Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Hum Brain Mapp ; 42(15): 4940-4957, 2021 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-34296501

RESUMEN

There is a growing interest in examining the wealth of data generated by fusing functional and structural imaging information sources. These approaches may have clinical utility in identifying disruptions in the brain networks that underlie major depressive disorder (MDD). We combined an existing software toolbox with a mathematically dense statistical method to produce a novel processing pipeline for the fast and easy implementation of data fusion analysis (FATCAT-awFC). The novel FATCAT-awFC pipeline was then utilized to identify connectivity (conventional functional, conventional structural and anatomically weighted functional connectivy) changes in MDD patients compared to healthy comparison participants (HC). Data were acquired from the Canadian Biomarker Integration Network for Depression (CAN-BIND-1) study. Large-scale resting-state networks were assessed. We found statistically significant anatomically-weighted functional connectivity (awFC) group differences in the default mode network and the ventral attention network, with a modest effect size (d < 0.4). Functional and structural connectivity seemed to overlap in significance between one region-pair within the default mode network. By combining structural and functional data, awFC served to heighten or reduce the magnitude of connectivity differences in various regions distinguishing MDD from HC. This method can help us more fully understand the interconnected nature of structural and functional connectivity as it relates to depression.


Asunto(s)
Encéfalo , Conectoma/métodos , Red en Modo Predeterminado , Trastorno Depresivo Mayor , Imagen de Difusión Tensora/métodos , Imagen por Resonancia Magnética/métodos , Red Nerviosa , Adulto , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Encéfalo/fisiopatología , Red en Modo Predeterminado/diagnóstico por imagen , Red en Modo Predeterminado/patología , Red en Modo Predeterminado/fisiopatología , Trastorno Depresivo Mayor/diagnóstico por imagen , Trastorno Depresivo Mayor/patología , Trastorno Depresivo Mayor/fisiopatología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Red Nerviosa/diagnóstico por imagen , Red Nerviosa/patología , Red Nerviosa/fisiopatología
2.
Sensors (Basel) ; 16(11)2016 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-27834850

RESUMEN

Conventional methods for the detection of bacterial infection such as DNA or immunoassays are expensive, time consuming, or not definitive and thus may not provide all the information sought by medical professionals. In particular, it is difficult to obtain information about viability or drug effectiveness, which is crucial to formulate a treatment. Bacterial culture tests are the "gold standard" because they are inexpensive and do not require extensive sample preparation, and most importantly, provide all the necessary information sought by healthcare professionals, such as bacterial presence, viability and drug effectiveness. These conventional culture methods, however, have a long turnaround time, anywhere between 1 day and 4 weeks. Here, we solve this problem by monitoring the growth of bacteria in thousands of nanowells simultaneously to more quickly identify their presence in the sample and their viability. The segmentation of a sample with low bacterial concentration into thousands of nanoliter wells digitizes the samples and increases the effective concentration in those wells that contain bacteria. We monitor the metabolism of aerobic bacteria by using an oxygen-sensitive fluorophore, ruthenium tris (2,2'-diprydl) dichloride hexahydrate (RTDP), which allows us to monitor the dissolved oxygen concentration in the nanowells. Using E. coli K12 as a model pathogen, we demonstrate that the detection time of E. coli can be as fast as 35-60 min with sample concentrations varying from 104 (62 min for detection), 106 (42 min) and 108 cells/mL (38 min). More importantly, we also demonstrate that reducing the well size can reduce the detection time. Finally we show that drug effectiveness information can be obtained in this format by loading the wells with the drug and monitoring the metabolism of the bacteria. The method that we have developed is low cost, simple, requires minimal sample preparation and can potentially be used with a wide variety of samples in a resource-poor setting to detect bacterial infections such as tuberculosis.


Asunto(s)
Viabilidad Microbiana , Microfluídica/métodos , Bacterias Aerobias/fisiología , Escherichia coli/fisiología , Tuberculosis/microbiología
3.
IBRO Neurosci Rep ; 16: 135-146, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38293679

RESUMEN

Neural network-level changes underlying symptom remission in major depressive disorder (MDD) are often studied from a single perspective. Multimodal approaches to assess neuropsychiatric disorders are evolving, as they offer richer information about brain networks. A FATCAT-awFC pipeline was developed to integrate a computationally intense data fusion method with a toolbox, to produce a faster and more intuitive pipeline for combining functional connectivity with structural connectivity (denoted as anatomically weighted functional connectivity (awFC)). Ninety-three participants from the Canadian Biomarker Integration Network for Depression study (CAN-BIND-1) were included. Patients with MDD were treated with 8 weeks of escitalopram and adjunctive aripiprazole for another 8 weeks. Between-group connectivity (SC, FC, awFC) comparisons contrasted remitters (REM) with non-remitters (NREM) at baseline and 8 weeks. Additionally, a longitudinal study analysis was performed to compare connectivity changes across time for REM, from baseline to week-8. Association between cognitive variables and connectivity were also assessed. REM were distinguished from NREM by lower awFC within the default mode, frontoparietal, and ventral attention networks. Compared to REM at baseline, REM at week-8 revealed increased awFC within the dorsal attention network and decreased awFC within the frontoparietal network. A medium effect size was observed for most results. AwFC in the frontoparietal network was associated with neurocognitive index and cognitive flexibility for the NREM group at week-8. In conclusion, the FATCAT-awFC pipeline has the benefit of providing insight on the 'full picture' of connectivity changes for REMs and NREMs while making for an easy intuitive approach.

4.
Front Neurosci ; 17: 1066373, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37008220

RESUMEN

Introduction: Environmental perturbations during critical periods can have pervasive, organizational effects on neurodevelopment. To date, the literature examining the long-term impact of early life adversity has largely investigated structural and functional imaging data outcomes independently. However, emerging research points to a relationship between functional connectivity and the brain's underlying structural architecture. For instance, functional connectivity can be mediated by the presence of direct or indirect anatomical pathways. Such evidence warrants the use of structural and functional imaging in tandem to study network maturation. Accordingly, this study examines the impact of poor maternal mental health and socioeconomic context during the perinatal period on network connectivity in middle childhood using an anatomically weighted functional connectivity (awFC) approach. awFC is a statistical model that identifies neural networks by incorporating information from both structural and functional imaging data. Methods: Resting-state fMRI and DTI scans were acquired from children aged 7-9 years old. Results: Our results indicate that maternal adversity during the perinatal period can affect offspring's resting-state network connectivity during middle childhood. Specifically, in comparison to controls, children of mothers who had poor perinatal maternal mental health and/or low socioeconomic status exhibited greater awFC in the ventral attention network. Discussion: These group differences were discussed in terms of the role this network plays in attention processing and maturational changes that may accompany the consolidation of a more adult-like functional cortical organization. Furthermore, our results suggest that there is value in using an awFC approach as it may be more sensitive in highlighting connectivity differences in developmental networks associated with higher-order cognitive and emotional processing, as compared to stand-alone FC or SC analyses.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA