Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Dairy Sci ; 107(2): 649-668, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37709024

RESUMEN

In dairy science, camel milk (CM) constitutes a center of interest for scientists due to its known beneficial effect on diabetes as demonstrated in many in vitro, in vivo, and clinical studies and trials. Overall, CM had positive effects on various parameters related to glucose transport and metabolism as well as the structural and functional properties of the pancreatic ß-cells and insulin secretion. Thus, CM consumption may help manage diabetes; however, such a recommendation will become rationale and clinically conceivable only if the exact molecular mechanisms and pathways involved at the cellular levels are well understood. Moreover, the application of CM as an alternative antidiabetic tool may first require the identification of the exact bioactive molecules behind such antidiabetic properties. In this review, we describe the advances in our knowledge of the molecular mechanisms reported to be involved in the beneficial effects of CM in managing diabetes using different in vitro and in vivo models. This mainly includes the effects of CM on the different molecular pathways controlling (1) insulin receptor signaling and glucose uptake, (2) the pancreatic ß-cell structure and function, and (3) the activity of key metabolic enzymes in glucose metabolism. Moreover, we described the current status of the identification of CM-derived bioactive peptides and their structure-activity relationship study and characterization in the context of molecular markers related to diabetes. Such an overview will not only enrich our scientific knowledge of the plausible mode of action of CM in diabetes but should ultimately rationalize the claim of the potential application of CM against diabetes. This will pave the way toward new directions and ideas for developing a new generation of antidiabetic products taking benefits from the chemical composition of CM.


Asunto(s)
Diabetes Mellitus , Leche , Animales , Leche/química , Camelus/metabolismo , Glucemia/análisis , Diabetes Mellitus/veterinaria , Hipoglucemiantes/farmacología , Péptidos/farmacología
2.
Nutr Health ; : 2601060221122213, 2022 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-36065597

RESUMEN

Background: Whey proteins and their peptide derivatives have attracted a great attention of researchers in the pharmaceutical and nutritional fields, due to their numerous bio-functionalities. Aim: In the present research study, enzymatic protein hydrolysates (CWPHs) from camel whey proteins (CWPs) were produced and investigated for their antioxidant and antimicrobial potentials. Methods: Herein, Pepsin (gastric), and Trypsin and Chymotrypsin (pancreatic) enzymes were used to produce CWPHs. The obtained hydrolysates were characterize to ascertain the level of protein degradation and studies on their antimicrobial and antioxidant potential were conducted. Results: Among all CWPHs, a complete degradation of all different protein bands was perceived with Chymotrypsin-derived CWPHs, whereas, light bands of serum albumin and α-lactalbumin were observed with Trypsin and Pepsin-derived CWPHs. After enzymatic degradation, both CWPHs antioxidant and antimicrobial activities were improved. Chymotrypsin-derived CWPHs demonstrated higher DPPH and ABTS radical scavenging activities, anent the increase in proteolysis time. Compared to unhydrolyzed CWPs, higher metal chelating activities were displayed by Trypsin-derived CWPHs. No significant increase in the FRAP activities was noticed after CWPs hydrolysis using Trypsin and Chymotrypsin, while Pepsin-derived CWPHs showed higher reducing power. In terms of antimicrobial activity, significantly higher bacterial growth inhibition rates were exhibited by CWPHs compared to the unhydrolyzed CWP. Conclusion: Overall, CWPHs displayed enhanced antioxidative and antimicrobial properties.

3.
Int J Mol Sci ; 23(12)2022 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-35743124

RESUMEN

Over one billion people globally are vitamin D (VD) deficient. Studies on the biological roles of VD are numerous but very little on the stomach. This project aims to understand how gastric homeostasis is affected by VD deficiency caused by prolonged exposure to darkness alone or combined with VD deficient diet. Three groups of C57/BL6 mice were subjected to different light exposure conditions and diets for 12 months (n = 8−12/group): control­12 h/12 h light/dark SDL (Standard Diet/Light), 24 h dark SDD (Standard Diet/Dark), and 24 h dark VDD (VD deficient diet/Dark). Stomach samples were collected for different multi-label lectin-/immuno-histochemical and qRT-PCR analyses, and the serum for LC-MS-MS. We found that the membrane VD receptor is expressed widely in the stomach when compared to nuclear VD receptors. Compared to SDL, VDD mice developed mucous cell expansion with increased mucins-mRNA (3.27 ± 2.73 (p < 0.05)) increased apoptotic cells, 15 ± 7 (p ≤ 0.001)); decreased cell proliferation, 4 ± 4 (p < 0.05)) and decreased acid secretion 33 ± 2 µEq/kg (p ≤ 0.0001)). Interestingly, mice exposed to full darkness developed mild VD deficiency with higher VD epimer levels: 11.9 ± 2.08 ng/mL (p ≤ 0.0001)), expansion in zymogenic cell number (16 ± 3 (p ≤ 0.01)), and a reduction in acid secretion (18 ± 2 µEq/kg (p ≤ 0.0001)). In conclusion, changes in light exposure or VD levels have serious physiological effects on the gastric mucosa, which should be considered during the management of gastric disorders.


Asunto(s)
Deficiencia de Vitamina D , Animales , Proliferación Celular , Células Epiteliales/metabolismo , Homeostasis , Humanos , Ratones , Estómago , Vitamina D/metabolismo , Deficiencia de Vitamina D/metabolismo
4.
Int J Mol Sci ; 23(17)2022 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-36077163

RESUMEN

Developing a therapeutic antibody is a long, tedious, and expensive process. Many obstacles need to be overcome, such as biophysical properties (issues of solubility, stability, weak production yields, etc.), as well as cross-reactivity and subsequent toxicity, which are major issues. No in silico method exists today to solve such issues. We hypothesized that if we were able to properly measure the similarity between the CDRs of antibodies (Ab) by considering not only their evolutionary proximity (sequence identity) but also their structural features, we would be able to identify families of Ab recognizing similar epitopes. As a consequence, Ab within the family would share the property to recognize their targets, which would allow (i) to identify off-targets and forecast the cross-reactions, and (ii) to identify new Ab specific for a given target. Testing our method on 238D2, an antagonistic anti-CXCR4 nanobody, we were able to find new nanobodies against CXCR4 and to identify influenza hemagglutinin as an off-target of 238D2.


Asunto(s)
Gripe Humana , Anticuerpos de Dominio Único , Anticuerpos , Epítopos , Hemaglutininas , Humanos
5.
J Dairy Sci ; 104(1): 61-77, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33162074

RESUMEN

The molecular basis of the anti-diabetic properties of camel milk reported in many studies and the exact active agent are still elusive. Recent studies have reported effects of camel whey proteins (CWP) and their hydrolysates (CWPH) on the activities of dipeptidyl peptidase IV (DPP-IV) and the human insulin receptor (hIR). In this study, CWPH were generated, screened for DPP-IV binding in silico and inhibitory activity in vitro, and processed for peptide identification. Furthermore, pharmacological action of intact CWP and their selected hydrolysates on hIR activity and signaling and on glucose uptake were investigated in cell lines. Results showed inhibition of DPP-IV by CWP and CWPH and their positive action on hIR activation and glucose uptake. Interestingly, the combination of CWP or CWPH with insulin revealed a positive allosteric modulation of hIR that was drastically reduced by the competitive hIR antagonist. Our data reveal for the first time the profiling and pharmacological actions of CWP and their derived peptides fractions on hIR and their pathways involved in glucose homeostasis. This sheds more light on the anti-diabetic properties of camel milk by providing the molecular basis for the potential use of camel milk in the management of diabetes.


Asunto(s)
Camelus , Dipeptidil Peptidasa 4/metabolismo , Hipoglucemiantes/farmacología , Leche/fisiología , Receptor de Insulina/metabolismo , Animales , Camelus/metabolismo , Simulación por Computador , Diabetes Mellitus/veterinaria , Dipeptidil Peptidasa 4/química , Inhibidores de la Dipeptidil-Peptidasa IV/farmacología , Humanos , Hipoglucemiantes/metabolismo , Leche/química , Proteínas de la Leche/química , Proteínas de la Leche/farmacología , Péptidos/metabolismo , Fosforilación , Proteína de Suero de Leche/metabolismo
6.
Int J Mol Sci ; 22(18)2021 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-34576014

RESUMEN

Follicle-stimulating hormone receptor (FSHR) plays a key role in reproduction through the activation of multiple signaling pathways. Low molecular weight (LMW) ligands composed of biased agonist properties are highly valuable tools to decipher complex signaling mechanisms as they allow selective activation of discrete signaling cascades. However, available LMW FSHR ligands have not been fully characterized yet. In this context, we explored the pharmacological diversity of three benzamide and two thiazolidinone derivatives compared to FSH. Concentration/activity curves were generated for Gαs, Gαq, Gαi, ß-arrestin 2 recruitment, and cAMP production, using BRET assays in living cells. ERK phosphorylation was analyzed by Western blotting, and CRE-dependent transcription was assessed using a luciferase reporter assay. All assays were done in either wild-type, Gαs or ß-arrestin 1/2 CRISPR knockout HEK293 cells. Bias factors were calculated for each pair of read-outs by using the operational model. Our results show that each ligand presented a discrete pharmacological efficacy compared to FSH, ranging from super-agonist for ß-arrestin 2 recruitment to pure Gαs bias. Interestingly, LMW ligands generated kinetic profiles distinct from FSH (i.e., faster, slower or transient, depending on the ligand) and correlated with CRE-dependent transcription. In addition, clear system biases were observed in cells depleted of either Gαs or ß-arrestin genes. Such LMW properties are useful pharmacological tools to better dissect the multiple signaling pathways activated by FSHR and assess their relative contributions at the cellular and physio-pathological levels.


Asunto(s)
Subunidades alfa de la Proteína de Unión al GTP/farmacología , Receptores de HFE/agonistas , Arrestina beta 2/farmacología , AMP Cíclico/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Células HEK293 , Humanos , Cinética
7.
Traffic ; 19(1): 58-82, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29044966

RESUMEN

The signaling pathway of G protein-coupled receptors is strongly linked to their trafficking profile. Little is known about the molecular mechanisms involved in the vasopressin receptor V1b subtype (V1b R) trafficking and its impact on receptor signaling and regulation. For this purpose, we investigated the role of ß-arrestins in receptor desensitization, internalization and recycling and attempted to dissect the V1b R-mediated MAP kinase pathway. Using MEF cells Knocked-out for ß-arrestins 1 and 2, we demonstrated that both ß-arrestins 1 and 2 play a fundamental role in internalization and recycling of V1b R with a rapid and transient V1b R-ß-arrestin interaction in contrast to a slow and long-lasting ß-arrestin recruitment of the V2 vasopressin receptor subtype (V2 R). Using V1b R-V2 R chimeras and V1b R C-terminus truncations, we demonstrated the critical role of the V1b R C-terminus in its interaction with ß-arrestins thereby regulating the receptor internalization and recycling kinetics in a phosphorylation-independent manner. In parallel, V1b R MAP kinase activation was dependent on arrestins and Src-kinase but independent on G proteins. Interestingly, Src interacted with hV1b R at basal state and dissociated when receptor internalization occurred. Altogether, our data describe for the first time the trafficking profile and MAP kinase pathway of V1b R involving both arrestins and Src kinase family.


Asunto(s)
Sistema de Señalización de MAP Quinasas , Receptores de Vasopresinas/metabolismo , beta-Arrestinas/metabolismo , Animales , Sitios de Unión , Proteínas de Unión al GTP/metabolismo , Células HEK293 , Humanos , Ratones , Unión Proteica , Transporte de Proteínas , beta-Arrestinas/química , Familia-src Quinasas/metabolismo
8.
J Immunol ; 201(10): 3096-3105, 2018 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-30322966

RESUMEN

Abs are very efficient drugs, ∼70 of them are already approved for medical use, over 500 are in clinical development, and many more are in preclinical development. One important step in the characterization and protection of a therapeutic Ab is the determination of its cognate epitope. The gold standard is the three-dimensional structure of the Ab/Ag complex by crystallography or nuclear magnetic resonance spectroscopy. However, it remains a tedious task, and its outcome is uncertain. We have developed MAbTope, a docking-based prediction method of the epitope associated with straightforward experimental validation procedures. We show that MAbTope predicts the correct epitope for each of 129 tested examples of Ab/Ag complexes of known structure. We further validated this method through the successful determination, and experimental validation (using human embryonic kidney cells 293), of the epitopes recognized by two therapeutic Abs targeting TNF-α: certolizumab and golimumab.


Asunto(s)
Anticuerpos Monoclonales/química , Mapeo Epitopo/métodos , Simulación del Acoplamiento Molecular/métodos , Células HEK293 , Humanos
9.
Int J Mol Sci ; 22(1)2020 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-33379211

RESUMEN

Hemorphins are known for their role in the control of blood pressure. Recently, we revealed the positive modulation of the angiotensin II (AngII) type 1 receptor (AT1R) by LVV-hemorphin-7 (LVV-H7) in human embryonic kidney (HEK293) cells. Here, we examined the molecular binding behavior of LVV-H7 on AT1R and its effect on AngII binding using a nanoluciferase-based bioluminescence resonance energy transfer (NanoBRET) assay in HEK293FT cells, as well as molecular docking and molecular dynamics (MD) studies. Saturation and real-time kinetics supported the positive effect of LVV-H7 on the binding of AngII. While the competitive antagonist olmesartan competed with AngII binding, LVV-H7 slightly, but significantly, decreased AngII's kD by 2.6 fold with no effect on its Bmax. Molecular docking and MD simulations indicated that the binding of LVV-H7 in the intracellular region of AT1R allosterically potentiates AngII binding. LVV-H7 targets residues on intracellular loops 2 and 3 of AT1R, which are known binding sites of allosteric modulators in other GPCRs. Our data demonstrate the allosteric effect of LVV-H7 on AngII binding, which is consistent with the positive modulation of AT1R activity and signaling previously reported. This further supports the pharmacological targeting of AT1R by hemorphins, with implications in vascular and renal physiology.


Asunto(s)
Angiotensina II/metabolismo , Hemoglobinas/metabolismo , Fragmentos de Péptidos/metabolismo , Receptor de Angiotensina Tipo 1/metabolismo , Células HEK293 , Humanos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular
10.
Annu Rev Pharmacol Toxicol ; 56: 403-25, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26514203

RESUMEN

G protein-coupled receptors (GPCRs) compose one of the largest families of membrane proteins involved in intracellular signaling. They are involved in numerous physiological and pathological processes and are prime candidates for drug development. Over the past decade, an increasing number of studies have reported heteromerization between GPCRs. Many investigations in heterologous systems have provided important indications of potential novel pharmacology; however, the physiological relevance of these findings has yet to be established with endogenous receptors in native tissues. In this review, we focus on family A GPCRs and describe the techniques and criteria to assess their heteromerization. We conclude that advances in approaches to study receptor complex functionality in heterologous systems, coupled with techniques that enable specific examination of native receptor heteromers in vivo, are likely to establish GPCR heteromers as novel therapeutic targets.


Asunto(s)
Receptores Acoplados a Proteínas G/metabolismo , Animales , Descubrimiento de Drogas/métodos , Humanos , Proteínas de la Membrana/metabolismo , Transducción de Señal/fisiología
11.
FASEB J ; 32(3): 1154-1169, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29084767

RESUMEN

Many interaction partners of ß-arrestins intervene in the control of mRNA translation. However, how ß-arrestins regulate this cellular process has been poorly explored. In this study, we show that ß-arrestins constitutively assemble a p70S6K/ribosomal protein S6 (rpS6) complex in HEK293 cells and in primary Sertoli cells of the testis. We demonstrate that this interaction is direct, and experimentally validate the interaction interface between ß-arrestin 1 and p70S6K predicted by our docking algorithm. Like most GPCRs, the biological function of follicle-stimulating hormone receptor (FSHR) is transduced by G proteins and ß-arrestins. Upon follicle-stimulating hormone (FSH) stimulation, activation of G protein-dependent signaling enhances p70S6K activity within the ß-arrestin/p70S6K/rpS6 preassembled complex, which is not recruited to the FSHR. In agreement, FSH-induced rpS6 phosphorylation within the ß-arrestin scaffold was decreased in cells depleted of Gαs. Integration of the cooperative action of ß-arrestin and G proteins led to the translation of 5' oligopyrimidine track mRNA with high efficacy within minutes of FSH input. Hence, this work highlights new relationships between G proteins and ß-arrestins when acting cooperatively on a common signaling pathway, contrasting with their previously shown parallel action on the ERK MAP kinase pathway. In addition, this study provides insights into how GPCR can exert trophic effects in the cell.-Tréfier, A., Musnier, A., Landomiel, F., Bourquard, T., Boulo, T., Ayoub, M. A., León, K., Bruneau, G., Chevalier, M., Durand, G., Blache, M.-C., Inoue, A., Fontaine, J., Gauthier, C., Tesseraud, S., Reiter, E., Poupon, A., Crépieux, P. G protein-dependent signaling triggers a ß-arrestin-scaffolded p70S6K/ rpS6 module that controls 5'TOP mRNA translation.


Asunto(s)
Regiones no Traducidas 5'/genética , Proteínas de Unión al GTP/metabolismo , Biosíntesis de Proteínas , ARN Mensajero/metabolismo , Proteínas Quinasas S6 Ribosómicas 70-kDa/metabolismo , Proteína S6 Ribosómica/metabolismo , beta-Arrestinas/metabolismo , Animales , Masculino , Mapas de Interacción de Proteínas , Procesamiento Postranscripcional del ARN , ARN Mensajero/genética , Ratas , Ratas Wistar , Receptores de HFE/metabolismo , Células de Sertoli/metabolismo , Transducción de Señal
12.
Mol Hum Reprod ; 23(10): 685-697, 2017 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-29044421

RESUMEN

STUDY QUESTION: Are four urinary hCG/menotropin (hMG) and one recombinant preparation characterized by different molecular features and do they mediate specific intracellular signaling and steroidogenesis? SUMMARY ANSWER: hCG and hMG preparations have heterogeneous compositions and mediate preparation-specific cell signaling and early steroidogenesis, although similar progesterone plateau levels are achieved in 24 h-treated human primary granulosa cells in vitro. WHAT IS KNOWN ALREADY: hCG is the pregnancy hormone marketed as a drug for ARTs to induce final oocyte maturation and ovulation, and to support FSH action. Several hCG formulations are commercially available, differing in source, purification methods and biochemical composition. STUDY DESIGN, SIZE, DURATION: Commercial hCG preparations for ART or research purposes were compared in vitro. PARTICIPANTS/MATERIALS, SETTING, METHODS: The different preparations were quantified by immunoassay with calibration against the hCG standard (Fifth IS; NIBSC 07/364). Immunoreactivity patterns, isoelectric points and oligosaccharide contents of hCGs were evaluated using reducing and non-reducing Western blotting, capillary isoelectric-focusing immunoassay and lectin-ELISA, respectively. Functional studies were performed in order to evaluate intracellular and total cAMP, progesterone production and ß-arrestin 2 recruitment by ELISA and BRET, in both human primary granulosa lutein cells (hGLC) and luteinizing hormone (LH)/hCG receptor (LHCGR)-transfected HEK293 cells, stimulated by increasing hormone concentrations. Statistical analysis was performed using two-way ANOVA and Bonferroni post-test or Mann-Whitney's U-test as appropriate. MAIN RESULTS AND THE ROLE OF CHANCE: Heterogeneous profiles were found among preparations, revealing specific molecular weight patterns (20-75 KDa range), isoelectric points (4.0-9.0 pI range) and lectin binding (P < 0.05; n = 7-10). These drug-specific compositions were linked to different potencies on cAMP production (EC50 1.0-400.0 ng/ml range) and ß-arrestin 2 recruitment (EC50 0.03-2.0 µg/ml) in hGLC and transfected HEK293 cells (P < 0.05; n = 3-5). In hGLC, these differences were reflected by preparation-specific 8-h progesterone production although similar plateau levels of progesterone were acheived by 24-h treatment (P ≥ 0.05; n = 3). LARGE SCALE DATA: N/A. LIMITATIONS, REASONS FOR CAUTION: The biological activity of commercial hCG/hMG preparations is provided in International Units (IU) by in-vivo bioassay and calibration against an International Standard, although it is an unsuitable unit of measure for in-vitro studies. The re-calibration against recombinant hCG,quantified in grams, is based on the assumption that all of the isoforms and glycosylation variants have similar immunoreactivity. WIDER IMPLICATIONS OF THE FINDINGS: hCG/hMG preparation-specific cell responses in vitro may be proposed to ART patients affected by peculiar ovarian response, such as that caused by polycystic ovary syndrome. Otherwise, all the preparations available for ART may provide a similar clinical outcome in healthy women. STUDY FUNDING AND COMPETING INTEREST(S): This study was supported by a grant of the Italian Ministry of Education, University and Research (PRIN 2015XCR88M). The authors have no conflict of interest.


Asunto(s)
Gonadotropina Coriónica/química , Fármacos para la Fertilidad Femenina/química , Células de la Granulosa/efectos de los fármacos , Menotropinas/química , Progesterona/biosíntesis , Transducción de Señal/efectos de los fármacos , Adulto , Gonadotropina Coriónica/farmacología , AMP Cíclico/biosíntesis , Femenino , Fármacos para la Fertilidad Femenina/farmacología , Hormona Folículo Estimulante/genética , Hormona Folículo Estimulante/metabolismo , Regulación de la Expresión Génica , Células de la Granulosa/citología , Células de la Granulosa/metabolismo , Células HEK293 , Humanos , Punto Isoeléctrico , Fase Luteínica/fisiología , Menotropinas/farmacología , Peso Molecular , Inducción de la Ovulación/métodos , Embarazo , Cultivo Primario de Células , Receptores de HL/genética , Receptores de HL/metabolismo , Transfección , Arrestina beta 2/genética , Arrestina beta 2/metabolismo
13.
FASEB J ; 30(12): 4180-4191, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27609774

RESUMEN

The Salmonella Rck outer membrane protein binds to the cell surface, which leads to bacterial internalization via a Zipper mechanism. This invasion process requires induction of cellular signals, including phosphorylation of tyrosine proteins, and activation of c-Src and PI3K, which arises as a result of an interaction with a host cell surface receptor. In this study, epidermal growth factor receptor (EGFR) was identified as the cell signaling receptor required for Rck-mediated adhesion and internalization. First, Rck-mediated adhesion and internalization were shown to be altered when EGFR expression and activity were modulated. Then, immunoprecipitations were performed to demonstrate the Rck-EGFR interaction. Furthermore, surface plasmon resonance biosensor and homogeneous time-resolved fluorescence technologies were used to demonstrate the direct interaction of Rck with the extracellular domain of human EGFR. Finally, our study strongly suggests a noncompetitive binding of Rck and EGF to EGFR. Overall, these results demonstrate that Rck is able to bind to EGFR and thereby establish a tight adherence to provide a signaling cascade, which leads to internalization of Rck-expressing bacteria.-Wiedemann, A., Mijouin, L., Ayoub, M. A., Barilleau, E., Canepa, S., Teixeira-Gomes, A. P., Le Vern, Y., Rosselin, M., Reiter, E., Velge, P. Identification of the epidermal growth factor receptor as the receptor for Salmonella Rck-dependent invasion.


Asunto(s)
Membrana Celular/metabolismo , Factor de Crecimiento Epidérmico/metabolismo , Receptores ErbB/metabolismo , Salmonella/metabolismo , Proteína Tirosina Quinasa CSK , Línea Celular , Escherichia coli , Fosforilación , Receptores de Superficie Celular/metabolismo , Transducción de Señal/fisiología , Familia-src Quinasas/metabolismo
14.
Biomed Pharmacother ; 170: 116070, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38163396

RESUMEN

Two-dimensional (2D) nanomaterials have garnered enormous attention seemingly due to their unusual architecture and properties. Graphene and graphene oxide based 2D nanomaterials remained the most sought after for several years but the quest to design superior 2D nanomaterials which can find wider application gave rise to development of non-graphene 2D materials as well. Consequently, in addition to graphene based 2D nanomaterials, 2D nanostructures designed using macromolecules (such as DNAs, proteins, peptides and peptoids), transition metal dichalcogenides, transition-metal carbides and/or nitrides (MXene), black phosphorous, chitosan, hexagonal boron nitrides, and graphitic carbon nitride, and covalent organic frameworks have been developed. Interestingly, these 2D nanomaterials have found applications in diagnosis and treatment of various diseases including Alzheimer's disease (AD). Although AD is one of the most debilitating neurodegenerative conditions across the globe; unfortunately, there remains a paucity of effective diagnostic and/or therapeutic intervention for it till date. In this scenario, nanomaterial-based biosensors, or therapeutics especially 2D nanostructures are emerging to be promising in this regard. This review summarizes the diagnostic and therapeutic platforms developed for AD using 2D nanostructures. Collectively, it is worth mentioning that these 2D nanomaterials would seemingly provide an alternative and intriguing platform for biomedical interventions.


Asunto(s)
Enfermedad de Alzheimer , Técnicas Biosensibles , Grafito , Nanoestructuras , Humanos , Grafito/química , Enfermedad de Alzheimer/diagnóstico , Enfermedad de Alzheimer/tratamiento farmacológico , Nanoestructuras/uso terapéutico , Nanoestructuras/química , Técnicas Biosensibles/métodos
15.
J Biol Chem ; 287(16): 12952-65, 2012 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-22371491

RESUMEN

We have provided the first evidence for specific heteromerization between the α(1A)-adrenoceptor (α(1A)AR) and CXC chemokine receptor 2 (CXCR2) in live cells. α(1A)AR and CXCR2 are both expressed in areas such as the stromal smooth muscle layer of the prostate. By utilizing the G protein-coupled receptor (GPCR) heteromer identification technology on the live cell-based bioluminescence resonance energy transfer (BRET) assay platform, our studies in human embryonic kidney 293 cells have identified norepinephrine-dependent ß-arrestin recruitment that was in turn dependent upon co-expression of α(1A)AR with CXCR2. These findings have been supported by co-localization observed using confocal microscopy. This norepinephrine-dependent ß-arrestin recruitment was inhibited not only by the α(1)AR antagonist Terazosin but also by the CXCR2-specific allosteric inverse agonist SB265610. Furthermore, Labetalol, which is marketed for hypertension as a nonselective ß-adrenoceptor antagonist with α(1)AR antagonist properties, was identified as a heteromer-specific-biased agonist exhibiting partial agonism for inositol phosphate production but essentially full agonism for ß-arrestin recruitment at the α(1A)AR-CXCR2 heteromer. Finally, bioluminescence resonance energy transfer studies with both receptors tagged suggest that α(1A)AR-CXCR2 heteromerization occurs constitutively and is not modulated by ligand. These findings support the concept of GPCR heteromer complexes exhibiting distinct pharmacology, thereby providing additional mechanisms through which GPCRs can potentially achieve their diverse biological functions. This has important implications for the use and future development of pharmaceuticals targeting these receptors.


Asunto(s)
Próstata/metabolismo , Estructura Cuaternaria de Proteína , Receptores Adrenérgicos alfa 1/química , Receptores de Interleucina-8B/química , Antagonistas de Receptores Adrenérgicos alfa 1/farmacología , Agonistas alfa-Adrenérgicos/farmacología , Regulación Alostérica/fisiología , Animales , Arrestinas/metabolismo , Células CHO , Quimiocinas/metabolismo , Cricetinae , Células HEK293 , Humanos , Fosfatos de Inositol/metabolismo , Labetalol/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Norepinefrina/farmacología , Prazosina/análogos & derivados , Prazosina/farmacología , Receptores Adrenérgicos alfa 1/metabolismo , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Interleucina-8B/metabolismo , beta-Arrestinas
16.
EMBO J ; 28(15): 2195-208, 2009 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-19590495

RESUMEN

G protein-coupled receptors (GPCRs) have critical functions in intercellular communication. Although a wide range of different receptors have been identified in the same cells, the mechanism by which signals are integrated remains elusive. The ability of GPCRs to form dimers or larger hetero-oligomers is thought to generate such signal integration. We examined the molecular mechanisms responsible for the GABA(B) receptor-mediated potentiation of the mGlu receptor signalling reported in Purkinje neurons. We showed that this effect does not require a physical interaction between both receptors. Instead, it is the result of a more general mechanism in which the betagamma subunits produced by the Gi-coupled GABA(B) receptor enhance the mGlu-mediated Gq response. Most importantly, this mechanism could be generally applied to other pairs of Gi- and Gq-coupled receptors and the signal integration varied depending on the time delay between activation of each receptor. Such a mechanism helps explain specific properties of cells expressing two different Gi- and Gq-coupled receptors activated by a single transmitter, or properties of GPCRs naturally coupled to both types of the G protein.


Asunto(s)
Células de Purkinje/fisiología , Receptores de GABA-B/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Transducción de Señal , Animales , Ratones , Ratones Endogámicos C57BL , Modelos Biológicos
17.
Cell Signal ; 109: 110802, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37437829

RESUMEN

Pathogens exploit multiple cellular and molecular pathways in the host organisms for their entry, survival and dissemination. The cell surface receptors such as G protein-coupled receptors (GPCRs) and receptor tyrosine kinases (RTKs) constitute the targets of many pathogens. This is due to the ubiquitous expression of these two receptor families in the organism and their pivotal role in various cellular and physiological processes. At the molecular level, receptor hijacking implies either direct or indirect interactions between pathogens' effectors or toxins with GPCRs and RTKs at the cell surface thereby interfering with their activation and their downstream signaling pathways inside the host cells. As a result, the pathogens manipulate and redirect GPCR/RTK-mediated signaling pathways and different aspects of cell function for their benefit. The review presents a compilation of the major examples of pathogen infections where GPCRs and RTKs and their related intracellular signaling pathways are targeted. This provides a molecular basis for pathogens hijacking cell signaling and their virulence. Our understanding of such complex host-pathogen interactions at the molecular level will open new opportunities to develop new prophylactic and therapeutic approaches against infections. In this context, the pharmacological targeting of GPCRs and RTKs may be a promising approach.


Asunto(s)
Proteínas Tirosina Quinasas Receptoras , Receptores Acoplados a Proteínas G , Proteínas Tirosina Quinasas Receptoras/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal/fisiología , Receptores de Superficie Celular
18.
J Neuroimmune Pharmacol ; 18(3): 462-475, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37589761

RESUMEN

Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by the selective degeneration of dopaminergic neurons in the substantia nigra pars compacta resulting in an irreversible and a debilitating motor dysfunction. Though both genetic and idiopathic factors are implicated in the disease etiology, idiopathic PD comprise the majority of clinical cases and is caused by exposure to environmental toxicants and oxidative stress. Fyn kinase activation has been identified as an early molecular signaling event that primes neuroinflammatory and neurodegenerative events associated with dopaminergic cell death. However, the upstream regulator of Fyn activation remains unidentified. We investigated whether the lipid and tyrosine phosphatase PTEN (Phosphatase and Tensin homolog deleted on chromosome 10) could be the upstream regulator of Fyn activation in PD models as PTEN has been previously reported to contribute to Parkinsonian pathology. Our findings, using bioluminescence resonance energy transfer (BRET) and immunoblotting, indicate for the first time that PTEN is a critical early stress sensor in response to oxidative stress and neurotoxicants in in vitro models of PD. Pharmacological attenuation of PTEN activity rescues dopaminergic neurons from neurotoxicant-induced cytotoxicity by modulating Fyn kinase activation. Our findings also identify PTEN's novel roles in contributing to mitochondrial dysfunction which contribute to neurodegenerative processes. Interestingly, we found that PTEN positively regulates interleukin-1ß (IL-1ß) and the transcription of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). Taken together, we have identified PTEN as a disease course altering pharmacological target that may be further validated for the development of novel therapeutic strategies targeting PD.


Asunto(s)
Neuronas Dopaminérgicas , Fosfohidrolasa PTEN , Enfermedad de Parkinson , Humanos , Neuronas Dopaminérgicas/metabolismo , Estrés Oxidativo , Enfermedad de Parkinson/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , Transducción de Señal/fisiología , Animales , Ratas
19.
Front Oncol ; 12: 911615, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35712465

RESUMEN

We recently reported that carnosol induces ROS-dependent autophagy and apoptosis in breast cancer cells. We also reported that carnosol inhibits breast cancer cell migration, invasion, and in ovo tumor growth, as well as targets STAT3, PCAF, and p300 to proteasome degradation. Here, we investigated the molecular mechanisms underlying its anti-malignant activity in breast cancer. We report that carnosol induces a ROS-dependent type I and type II programmed cell death (PCD-I or PCD-II, respectively), which occurred independently of each other. Indeed, chemical inhibition of autophagy had no effect on the induction of apoptosis, evident by the absence of cleaved PARP. Electron microscopy revealed that carnosol-treated cells exhibited enlarged endoplasmic reticulum, characteristic of ER stress. Markers of the three unfolded protein response pathways (PERK, IRE-1 α, and ATF6), namely ATF4, CHOP, phospho-IRE-1α, XBP1S, and cleaved ATF6 were upregulated in a ROS-dependent manner. In addition, carnosol induced a ROS-dependent activation of p38MAPK, increased the overall level of protein polyubiquitination, and targeted mTOR protein to proteasome degradation. Interestingly, inhibition of p38MAPK, by SB202190 and 203580, reduced cell death, selectively blocked the induction of IRE-1α and ATF6 UPR sensors and inhibited autophagy. In addition, inhibition of p38 reduced the carnosol-induced polyubiquitination and rescued mTOR, PCAF, and STAT3 from proteasomal degradation. Importantly, activation of PERK sensors and induction of apoptosis occurred independently of p38 activation. Taken together, our results suggest that ROS-dependent induced-ER stress contributes to carnosol-induced apoptotic and autophagic cell death in breast cancer cells, and further confirm that carnosol is a promising agent for breast cancer therapy.

20.
Front Endocrinol (Lausanne) ; 13: 848816, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35721749

RESUMEN

The angiotensin type 2 (AT2) receptor and the bradykinin type 2 (B2) receptor are G protein-coupled receptors (GPCRs) that have major roles in the cardiovascular system. The two receptors are known to functionally interact at various levels, and there is some evidence that the observed crosstalk may occur as a result of heteromerization. We investigated evidence for heteromerization of the AT2 receptor and the B2 receptor in HEK293FT cells using various bioluminescence resonance energy transfer (BRET)-proximity based assays, including the Receptor Heteromer Investigation Technology (Receptor-HIT) and the NanoBRET ligand-binding assay. The Receptor-HIT assay showed that Gαq, GRK2 and ß-arrestin2 recruitment proximal to AT2 receptors only occurred upon B2 receptor coexpression and activation, all of which is indicative of AT2-B2 receptor heteromerization. Additionally, we also observed specific coupling of the B2 receptor with the Gαz protein, and this was found only in cells coexpressing both receptors and stimulated with bradykinin. The recruitment of Gαz, Gαq, GRK2 and ß-arrestin2 was inhibited by B2 receptor but not AT2 receptor antagonism, indicating the importance of B2 receptor activation within AT2-B2 heteromers. The close proximity between the AT2 receptor and B2 receptor at the cell surface was also demonstrated with the NanoBRET ligand-binding assay. Together, our data demonstrate functional interaction between the AT2 receptor and B2 receptor in HEK293FT cells, resulting in novel pharmacology for both receptors with regard to Gαq/GRK2/ß-arrestin2 recruitment (AT2 receptor) and Gαz protein coupling (B2 receptor). Our study has revealed a new mechanism for the enigmatic and poorly characterized AT2 receptor to be functionally active within cells, further illustrating the role of heteromerization in the diversity of GPCR pharmacology and signaling.


Asunto(s)
Receptor de Angiotensina Tipo 2 , Receptor de Bradiquinina B2 , Bradiquinina/farmacología , Ligandos , Receptor de Angiotensina Tipo 2/fisiología , Receptor de Bradiquinina B2/fisiología , Receptores Acoplados a Proteínas G , Arrestina beta 2
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA