylene oxide) (PEO) and a block of poly(methacrylic acid) bearing a number of spiropyran methacrylate comonomer units (P(MAA-co-SPMA)), was allowed to firstly self-assemble into large vesicles in aqueous solution at pH=3 with protonated carboxylic acid groups, and then become kinetically stable at pH=8 due to the glassy vesicle membrane of P(MAA-co-SPMA). Fast dissociation of the vesicles was achieved through a cascade of events triggered by UV-induced isomerization from neutral spiropyran to charged merocyanine in the membrane.


Asunto(s)
Polímeros/química , Interacciones Hidrofóbicas e Hidrofílicas/efectos de la radiación , Isomerismo , Cinética , Procesos Fotoquímicos , Polímeros/síntesis química , Solubilidad/efectos de la radiación , Rayos Ultravioleta
10.
J Phys Chem A ; 115(23): 6002-14, 2011 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-21506593

RESUMEN

Molecular beams were used to grow amorphous and crystalline H(2)O films and to dose HCl upon their surface. The adsorption state of HCl on the ice films was probed with infrared spectroscopy. A Zundel continuum is clearly observed for exposures up to the saturation HCl coverage on ice upon which features centered near 2530, 2120, 1760, and 1220 cm(-1) are superimposed. The band centered near 2530 cm(-1) is observed only when the HCl adlayer is in direct contact with amorphous solid water or crystalline ice films at temperatures as low as 20 K. The spectral signature of solid HCl (amorphous or crystalline) was identified only after saturation of the adsorption sites in the first layer or when HCl was deposited onto a rare gas spacer layer between the HCl and ice film. These observations strongly support conclusions from recent electron spectroscopy work that reported ionic dissociation of the first layer HCl adsorbed onto the ice surface is spontaneous.

11.
J Chem Phys ; 134(11): 114522, 2011 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-21428647

RESUMEN

The coupling mechanism between the HF stretching and H(2)O bending vibrations observed in the infrared spectra of HF:H(2)O binary amorphous solids is analyzed using a simple cluster model. The intermolecular vibrational coupling derived from electrostatic potentials is one order of magnitude smaller, and of the opposite sign, than that obtained from electronic structure-based potentials. This highlights the distinctively covalent character of strong H-bonds and unveils fundamental weaknesses of electrostatic descriptions of vibrational energy transfer in liquid water and aqueous solutions.

12.
R Soc Open Sci ; 8(7): 210414, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34350018

RESUMEN

The prediction and prevention of fugitive dust emissions from mine tailings surfaces depend largely on our ability to monitor and monitor and predict the evolution of tailings moisture content (TMC). Albedo measurements are demonstrated here to be valuable tools to quantify TMC in bauxite residue samples under controlled conditions in the laboratory. The difference in albedo between 1.30 and 1.55 µm obtained through the infrared integrating sphere method shows good correlations with those acquired with a field spectroradiometer while both are strongly correlated with TMC. Additionally, continuous spectroscopic characterization of evaporating residues is shown to reveal the evolution in their surface drying rates. These optical methods could help predict surface drying state, thereby improving the accuracy of dust emissions risk assessment protocols that support mining industries intervention and mitigation strategies.

13.
J Phys Chem B ; 113(13): 4131-40, 2009 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-18991440

RESUMEN

Reflection-absorption infrared spectra (RAIRS) of amorphous solid water (ASW) films grown at 20 K on a Pt(111) substrate at various angles (theta(Beam) = 0-85 degrees ) using a molecular beam are reported. They display complex features arising from the interplay between refraction, absorption within the sample, and interference effects between the multiple reflections at the film-substrate and film-vacuum interfaces. Using a simple classical optics model based on Fresnel equations, we obtain optical constants [i.e., n(omega) and k(omega)] for porous ASW in the 1000-4000 cm(-1) (10-2.5 microm) range. The behavior of the optical properties of ASW in the intramolecular OH stretching region with increasing theta(Beam) is shown to be strongly correlated with its decreasing density and increasing surface area. A direct comparison between the RAIRS and calculated vibrational spectra shows a large difference ( approximately 200 cm(-1)) in the position of the coupled H-bonded intramolecular OH stretching vibrations spectral feature. Moreover, this band shifts in opposite directions with increasing theta(Beam) in RAIRS and vibrational spectra demonstrating RAIRS spectra cannot be interpreted straightforwardly as vibrational spectra due to severe optical distortions from refraction and interference effects.

14.
J Chem Phys ; 131(12): 124517, 2009 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-19791904

RESUMEN

Adsorption of hydrogen fluoride (HF) onto amorphous solid water films at 50 K is reported to yield a strong absorbance continuum in their reflection-absorption infrared spectra (RAIRS). This and other complex features observed in the RAIRS spectra of stratified binary composite HF:H(2)O nanoscopic films deposited onto Pt(111) are interpreted quantitatively using a classical optics model. Comparison with experimental data allows us to determine that the absorbance continuum is due to absorption within the film (as opposed to trivial optical effects) and that the extent of intermixing and uptake is mostly limited to the first few molecular layers. Furthermore, extensive isotope scrambling is demonstrated by the observation of similar Zundel continua upon codeposition of neat HF, or DF, and H(2)O vapors onto Pt(111) at 50 K. These observations are consistent with those expected from extensive ionic dissociation of HF upon dissolution within, and adsorption onto, ASW at 50 K.

15.
J Am Chem Soc ; 130(18): 5901-7, 2008 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-18386892

RESUMEN

The existence of a broad, mid-infrared absorption ranging from 1000 to 3000 cm(-1) is usually interpreted as a signature for the existence of protonated water networks. Herein, we use cryogenic mixtures of water and hydrogen fluoride (HF) and show experimental and computational evidence that similarly wide absorptions can be generated by a broad distribution of proton-shared and ion pair complexes. In the present case, we demonstrate that the broadening is mainly inhomogeneous, reflecting the fact that the topology of the first solvation shell determines the local degree of ionization and the shared-proton asymmetric stretching frequency within H2O x HF complexes. The extreme sensitivity of the proton transfer potential energy hypersurface to local hydrogen bonding topologies modulates its vibrational frequency from 2800 down to approximately 1300 cm(-1), the latter value being characteristic of solvation geometries that yield similar condensed-phase proton affinities for H2O and fluoride. By linking the local degree of ionization to the solvation pattern, we are able to propose a mechanism of ionization for HF in aqueous solutions and to explain some of their unusual properties at large concentrations. However, an important conclusion of broad scientific interest is our prediction that spectral signatures that are normally attributed to protonated water networks could also reveal the presence of strong hydrogen bonds between un-ionized acids and water molecules, with important consequences to spectroscopic investigations of biologically relevant proton channels and pumps.


Asunto(s)
Ácido Fluorhídrico/química , Espectrofotometría Infrarroja/métodos , Agua/química , Enlace de Hidrógeno , Protones
16.
Radiat Res ; 169(1): 19-27, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18159957

RESUMEN

Zheng, Y., Hunting, D. J., Ayotte, P. and Sanche, L. Radiosensitization of DNA by Gold Nanoparticles Irradiated with High-Energy Electrons. Radiat. Res. 168, 19-27 (2008). Thin films of pGEM-3Zf(-) plasmid DNA were bombarded by 60 keV electrons with and without gold nanoparticles. DNA single- and double-strand breaks (SSBs and DSBs) were measured by agarose gel electrophoresis. From transmission electron micrographs, the gold nanoparticles were found to be closely linked to DNA scaffolds, probably as a result of electrostatic binding. The probabilities for formation of SSBs and DSBs from exposure of 1:1 and 2:1 gold nanoparticle:plasmid mixtures to fast electrons increase by a factor of about 2.5 compared to neat DNA samples. For monolayer DNA adsorbed on a thick gold substrate, the damage increases by an order of magnitude. The results suggest that the enhancement of radiosensitivity is due to the production of additional low-energy secondary electrons caused by the increased absorption of ionizing radiation energy by the metal, in the form of gold nanoparticles or of a thick gold substrate. Since short-range low-energy secondary electrons are produced in large amounts by any type of ionizing radiation, and since on average only one gold nanoparticle per DNA molecule is needed to increase damage considerably, targeting the DNA of cancer cells with gold nanoparticles may offer a novel approach that is generally applicable to radiotherapy treatments.


Asunto(s)
ADN/química , Electrones , Oro/química , Nanopartículas del Metal/química , Fármacos Sensibilizantes a Radiaciones/química , Daño del ADN , Nanopartículas del Metal/ultraestructura , Microscopía Electrónica de Transmisión
17.
J Phys Chem B ; 109(32): 15506-14, 2005 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-16852967

RESUMEN

The adsorption and desorption of HCl on Pt(111) is investigated by temperature programmed desorption, infrared reflection absorption spectroscopy, and low energy electron diffraction. Five peaks are identified in the desorption spectra prior to the onset of multilayer desorption. At low coverage ( < 0.25 monolayers (ML)), desorption peaks at approximately 135 and 200 K are observed and assigned to recombinative desorption of dissociated HCl. At higher coverages, desorption peaks at 70, 77, and 84 K are observed. These peaks are assigned to the desorption of molecularly adsorbed HCl. The infrared spectra are in agreement with these assignments and show that HCl deposited at 20 K is amorphous but crystallizes when heated above 60 K. Kinetic analysis of the desorption spectra reveals a strong repulsive coverage dependence for the desorption energy of the low coverage features ( < 0.25 ML). The diffraction data indicate that at low temperature the adsorbed HCl clusters into ordered islands with a (3 x 3) structure and a local coverage of 4/9 with respect to the Pt(111) substrate.

18.
Phys Chem Chem Phys ; 10(32): 4785-92, 2008 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-18688521

RESUMEN

A molecular-level description of the structural and dynamical aspects that are responsible for the weak acid behaviour of dilute hydrofluoric acid solutions and their unusual increased acidity at near equimolar concentrations continues to elude us. We address this problem by reporting reflection-absorption infrared spectra (RAIRS) of cryogenic HF-H(2)O binary mixtures at various compositions prepared as nanoscopic films using molecular beam techniques. Optical constants for these cryogenic solutions [n(omega) and k(omega)] are obtained by iteratively solving Fresnel equations for stratified media. Modeling of the experimental RAIRS spectra allow for a quantitative interpretation of the complex interplay between multiple reflections, optical interference and absorption effects. The evolution of the strong absorption features in the intermediate 1000-3000 cm(-1) range with increasing HF concentration reveals the presence of various ionic dissociation intermediates that are trapped in the disordered H-bonded network of cryogenic hydrofluoric acid solutions. Our findings are discussed in light of the conventional interpretation of why hydrofluoric acid is a weak acid revealing molecular-level details of the mechanism for HF ionization that may be relevant to analogous elementary processes involved in the ionization of weak acids in aqueous solutions.

19.
Phys Rev Lett ; 100(19): 198101, 2008 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-18518490

RESUMEN

Solid films of DNA with and without the chemotherapeutic agent cisplatin bonded to guanine were bombarded with electrons of 1, 10, 100, and 60,000 eV causing single and double strand breaks. In the presence of cisplatin this damage was increased by factors varying from 1.3 to 4.4 owing to an increase in bond dissociation triggered by the formation of transient anions. This mechanism may lie at the basis of the efficiency of concomitant cisplatin-radiation therapy.


Asunto(s)
Cisplatino/farmacología , Aductos de ADN , Daño del ADN , ADN/efectos de la radiación , Electrones , Neoplasias/tratamiento farmacológico , Neoplasias/radioterapia , Terapia Combinada , ADN/efectos de los fármacos , ADN de Neoplasias/efectos de los fármacos , ADN de Neoplasias/efectos de la radiación , ADN de Cadena Simple/efectos de los fármacos , ADN de Cadena Simple/efectos de la radiación , ADN Superhelicoidal/efectos de los fármacos , ADN Superhelicoidal/efectos de la radiación , Neoplasias/genética
20.
J Chem Phys ; 127(24): 244705, 2007 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-18163693

RESUMEN

Molecular beam techniques are used to create layered nanoscale composite films of amorphous methanol and ethanol at 20 K. The films are then heated, and temperature programed desorption and infrared spectroscopy are used to observe the mixing, desorption, and crystallization behavior from the initially unmixed amorphous layers. We find that the initially unmixed amorphous layers completely intermix to form a deeply supercooled liquid solution after heating above T(g). Modeling of the desorption kinetics shows that the supercooled liquid films behave as ideal solutions. The desorption rates from the supercooled and crystalline phases are then used to derive the binary solid-liquid phase diagram. Deviations from ideal solution desorption behavior are observed when the metastable supercooled solution remains for longer times in regions of the phase diagram when thermodynamically favored crystallization occurs. In those cases, the finite lifetime of the metastable solutions results in the precipitation of crystalline solids. Finally, in very thick films at temperatures and compositions where a stable liquid should exist, we unexpectedly observe deviations from ideal solution behavior. Visual inspection of the sample indicates that these apparent departures from ideality arise from dewetting of the liquid film from the substrate. We conclude that compositionally tailored nanoscale amorphous films provide a useful means for preparing and examining deeply supercooled solutions in metastable regions of the phase diagram.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA